Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Ten billion years of brightest cluster galaxy alignments

A Publisher Correction to this article was published on 12 March 2019

Abstract

A galaxy’s orientation is one of its most basic observable properties. Astronomers once assumed that galaxies are randomly oriented in space; however, it is now clear that some have preferred orientations with respect to their surroundings. Chief among these are giant elliptical galaxies found in the centres of rich galaxy clusters. Numerous studies have shown that the major axes of these galaxies often share the same orientation as the surrounding matter distribution on larger scales1,2,3,4,5,6. Using Hubble Space Telescope observations of 65 distant galaxy clusters, we show that similar alignments are seen at earlier epochs when the Universe was only one-third of its current age. These results suggest that the brightest galaxies in clusters are the product of a special formation history, one influenced by development of the cosmic web over billions of years.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: HST images of four distant galaxy clusters.
Figure 2: Orientations of 2,137 galaxies in CLASH clusters.
Figure 3: Alignments of BCGs.
Figure 4: Galaxy alignments at the highest redshifts.

Similar content being viewed by others

References

  1. Sastry, G. N. Clusters associated with supergiant galaxies. Publ. Astron. Soc. Pac. 80, 252–262 (1968).

    Article  ADS  Google Scholar 

  2. Carter, D. & Metcalfe, N. The morphology of clusters of galaxies. Mon. Not. R. Astron. Soc. 191, 325–337 (1980).

    Article  ADS  Google Scholar 

  3. Binggeli, B. The shape and orientation of clusters of galaxies. Astron. Astrophys. 107, 338–349 (1982).

    ADS  Google Scholar 

  4. West, M. J., Jones, C. & Forman, W. Substructure: clues to the formation of clusters of galaxies. Astrophys. J. 451, L5–L8 (1995).

    Article  ADS  Google Scholar 

  5. Niederste-Ostholt, M., Strauss, M. A., Dong, F., Koester, B. P. & McKay, T. A. Alignment of brightest cluster galaxies with their host clusters. Mon. Not. R. Astron. Soc. 405, 2023–2036 (2010).

    ADS  Google Scholar 

  6. Joachimi, B. et al. Galaxy alignments: an overview. Space Sci. Rev. 193, 1–65 (2015).

    Article  ADS  Google Scholar 

  7. Hashimoto, Y., Henry, J. P. & Boehringer, H. Alignments of galaxies and clusters. Mon. Not. R. Astron. Soc. 390, 1562–1568 (2008).

    ADS  Google Scholar 

  8. Hao, J. et al. Intrinsic alignment of cluster galaxies: the redshift evolution. Astrophys. J. 740, 39–50 (2011).

    Article  ADS  Google Scholar 

  9. Rong, Y., Zhang, S.-S. N. & Liao, J. Y. Primordial alignment of elliptical galaxies in intermediate redshift clusters. Mon. Not. R. Astron. Soc. 453, 1577–1586 (2015).

    Article  ADS  Google Scholar 

  10. Huang, H.-J. et al. Intrinsic alignments in redMaPPer clusters – I. Central galaxy alignments and angular segregation of satellites. Mon. Not. R. Astron. Soc. 463, 222–244 (2016).

    Article  ADS  Google Scholar 

  11. Ebeling, H., Edge, A. C. & Henry, J. P. MACS: a quest for the most massive galaxy clusters in the universe. Astrophys. J. 553, 668–676 (2001).

    Article  ADS  Google Scholar 

  12. Jee, M. J. et al. Scaling relations and overabundance of massive clusters at z 1 from weak-lensing studies with HST. Astrophys. J. 737, 59–91 (2011).

    Article  ADS  Google Scholar 

  13. Postman, M. et al. The cluster lensing and supernova survey with Hubble: an overview. Astrophys. J. Suppl. Ser. 199, 25–48 (2012).

    Article  ADS  Google Scholar 

  14. Stanford, S. A. et al. The massive and distant clusters of WISE Survey. II. Initial spectroscopic confirmation of z ~ 1 galaxy clusters selected from 10,000 deg2. Astrophys. J. Suppl. Ser. 213, 25–39 (2014).

    Article  ADS  Google Scholar 

  15. Schrabback, T . et al. Cluster mass calibration at high redshift: HST weak lensing analysis of 13 distant galaxy clusters from the South Pole Telescope Sunyaev-Zel’dovich Survey. Preprint at https://arxiv.org/abs/1611.03866 (2016).

  16. Bleem, L. E. et al. Galaxy clusters discovered via the Sunyaev-Zel’dovich effect in the 2500-square-degree SPT-SZ Survey. Astrophys. J. Suppl. Ser. 216, 27–38 (2015).

    Article  ADS  Google Scholar 

  17. Evans, A. K. D. & Bridle, S. A detection of dark matter halo ellipticity using galaxy cluster lensing in the SDSS. Astrophys. J. 695, 1446–1456 (2009).

    Article  ADS  Google Scholar 

  18. Donahue, M. et al. The morphologies and alignments of gas, mass, and the central galaxies of CLASH clusters of galaxies. Astrophys. J. 819, 36–54 (2016).

    Article  ADS  Google Scholar 

  19. Sifón, C. et al. Constraints on the alignment of galaxies in galaxy clusters from ~14,000 spectroscopic members. Astron. Astrophys. 575, 48–67 (2015).

    Article  Google Scholar 

  20. Torlina, L., De Propris, R. & West, M. J. Galaxy orientations in the Coma Cluster. Astrophys. J. 660, L97–L100 (2007).

    Article  ADS  Google Scholar 

  21. Tremaine, S. D. & Richstone, D. O. A test of a statistical model for the luminosities of brightest cluster galaxies. Astrophys. J. 212, 311–316 (1977).

    Article  ADS  Google Scholar 

  22. Lauer, T. R., Postman, M., Strauss, M. A., Graves, G. J. & Chisari, N. E. Brightest cluster galaxies at the present epoch. Astrophys. J. 797, 82–113 (2014).

    Article  ADS  Google Scholar 

  23. Solanes, J. M. et al. Forming first-ranked early-type galaxies through hierarchical dissipationless merging. Mon. Not. R. Astron. Soc. 461, 321–343 (2016).

    Article  ADS  Google Scholar 

  24. West, M. J. Anisotropic mergers at high redshifts — the formation of cD galaxies and powerful radio sources. Mon. Not. R. Astron. Soc. 268, 79–102 (1994).

    Article  ADS  Google Scholar 

  25. Catelan, P. & Theuns, T. Non-linear evolution of the angular momentum of protostructures from tidal torques. Mon. Not. R. Astron. Soc. 282, 455–469 (1996).

    Article  ADS  Google Scholar 

  26. Libeskind, N. L. et al. The velocity shear tensor: tracers of halo alignment. Mon. Not. R. Astron. Soc. 428, 2489–2499 (2013).

    Article  ADS  Google Scholar 

  27. Collins, C. A. et al. Early assembly of the most massive galaxies. Nature 458, 603–606 (2009).

    Article  ADS  Google Scholar 

  28. Dubinski, J. The origin of the brightest cluster galaxies. Astrophys. J. 502, 141–149 (1998).

    Article  ADS  Google Scholar 

  29. Aragón-Calvo, M. A., van de Weygaert, R., Jones, B. J. T. & van der Hulst, J. M. Spin alignment of dark matter halos in filaments and walls. Astrophys. J. Lett. 655, L5–L8 (2007).

    Article  ADS  Google Scholar 

  30. Chen, S., Wang, H., Mo, H. J. & Shi, J. Alignments of dark matter halos with large-scale tidal fields: mass and redshift dependence. Astrophys. J. Lett. 825, 49–63 (2016).

    Article  ADS  Google Scholar 

  31. Chisari, N. et al. Intrinsic alignments of galaxies in the Horizon-AGN cosmological hydrodynamical simulation. Mon. Not. R. Astron. Soc. 454, 2736–2753 (2015).

    Article  ADS  Google Scholar 

  32. Velliscig, M. et al. Intrinsic alignments of galaxies in the EAGLE and cosmo-OWLS simulations. Mon. Not. R. Astron. Soc. 454, 3328–3340 (2015).

    Article  ADS  Google Scholar 

  33. van den Bergh, S. Are dominant central galaxies the proto-nuclei of rich clusters? Publ. Astron. Soc. Pac. 95, 275–276 (1983).

    Article  ADS  Google Scholar 

  34. Gladders, M. & Yee, H. K. C. A new method for galaxy cluster detection. I. The algorithm. Astron. J. 120, 2148–2162 (2000).

    Article  ADS  Google Scholar 

  35. De Propris, R., Bremer, M. N. & Phillipps, S. Morphological evolution of cluster red sequence galaxies in the past 9 Gyr. Mon. Not. R. Astron. Soc. 461, 4517–4530 (2016).

    Article  ADS  Google Scholar 

  36. Zitrin, A. et al. Hubble Space Telescope combined strong and weak lensing analysis of the CLASH sample: mass and magnification models and systematic uncertainties. Astrophys. J. 801, 44–65 (2015).

    Article  ADS  Google Scholar 

  37. Peng, C. Y., Ho, L. C., Impey, C. D. & Rix, H.-W. Detailed structural decomposition of galaxy images. Astron. J. 124, 266–293 (2002).

    Article  ADS  Google Scholar 

  38. Peng, C. Y., Ho, L. C., Impey, C. D. & Rix, H.-W. Detailed decomposition of galaxy images. II. Beyond axisymmetric models. Astron. J. 139, 2097–2129 (2010).

    Article  ADS  Google Scholar 

  39. Rao, J. S. Some tests based on arc-lengths for the circle. Indian J. Statis. Ser. B 38, 329–338 (1976).

    MathSciNet  MATH  Google Scholar 

  40. Kuiper, N. H. Tests concerning random points on a circle. Proc. Kon. Ned. Akad. Wetensch. Ser. A. 63, 38–47 (1960).

    Article  Google Scholar 

Download references

Acknowledgements

The authors are indebted to C. Sifón for insightful comments and recommendations that strengthened our results and their presentation. This work is based on observations made with the National Aeronautics and Space Administration (NASA)/European Space Agency (ESA) Hubble Space Telescope, obtained from the data archive at the Space Telescope Science Institute. The Space Telescope Science Institute is operated by the Association of Universities for Research in Astronomy, Inc. under NASA contract NAS 5-26555. M.J.W. thanks the Finnish Centre for Astronomy with the European Southern Observatory (FINCA) and Tuorla Observatory for their support and hospitality during this research. We thank M. McIntosh for her assistance. The Image Reduction and Analysis Facility package is distributed by the National Optical Astronomy Observatories, which are operated by the Association of Universities for Research in Astronomy, Inc., under cooperative agreement with the National Science Foundation.

Author information

Authors and Affiliations

Authors

Contributions

R.D.P., M.N.B. and S.P. identified red sequence galaxies in the Hubble Space Telescope images and R.D.P. measured their major axis orientations. M.J.W. measured cluster position angles and performed the statistical analysis of the alignments between galaxies and clusters. All authors contributed to the interpretation and presentation of the results.

Corresponding author

Correspondence to Michael J. West.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

West, M., De Propris, R., Bremer, M. et al. Ten billion years of brightest cluster galaxy alignments. Nat Astron 1, 0157 (2017). https://doi.org/10.1038/s41550-017-0157

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41550-017-0157

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing