Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

The stardust abundance in the local interstellar cloud at the birth of the Solar System


Primitive Solar System materials, such as certain types of meteorites, interplanetary dust particles and cometary matter, contain small quantities of refractory dust grains that are older than our Solar System. These ‘presolar grains’ condensed in the winds of evolved stars and in the ejecta of stellar explosions, and they were part of the interstellar gas and dust cloud from which our Solar System formed 4.57 billion years ago1. Interstellar dust is not only stardust but forms in the interstellar medium as well, predominantly as silicates, and, to a lesser extent, as carbonaceous dust and iron particles2. Presolar grains represent a sample of stardust, and their abundances in primitive Solar System materials can be used to constrain the fraction of stardust among interstellar dust. Here we show that the size distribution of presolar silicates follows that observationally derived for interstellar dust, at least in the diameter range 100–500 nm, that current estimates of presolar grain abundances (mass fractions) are at least a factor of 2 too low, and that several per cent of the interstellar dust in the interstellar cloud pre-dating our Solar System was stardust, making it a minor but still important ingredient of the starting material from which our Solar System formed.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Fig.  1: Oxygen-isotopic compositions of silicate and oxide stardust identified by NanoSIMS high-resolution ion imaging.
Fig. 2: Grain density of presolar silicates and oxides in the QUE 99177 meteorite.
Fig. 3: Grain density of presolar silicates and oxides in the MET 00426 meteorite.
Fig. 4: Grain-size distributions according to low- and high-resolution ion imaging.


  1. 1.

    Zinner, E. in Meteorites and Cosmochemical Processes Vol. 1 (ed. Davis, A. M.) 181–213 (Elsevier, Amsterdam, 2014).

  2. 2.

    Zhukovska, S., Gail, H.-P. & Trieloff, M. Evolution of interstellar dust and stardust in the solar neighbourhood. Astron. Astrophys. 479, 453–480 (2008).

    ADS  Article  Google Scholar 

  3. 3.

    Floss, C. & Haenecour, P. Presolar silicate grains: abundances, isotopic and elemental compositions, and the effects of secondary processing. Geochem. J. 50, 3–15 (2016).

    Article  Google Scholar 

  4. 4.

    Messenger, S., Keller, L. P., Stadermann, F., Walker, R. M. & Zinner, E. Samples of stars beyond the Solar System: silicate grains in interplanetary dust. Science 300, 105–108 (2003).

    ADS  Article  Google Scholar 

  5. 5.

    Floss, C. et al. Identification of isotopically primitive interplanetary dust particles: a NanoSIMS isotopic imaging study. Geochim. Cosmochim. Acta 70, 2371–2399 (2006).

    ADS  Article  Google Scholar 

  6. 6.

    Busemann, H. et al. Ultra-primitive interplanetary dust particles from the comet 26P/Grigg–Skjellerup dust stream collection. Earth Planet. Sci. Lett. 288, 44–57 (2009).

    ADS  Article  Google Scholar 

  7. 7.

    McKeegan, K. D. et al. Isotopic compositions of cometary matter returned by Stardust. Science 314, 1724–1728 (2006).

    ADS  Article  Google Scholar 

  8. 8.

    Floss, C., Stadermann, F. J., Kearsley, A. T., Burchell, M. J. & Ong, W. J. The abundance of presolar grains in comet 81P/Wild 2. Astrophys. J. 763, 140 (2013).

    ADS  Article  Google Scholar 

  9. 9.

    Leitner, J., Heck, P. R., Hoppe, P. & Huth, J. The C-, N-, and O-isotopic composition of cometary dust from comet 81P/Wild 2. Lunar Planet. Sci. 43, 1839 (2012).

    ADS  Google Scholar 

  10. 10.

    Hynes, K. M. & Gyngard, F. The presolar graindata base: Lunar Planet. Sci. 40, 1198 (2009).

    ADS  Google Scholar 

  11. 11.

    Mathis, J. S., Rumpl, W. & Nordsieck, K. H. The size distribution of interstellar grains. Astrophys. J. 217, 425–433 (1977).

    ADS  Article  Google Scholar 

  12. 12.

    Floss, C. & Stadermann, F. Auger nanoprobe analysis of presolar ferromagnesian silicate grains from primitive CR chondrites QUE 99177 and MET 00426. Geochim. Cosmochim. Acta 73, 2415–2440 (2009).

    ADS  Article  Google Scholar 

  13. 13.

    Nguyen, A., Nittler, L. R., Stadermann, F., Stroud, R. & Alexander, C. M. O. D. Coordinated analyses of presolar grains in the Allan Hills 77307 and Queen Elizabeth Range 99177 meteorites. Astrophys. J. 719, 166–189 (2010).

    ADS  Article  Google Scholar 

  14. 14.

    Vollmer, C., Hoppe, P., Stadermann, F. J., Floss, C. & Brenker, F. NanoSIMS analysis and Auger electron spectroscopy of silicate and oxide stardust from the carbonaceous chondrite Acfer 094. Geochim. Cosmochim. Acta 73, 7127–7149 (2009).

    ADS  Article  Google Scholar 

  15. 15.

    Hoppe, P., Leitner, J. & Kodolányi, J. New constraints on the abundances of silicate and oxide stardust from supernovae in the Acfer 094 meteorite. Astrophys. J. 808, L9 (2015).

    ADS  Article  Google Scholar 

  16. 16.

    Leitner, J., Vollmer, C., Floss, C., Zipfel, J. & Hoppe, P. Ancient stardust in fine-grained chondrule dust rims from carbonaceous chondrites. Earth Planet. Sci. Lett. 434, 117–128 (2016).

    ADS  Article  Google Scholar 

  17. 17.

    Nittler, L. R., Alexander, C. M. O. D., Gao, X., Walker, R. M. & Zinner, E. Stellar sapphires: the properties and origins of presolar Al2O3 in meteorites. Astrophys. J. 483, 475–495 (1997).

    ADS  Article  Google Scholar 

  18. 18.

    Nittler, L. R. On the mass and metallicity distributions of the parent AGB stars of O-rich presolar dust. Publ. Astron. Soc. Aust. 26, 271–277 (2009).

    ADS  Article  Google Scholar 

  19. 19.

    Nittler, L. R. et al. Aluminum-, calcium- and titanium-rich oxide stardust in ordinary chondrite meteorites. Astrophys. J. 682, 1450–1478 (2008).

    ADS  Article  Google Scholar 

  20. 20.

    Kodolányi, J., Hoppe, P., Gröner, E., Pauly, C. & Mücklich, F. The Mg isotope composition of presolar silicate grains from red giant stars. Geochim. Cosmochim. Acta 140, 577–605 (2014).

    ADS  Article  Google Scholar 

  21. 21.

    Nguyen, A. N. et al. Characterization of presolar silicate and oxide grains in primitive carbonaceous chondrites. Astrophys. J. 656, 1223–1240 (2007).

    ADS  Article  Google Scholar 

  22. 22.

    Weingartner, J. C. & Draine, B. T. Dust grain-size distributions and extinction in the Milky Way, Large Magellanic Cloud, and Small Magellanic Cloud. Astrophys. J. 548, 296 (2001).

    ADS  Article  Google Scholar 

  23. 23.

    Gail, H.-P. & Hoppe, P. in Protoplanetary Dust (eds Apai, D. & Lauretta, D. S.) 27–65 (Cambridge Univ. Press, 2010).

  24. 24.

    Brownlee, D. et al. Comet 81P/Wild 2 under a microscope. Science 314, 1711–1716 (2006).

    ADS  Article  Google Scholar 

  25. 25.

    Ishii, H. A. et al. Comparison of comet 81P/Wild 2 dust with interplanetary dust from comets. Science 319, 447 (2008).

    ADS  Article  Google Scholar 

  26. 26.

    Keller, L. P. & Messenger, S. On the origins of GEMS grains. Geochim. Cosmochim. Acta 75, 5336–5365 (2011).

    ADS  Article  Google Scholar 

  27. 27.

    Draine, B. T. & Salpeter, E. E. Destruction mechanisms for interstellar dust. Astrophys. J. 231, 438–455 (1979).

    ADS  Article  Google Scholar 

  28. 28.

    Jones, A. P., Tielens, A. G. G. M., Hollenbach, D. J. & McKee, C. F. Grain destruction in shocks in the interstellar medium. Astrophys. J. 433, 797–810 (1994).

    ADS  Article  Google Scholar 

  29. 29.

    Heck, P. et al. Interstellar residence times of presolar SiC dust grains from the Murchison carbonaceous meteorite. Astrophys. J. 698, 1155 (2009).

    ADS  Article  Google Scholar 

  30. 30.

    Zhukovska, S., Dobbs, C., Jenkins, E. B. & Klessen, R. S. Modeling dust evolution in galaxies with a multiphase, inhomogeneous ISM. Astrophys. J. 831, 147 (2016).

    ADS  Article  Google Scholar 

  31. 31.

    Hoppe, P., Cohen, S. & Meibom, A. NanoSIMS: technical aspects and applications in cosmochemistry and biological geochemistry. Geostand. Geoanal. Res. 37, 111–154 (2013).

    Article  Google Scholar 

  32. 32.

    Slodzian, G., Chaintreau, M., Dennebouy, R. & Rousse, A. Precise in-situ measurements of isotopic abundances with pulse counting of sputtered ions. Eur. Phys. J. Appl. Phys. 14, 199–231 (2001).

    ADS  Article  Google Scholar 

Download references


We thank E. Gröner and A. Sorowka for technical support, the Natural History Museum in Vienna for the loan of the Acfer 094 sample, and ANSMET for the loan of the QUE 99177 and MET 00426 samples. US Antarctic meteorite samples are recovered by the Antarctic Search for Meteorites (ANSMET) program funded by the National Science Foundation and NASA, and characterized and curated by the Department of Mineral Sciences of the Smithsonian Institution and Astromaterials Curation Office at NASA Johnson Space Center. This work was supported by the Max Planck Society and the Deutsche Forschungsgemeinschaft (grant LE3279/1-1 to J.L.).

Author information




P.H. conducted the NanoSIMS work and J.L. the scanning electron microscope work. P.H. wrote most of the paper with important input from J.K. and J.L.

Corresponding author

Correspondence to Peter Hoppe.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Supplementary Information

Supplementary Figures 1–2 and Supplementary Table 1

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Hoppe, P., Leitner, J. & Kodolányi, J. The stardust abundance in the local interstellar cloud at the birth of the Solar System. Nat Astron 1, 617–620 (2017).

Download citation

Further reading


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing