Regular intrinsic brightness variations observed in many stars are caused by pulsations. These pulsations provide information on the global and structural parameters of the star. The pulsation periods range from seconds to years, depending on the compactness of the star and properties of the matter that forms its outer layers. Here, we report the discovery of more than a dozen previously unknown short-period variable stars: blue large-amplitude pulsators. These objects show very regular brightness variations with periods in the range of 20–40 min and amplitudes of 0.2–0.4 mag in the optical passbands. The phased light curves have a characteristic sawtooth shape, similar to the shape of classical Cepheids and RR Lyrae-type stars pulsating in the fundamental mode. The objects are significantly bluer than main-sequence stars observed in the same fields, which indicates that all of them are hot stars. Follow-up spectroscopy confirms a high surface temperature of about 30,000 K. Temperature and colour changes over the cycle prove the pulsational nature of the variables. However, large-amplitude pulsations at such short periods are not observed in any known type of stars, including hot objects. Long-term photometric observations show that the variable stars are very stable over time. Derived rates of period change are of the order of 10−7 per year and, in most cases, they are positive. According to pulsation theory, such large-amplitude oscillations may occur in evolved low-mass stars that have inflated helium-enriched envelopes. The evolutionary path that could lead to such stellar configurations remains unknown.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.


  1. 1.

    , & OGLE-IV: fourth phase of the Optical Gravitational Lensing Experiment. Acta Astron. 65, 1–38 (2015).

  2. 2.

    et al. The Optical Gravitational Lensing Experiment. The OGLE-III Catalog of Variable Stars. XV. Long-period variables in the galactic bulge. Acta Astron. 63, 21–36 (2013).

  3. 3.

    et al. Over 38000 RR Lyrae stars in the OGLE galactic bulge fields. Acta Astron. 64, 177–196 (2014).

  4. 4.

    et al. The OGLE collection of variable stars. Classical Cepheids in the Magellanic System. Acta Astron. 65, 297–312 (2015).

  5. 5.

    et al. The OGLE collection of variable stars. Over 450000 eclipsing and ellipsoidal binary systems toward the galactic bulge. Acta Astron. 66, 405–420 (2016).

  6. 6.

    et al. One thousand new dwarf novae from the OGLE survey. Acta Astron. 65, 313–328 (2015).

  7. 7.

    et al. Large variety of new pulsating stars in the OGLE-III galactic disk fields. Acta Astron. 63, 379–404 (2013).

  8. 8.

    , & , . A revised catalogue of delta Sct stars. Astron. Astrophys. Suppl. 144, 469 (2000).

  9. 9.

    et al. A low-resolution spectroscopic exploration of puzzling OGLE variable stars. Acta Astron. 63, 63–79 (2015).

  10. 10.

    & Catalog of galactic Beta Cephei stars. Astrophys. J. Suppl. Ser. 158, 193–216 (2005).

  11. 11.

    & β Cephei stars in the ASAS-3 data. I. Long-term variations of periods and amplitudes. Astron. Astrophys. 477, 907–915 (2008).

  12. 12.

    & β Cephei stars in the ASAS-3 data. II. 103 new β Cephei stars and a discussion of low-frequency modes. Astron. Astrophys. 477, 917–929 (2008).

  13. 13.

    Observational asteroseismology of slowly pulsating B stars. Commun. Astroseismol. 150, 167–174 (2007).

  14. 14.

    Hot subluminous stars. Publ. Astron. Soc. Pac. 128, 082001 (2016).

  15. 15.

    & Temperature and gravity of the pulsating extreme helium star LSS 3184 (BX Cir) through its pulsation cycle. Astron. Astrophys. 395, 535–540 (2002).

  16. 16.

    et al. Subaru and Swift observations of V652 Herculis: resolving the photospheric pulsation. Mon. Not. R. Astron. Soc. 447, 2836–2851 (2015).

  17. 17.

    in Proc. SOHO 14 / GONG 2004 Workshop (ESA SP-559): Helio- and Asteroseismology: Towards a Golden Future (ed. Danesy, D.) 1–33 (New Haven, 2004).

  18. 18.

    & Variable stars across the observational HR diagram. J. Phys. Conf. Ser. 118, 012010 (2008).

  19. 19.

    & Pulsating Stars (Wiley, 2015).

  20. 20.

    Pulsational instability domains in the upper main sequence. Acta Astron. 49, 119–148 (1999).

  21. 21.

    et al. Spectral analysis of sdB stars from the Hamburg Quasar Survey. Astron. Astrophys. 400, 939 (2003).

  22. 22.

    et al. Pulsating hot O subdwarfs in ω Centauri: mapping a unique instability strip on the extreme horizontal branch. Astron. Astrophys. 589, A1 (2016).

  23. 23.

    , , & A large stellar evolution database for population synthesis studies. II. Stellar models and isochrones for an α-enhanced metal distribution. Astron. Astrophys. 642, 797–812 (2006).

  24. 24.

    et al. A driving mechanism for the newly discovered class of pulsating subdwarf B stars. Astrophys. J. 483, L123–L126 (1997).

  25. 25.

    & Radial pulsation as a function of hydrogen abundance. Mon. Not. R. Astron. Soc. 458, 1352–1373 (2016).

  26. 26.

    et al. Reddening and extinction toward the Galactic Bulge from OGLE-III: the inner Milky Way’s RV 2.5 extinction curve. Astrophys. J. 769, 88 (2013)

  27. 27.

    The Optical Gravitational Lensing Experiment: is interstellar extinction toward the galactic center anomalous? Astrophys. J. 590, 284–290 (2003)

  28. 28.

    & Can star–disk collisions explain the missing red giants problem in the Galactic Center? Astrophys. J. 823, 155 (2016)

  29. 29.

    , , , & The origin of subdwarf B stars — I. The formation channels. Mon. Not. R. Astron. Soc. 336, 449 (2002)

  30. 30.

    & Hydrogen in hot subdwarfs formed by double helium white dwarf mergers. Mon. Not. R. Astron. Soc. 463, 2756 (2016)

  31. 31.

    , , & The Optical Gravitational Lensing Experiment. Final reductions of the OGLE-III data. Acta Astron. 58, 69–87 (2008).

  32. 32.

    Difference image analysis of the OGLE-II bulge data. I. The method Acta Astron. 50, 421–450 (2000).

  33. 33.

    et al. Ultra-short-period binary systems in the OGLE fields toward the galactic bulge. Acta Astron. 65, 39–62 (2015).

  34. 34.

    Fast and statistically optimal period search in uneven sampled observations. Astrophys. J. 460, L107–L110 (1996).

  35. 35.

    DAOPHOT — a computer program for crowded-field stellar photometry. Publ. Astron. Soc. Pac. 99, 191–222 (1987).

  36. 36.

    & Non-LTE line-blanketed model atmospheres of hot stars. 2: Hot, metal-rich white dwarfs. Astrophys. J. 439, 905–916 (1995).

  37. 37.

    et al. FUSE determination of abundances in long-period pulsating V1093 Her (PG 1716+426) Stars. Astrophys. J. 678, 1329–1341 (2008).

  38. 38.

    , , & Atmospheric parameters of field subdwarf B stars. Astrophys. J. 432, 351–366 (1993).

  39. 39.

    , , , & Improved determination of the atmospheric parameters of the pulsating sdB star Feige 48. Astrophys. J. 788, 65 (2014).

  40. 40.

    Envelopes of red supergiants. Acta Astron. 19, 1–22 (1969).

  41. 41.

    & Updated OPAL opacities. Astron. Astrophys. 464, 943–953 (1996).

  42. 42.

    Oscillations of giants and supergiants. Acta Astron. 27, 95–126 (1977).

Download references


We thank M. Kubiak and G. Pietrzyński, former members of the OGLE team, for their contribution to the collection of the OGLE photometric data over the past years. The OGLE project has received funding from the National Science Centre, Poland (grant number MAESTRO 2014/14/A/ST9/00121 to A.U.). M.L. acknowledges support from the Alexander von Humboldt Foundation. The Las Campanas Observatory, which hosts the Warsaw Telescope, Swope Telescope and Magellan Telescopes, is operated by the Carnegie Institution for Science. The Gemini Observatory is operated by the Association of Universities for Research in Astronomy, Inc., under a cooperative agreement with the National Science Foundation (NSF) on behalf of the Gemini partnership: the NSF (United States), the National Research Council (Canada), CONICYT (Chile), Ministerio de Ciencia, Tecnología e Innovación Productiva (Argentina), and Ministério da Ciência, Tecnologia, Inovações e Comunicações (Brazil).

Author information


  1. Warsaw University Observatory, Aleje Ujazdowskie 4, 00-478 Warszawa, Poland.

    • Paweł Pietrukowicz
    • , Wojciech A. Dziembowski
    • , Radosław Poleski
    • , Igor Soszyński
    • , Andrzej Udalski
    • , Michał K. Szymański
    • , Łukasz Wyrzykowski
    • , Szymon Kozłowski
    • , Jan Skowron
    • , Dorota Skowron
    • , Przemek Mróz
    • , Michał Pawlak
    •  & Krzysztof Ulaczyk
  2. Nicolaus Copernicus Astronomical Center, ulica Bartycka 18, 00-716 Warszawa, Poland.

    • Wojciech A. Dziembowski
  3. Dr. Karl Remeis-Observatory & ECAP, Astronomical Institute, Friedrich-Alexander University Erlangen-Nuremberg, Sternwartstrasse 7, 96049, Bamberg, Germany.

    • Marilyn Latour
  4. Departamento de Física y Astronomía, Universidad de La Serena, Avenida Cisternas 1200 Norte, La Serena, Chile.

    • Rodolfo Angeloni
  5. Instituto de Investigación Multidisciplinar en Ciencia y Tecnología, Universidad de La Serena, Avenida Raúl Bitrán 1305, La Serena, Chile.

    • Rodolfo Angeloni
  6. Gemini Observatory, Casilla 603, La Serena, Chile.

    • Rodolfo Angeloni
  7. Department of Astronomy, Ohio State University, 140 West 18th Avenue, Columbus, Ohio 43210, USA

    • Radosław Poleski
  8. Las Campanas Observatory, Casilla 601, La Serena, Chile.

    • Francesco di Mille
  9. Department of Physics, University of Warwick, Gibbet Hill Road, Coventry, CV4 7AL, UK.

    • Krzysztof Ulaczyk


  1. Search for Paweł Pietrukowicz in:

  2. Search for Wojciech A. Dziembowski in:

  3. Search for Marilyn Latour in:

  4. Search for Rodolfo Angeloni in:

  5. Search for Radosław Poleski in:

  6. Search for Francesco di Mille in:

  7. Search for Igor Soszyński in:

  8. Search for Andrzej Udalski in:

  9. Search for Michał K. Szymański in:

  10. Search for Łukasz Wyrzykowski in:

  11. Search for Szymon Kozłowski in:

  12. Search for Jan Skowron in:

  13. Search for Dorota Skowron in:

  14. Search for Przemek Mróz in:

  15. Search for Michał Pawlak in:

  16. Search for Krzysztof Ulaczyk in:


P.P. coordinated the research, obtained and analysed part of the observations and prepared the manuscript. W.A.D. proposed the envelope model and calculated its characteristics. M.L. fitted model atmospheres to the spectroscopic data. R.A. obtained and reduced Gemini spectra. R.P. and F.diM. obtained part of the follow-up photometric observations. The remaining authors, including also P.P. and R.P., collected the OGLE observations. All authors commented on the manuscript and were involved in the scientific discussion.

Competing interests

The authors declare no competing financial interests.

Corresponding author

Correspondence to Paweł Pietrukowicz.

Supplementary information

PDF files

  1. 1.

    Supplementary Information

    Supplementary Figures 1–2

About this article

Publication history






Further reading