Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Strong dipole magnetic fields in fast rotating fully convective stars

Abstract

M dwarfs are the most numerous stars in our Galaxy, with masses between approximately 0.5 and 0.1 solar masses. Many of them show surface activity qualitatively similar to our Sun and generate flares, high X-ray fluxes and large-scale magnetic fields1,2,3,4. Such activity is driven by a dynamo powered by the convective motions in their interiors2,5,6,7,8. Understanding properties of stellar magnetic fields in these stars finds a broad application in astrophysics, including theory of stellar dynamos and environment conditions around planets that may be orbiting these stars. Most stars with convective envelopes follow a rotation–activity relationship where various activity indicators saturate in stars with rotation periods shorter than a few days2,6,8. The activity gradually declines with rotation rate in stars rotating more slowly. It is thought that, due to a tight empirical correlation between X-ray radiance and magnetic flux9, the stellar magnetic fields will also saturate, to values around 4 kG (ref. 10). Here we report the detection of magnetic fields above the presumed saturation limit in four fully convective M dwarfs. By combining results from spectroscopic and polarimetric studies, we explain our findings in terms of bistable dynamo models11,12: stars with the strongest magnetic fields are those in a dipole dynamo state, whereas stars in a multipole state cannot generate fields stronger than about 4 kG. Our study provides observational evidence that the dynamo in fully convective M dwarfs generates magnetic fields that can differ not only in the geometry of their large-scale component, but also in the total magnetic energy.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Magnetic field diagnostics in selected M dwarfs.
Figure 2: Magnetic field–activity relation.

Similar content being viewed by others

References

  1. Baliunas, S. L. et al. Chromospheric variations in main-sequence stars. Astrophys. J. 438, 269–287 (1995).

    Article  ADS  Google Scholar 

  2. Noyes, R. W., Hartmann, L. W., Baliunas, S. L., Duncan, D. K. & Vaughan, A. H. Rotation, convection, and magnetic activity in lower main-sequence stars. Astrophys. J. 279, 763–777 (1984).

    Article  ADS  Google Scholar 

  3. Charbonneau, P. S. & Dynamos,, S . Solar and Stellar Dynamos: Saas-Fee Advanced Course 39 Swiss Society for Astrophysics and Astronomy, Saas-Fee Advanced Courses Vol. 39. (Springer-Verlag, 2013).

    Book  Google Scholar 

  4. Reiners, A. Observations of cool-star magnetic fields. Living Rev. Sol. Phys. 9, 1 (2012).

    Article  ADS  Google Scholar 

  5. Pallavicini, R. et al. Relations among stellar X-ray emission observed from Einstein, stellar rotation and bolometric luminosity. Astrophys. J. 248, 279–290 (1981).

    Article  ADS  Google Scholar 

  6. Pizzolato, N., Maggio, A., Micela, G., Sciortino, S. & Ventura, P. The stellar activity–rotation relationship revisited: dependence of saturated and non-saturated X-ray emission regimes on stellar mass for late-type dwarfs. Astron. Astrophys. 397, 147–157 (2003).

    Article  ADS  Google Scholar 

  7. Wright, N. J., Drake, J. J., Mamajek, E. E. & Henry, G. W. The stellar-activity–rotation relationship and the evolution of stellar dynamos. Astrophys. J. 743, 48 (2011).

    Article  ADS  Google Scholar 

  8. Reiners, A., Schüssler, M. & Passegger, V. M. Generalized investigation of the rotation–activity relation: favoring rotation period instead of Rossby number. Astrophys. J. 794, 144 (2014).

    Article  ADS  Google Scholar 

  9. Pevtsov, A. A. et al. The relationship between X-ray radiance and magnetic flux. Astrophys. J. 598, 1387–1391 (2003).

    Article  ADS  Google Scholar 

  10. Reiners, A., Basri, G. & Browning, M. Evidence for magnetic flux saturation in rapidly rotating M stars. Astrophys. J. 692, 538–545 (2009).

    Article  ADS  Google Scholar 

  11. Gastine, T. et al. What controls the magnetic geometry of M dwarfs? Astron. Astrophys. 549, L5 (2013).

    Article  ADS  Google Scholar 

  12. Garraffo, C., Drake, J. J. & Cohen, O. Magnetic complexity as an explanation for bimodal rotation populations among young stars. Astrophys. J. 807, L6 (2015).

    Article  ADS  Google Scholar 

  13. Morin, J. et al. Large-scale magnetic topologies of late M dwarfs. Mon. Not. R. Astron. Soc. 407, 2269–2286 (2010).

    Article  ADS  Google Scholar 

  14. Kiraga, M. & Stepien, K. Age–rotation–activity relations for M dwarf stars. Acta Astronom. 57, 149–172 (2007).

    ADS  Google Scholar 

  15. Newton, E. R. et al. The Hα emission of nearby M dwarfs and its relation to stellar rotation. Astrophys. J. 834, 85 (2017).

    Article  ADS  Google Scholar 

  16. Saar, S. H. & Linsky, J. L. The photospheric magnetic field of the dM3.5e flare star AD Leonis. Astrophys. J. 299, L47–L50 (1985).

    Article  ADS  Google Scholar 

  17. Johns-Krull, C. M. & Valenti, J. A. Detection of strong magnetic fields on M dwarfs. Astrophys. J. 459, L95 (1996).

    Article  ADS  Google Scholar 

  18. Reiners, A. & Basri, G. The first direct measurements of surface magnetic fields on very low mass stars. Astrophys. J. 656, 1121–1135 (2007).

    Article  ADS  Google Scholar 

  19. Reiners, A. & Basri, G. A volume-limited sample of 63 M7–M9.5 dwarfs. II. Activity, magnetism, and the fade of the rotation-dominated dynamo. Astrophys. J. 710, 924–935 (2010).

    Article  ADS  Google Scholar 

  20. Christensen, U. R., Holzwarth, V. & Reiners, A. Energy flux determines magnetic field strength of planets and stars. Nature 457, 167–169 (2009).

    Article  ADS  Google Scholar 

  21. Morin, J., Hill, C. A. & Watson, C. A. in Astronomy at High Angular Resolution Vol. 439 (eds Boffin, H. M. J. et al.) 223 (Astrophysics and Space Science Library, Springer, 2016).

  22. Reiners, A. & Basri, G. On the magnetic topology of partially and fully convective stars. Astron. Astrophys. 496, 787–790 (2009).

    Article  ADS  Google Scholar 

  23. Petit, P. et al. PolarBase: a database of high-resolution spectropolarimetric stellar observations. Publ. Astron. Soc. Pac. 126, 469–475 (2014).

    Article  ADS  Google Scholar 

  24. Kochukhov, O. & Lavail, A. The global and small-scale magnetic fields of fully convective, rapidly spinning M dwarf pair GJ65 A and B. Astrophys. J. 835, L4 (2017).

    Article  ADS  Google Scholar 

  25. Kochukhov, O. et al. Magnetic fields in M dwarf stars from high-resolution infrared spectra. In 15th Cambridge Workshop on Cool Stars, Stellar Systems, and the Sun Vol. 1094 (ed. Stempels, E.) 124–129 (American Institute of Physics Conference Proc., 2009).

  26. Yadav, R. K. et al. Explaining the coexistence of large-scale and small-scale magnetic fields in fully convective stars. Astrophys. J. 813, L31 (2015).

    Article  ADS  Google Scholar 

  27. Robertson, P., Endl, M., Cochran, W. D. & Dodson-Robinson, S. E. Hα activity of old M dwarfs: stellar cycles and mean activity levels for 93 low-mass stars in the solar neighborhood. Astrophys. J. 764, 3 (2013).

    Article  ADS  Google Scholar 

  28. Wargelin, B. J., Saar, S. H., Pojmański, G., Drake, J. J. & Kashyap, V. L. Optical, UV, and X-ray evidence for a 7-yr stellar cycle in Proxima Centauri. Mon. Not. R. Astron. Soc. 464, 3281–3296 (2017).

    Article  ADS  Google Scholar 

  29. Yadav, R. K., Christensen, U. R., Wolk, S. J. & Poppenhaeger, K. Magnetic cycles in a dynamo simulation of fully convective M-star Proxima Centauri. Astrophys. J. 833, L28 (2016).

    Article  ADS  Google Scholar 

  30. Shulyak, D., Sokoloff, D., Kitchatinov, L. & Moss, D. Towards understanding dynamo action in M dwarfs. Mon. Not. R. Astron. Soc. 449, 3471–3478 (2015).

    Article  ADS  Google Scholar 

  31. Shulyak, D., Tsymbal, V., Ryabchikova, T., Stütz, C. & Weiss, W. W. Line-by-line opacity stellar model atmospheres. Astron. Astrophys. 428, 993–1000 (2004).

    Article  ADS  Google Scholar 

  32. Khan, S. A. & Shulyak, D. V. Stellar model atmospheres with magnetic line blanketing. II. Introduction of polarized radiative transfer. Astron. Astrophys. 448, 1153–1164 (2006).

    Article  ADS  Google Scholar 

  33. Rees, D. E., Durrant, C. J. & Murphy, G. A. Stokes profile analysis and vector magnetic fields. II. Formal numerical solutions of the Stokes transfer equations. Astrophys. J. 339, 1093–1106 (1989).

    Article  ADS  Google Scholar 

  34. Piskunov, N. & Kochukhov, O. Doppler imaging of stellar magnetic fields. I. Techniques. Astron. Astrophys. 381, 736–756 (2002).

    Article  ADS  Google Scholar 

  35. Kurucz, R. L. ATLAS12, SYNTHE, ATLAS9, WIDTH9, et cetera. Memorie della Societa Astronomica Italiana Supplementi 8, 14 (2005).

    ADS  Google Scholar 

  36. Irwin, A. W. Polynomial partition function approximations of 344 atomic and molecular species. Astrophys. J. Suppl. Ser. 45, 621–633 (1981).

    Article  ADS  Google Scholar 

  37. Irwin, A. W. Refined diatomic partition functions. I. Calculational methods and H2 and CO results. Astron. Astrophys. 182, 348–358 (1987).

    ADS  Google Scholar 

  38. Sauval, A. J. & Tatum, J. B. A set of partition functions and equilibrium constants for 300 diatomic molecules of astrophysical interest. Astrophys. J. Suppl. Ser. 56, 193–209 (1984).

    Article  ADS  Google Scholar 

  39. Irwin, A. W. The partition functions of JANAF polyatomic molecules that significantly affect the stellar atmospheric equation of state. Astron. Astrophys. Suppl. Ser. 74, 145–160 (1988).

    ADS  Google Scholar 

  40. Irwin, A. W. An Observational and Theoretical Study of MK Classification Criteria from g5 to K5. PhD thesis, Univ. Toronto (1978).

    Google Scholar 

  41. Kochukhov, O. P. in Physics of Magnetic Stars (eds Romanyuk, I. I. et al.) 109–118 (Proc. International Conference Special Astrophysical Observatory of the Russian Academy of Sciences, 2007).

    Google Scholar 

  42. Pavlenko, Y. V., Zhukovska, S. V. & Volobuev, M. Resonance potassium and sodium lines in the spectra of ultracool dwarfs. Astron. Rep. 51, 282–290 (2007).

    Article  ADS  Google Scholar 

  43. Wende, S., Reiners, A. & Ludwig, H.-G. 3D simulations of M star atmosphere velocities and their influence on molecular FeH lines. Astron. Astrophys. 508, 1429–1442 (2009).

    Article  ADS  Google Scholar 

  44. Shulyak, D., Reiners, A., Seemann, U., Kochukhov, O. & Piskunov, N. Exploring the magnetic field complexity in M dwarfs at the boundary to full convection. Astron. Astrophys. 563, A35 (2014).

    Article  ADS  Google Scholar 

  45. Gustafsson, B. et al. A grid of MARCS model atmospheres for late-type stars. I. Methods and general properties. Astron. Astrophys. 486, 951–970 (2008).

    Article  ADS  Google Scholar 

  46. Kenyon, S. J. & Hartmann, L. Pre-main-sequence evolution in the Taurus-Auriga molecular cloud. Astrophys. J. Suppl. Ser. 101, 117 (1995).

    Article  ADS  Google Scholar 

  47. Golimowski, D. A. et al. Lʹ and Mʹ photometry of ultracool dwarfs. Astron. J. 127, 3516–3536 (2004).

    Article  ADS  Google Scholar 

  48. Piskunov, N. E., Kupka, F., Ryabchikova, T. A., Weiss, W. W. & Jeffery, C. S. VALD: the Vienna Atomic Line Data Base. Astron. Astrophys. Suppl. Ser. 112, 525 (1995).

    ADS  Google Scholar 

  49. Kupka, F., Piskunov, N., Ryabchikova, T. A., Stempels, H. C. & Weiss, W. W. VALD-2: progress of the Vienna Atomic Line Data Base. Astron. Astrophys. Suppl. Ser. 138, 119–133 (1999).

    Article  ADS  Google Scholar 

  50. Davis, S. P., Phillips, J. G. & Littleton, J. E. Transition rates for the TiO beta, delta, phi, gamma-prime, gamma, and alpha systems. Astrophys. J. 309, 449–454 (1986).

    Article  ADS  Google Scholar 

  51. Ram, R. S., Bernath, P. F., Dulick, M. & Wallace, L. The A3Φ–X3Δ system (γ bands) of TiO: laboratory and sunspot measurements. Astrophys. J. Suppl. Ser. 122, 331–353 (1999).

    Article  ADS  Google Scholar 

  52. Nordlander, T. Analyses of Cool Stars using Molecular Lines. Master’s thesis, Uppsala Univ. (2012); http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-174640

    Google Scholar 

  53. Mann, A. W., Feiden, G. A., Gaidos, E., Boyajian, T. & von Braun, K. How to constrain your M dwarf: measuring effective temperature, bolometric luminosity, mass, and radius. Astrophys. J. 804, 64 (2015).

    Article  ADS  Google Scholar 

  54. Dotter, A. et al. The Dartmouth Stellar Evolution Database. Astrophys. J. Suppl. Ser. 178, 89–101 (2008).

    Article  ADS  Google Scholar 

  55. Bressan, A. et al. PARSEC: stellar tracks and isochrones with the PAdova and TRieste Stellar Evolution Code. Mon. Not. R. Astron. Soc. 427, 127–145 (2012).

    Article  ADS  Google Scholar 

  56. Valenti, J. A., Johns-Krull, C. M. & Piskunov, N. E. Using FeH to measure magnetic fields on cool stars and brown dwarfs (CD-ROM directory: contribs/valenti). In 11th Cambridge Workshop on Cool Stars, Stellar Systems and the Sun Vol. 223 (eds Garcia Lopez, R. J. et al.) 1579 (Astronomical Society of the Pacific Conference Proc., 2001).

  57. Reiners, A. & Basri, G. Measuring magnetic fields in ultracool stars and brown dwarfs. Astrophys. J. 644, 497–509 (2006).

    Article  ADS  Google Scholar 

  58. Shulyak, D., Seifahrt, A., Reiners, A., Kochukhov, O. & Piskunov, N. Rotation, magnetism and metallicity of M dwarf systems. Mon. Not. R. Astron. Soc. 418, 2548–2557 (2011).

    Article  ADS  Google Scholar 

  59. Shulyak, D. et al. Modelling the molecular Zeeman-effect in M-dwarfs: methods and first results. Astron. Astrophys. 523, A37 (2010).

    Article  Google Scholar 

  60. Asensio Ramos, A. & Trujillo Bueno, J. Theory and modeling of the Zeeman and Paschen–Back effects in molecular lines. Astrophys. J. 636, 548–563 (2006).

    Article  ADS  Google Scholar 

  61. Berdyugina, S. V. & Solanki, S. K. The molecular Zeeman effect and diagnostics of solar and stellar magnetic fields. I. Theoretical spectral patterns in the Zeeman regime. Astron. Astrophys. 385, 701–715 (2002).

    Article  ADS  Google Scholar 

  62. Afram, N., Berdyugina, S. V., Fluri, D. M., Solanki, S. K. & Lagg, A. The FeH F4Δ–X4Δ system. Creating a valuable diagnostic tool to explore solar and stellar magnetic fields. Astron. Astrophys. 482, 387–395 (2008).

    Article  ADS  Google Scholar 

  63. Kurucz, R. L., Furenlid, I., Brault, J. & Testerman, L. Book-Review—Solar Flux Atlas from 296 to 1300 nm. Sky Telescope 70, 38 (1985).

    ADS  Google Scholar 

  64. Landi Degl’Innocenti, E. & Landolfi, M. (eds) Polarization in Spectral Lines Vol. 307 (Astrophysics and Space Science Library, Kluwer Academic, 2004).

  65. Smette, A. et al. MOLECFIT: A general tool for telluric absorption correction. I. Method and application to ESO instruments. Astron. Astrophys. 576, A77 (2015).

    Article  Google Scholar 

  66. Kausch, W. et al. MOLECFIT: A general tool for telluric absorption correction. II. Quantitative evaluation on ESO-VLT/X-Shooterspectra. Astron. Astrophys. 576, A78 (2015).

    Article  Google Scholar 

  67. Saar, S. H. in Stellar Surface Structure Vol. 176 (eds Strassmeier, K. G. & Linsky, J. L. ) 237 (Proc. 176th Symposium of the International Astronomical Union, Kluwer Academic, 1996).

    Google Scholar 

  68. Johns-Krull, C. M. & Valenti, J. A. in Stellar Clusters and Associations: Convection, Rotation, and Dynamos Vol. 198 (eds Pallavicini, R. et al.) 371 (Astronomical Society of the Pacific Conference Proc., 2000).

Download references

Acknowledgements

This project was carried out in the framework of the Deutsche Forschungsgemeinschaft funded CRC 963—Astrophysical Flow Instabilities and Turbulence (projects A16 and A17). We acknowledge support from the Deutscher Akademischer Austauschdienst strategic partnership project U4-Network to D.S. and funding through a Heisenberg Professorship, RE 1664/9-2, to A.R. R.Y. is supported by NASA Chandra grant GO4-15011X. O.K. acknowledges funding from the Swedish Research Council and the Swedish National Space Board. We also acknowledge the use of electronic databases (VALD, SIMBAD, NASA Astrophysics Data System). This research is based on observations collected at the Canada–France–Hawaii Telescope (Hawaii) and Télescope Bernard Lyot (France).

Author information

Authors and Affiliations

Authors

Contributions

D.S. contributed general scientific ideas and conclusions, carried out the processing, modelling and analysis of observed data. A.R. contributed general scientific ideas and conclusions. A.E. carried out modelling and analysis of observed data. L.M. carried out telluric correction on selected targets. R.Y. provided theoretical dynamo models and magnetic maps. J.M. provided and analysed additional Stokes V data on some ESPaDOnS targets. O.K. contributed to development of atomic line analysis methodology. All authors contributed to the text of the paper and discussed the results.

Corresponding author

Correspondence to D. Shulyak.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Tables 1–2, Supplementary Figures 1–22 and Supplementary References. (PDF 2288 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shulyak, D., Reiners, A., Engeln, A. et al. Strong dipole magnetic fields in fast rotating fully convective stars. Nat Astron 1, 0184 (2017). https://doi.org/10.1038/s41550-017-0184

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41550-017-0184

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing