A rotating protostellar jet launched from the innermost disk of HH 212

Article metrics

Abstract

The central problem in forming a star is the angular momentum in the circumstellar disk, which prevents material from falling into the central stellar core. An attractive solution to the angular momentum problem appears to be the ubiquitous (low-velocity and poorly collimated) molecular outflows and (high-velocity and highly collimated) protostellar jets accompanying the earliest phase of star formation that remove angular momentum at a range of disk radii1. Previous observations have suggested that outflowing material carries away the excess angular momentum via magneto-centrifugally driven winds from the surfaces of circumstellar disks down to 10 au scales2,3,4,5,6, allowing the material in the outer disk to be transported to the inner disk. Here we show that highly collimated protostellar jets remove the residual angular momenta at the 0.05 au scale, enabling the material in the innermost region of the disk to accrete towards the central protostar. This is supported by the rotation of the jet measured down to 10 au from the protostar in the HH 212 protostellar system. The measurement implies a jet launching radius of 0 . 0 5 0 . 02 + 0 . 05  au on the disk, based on the magneto-centrifugal theory of jet production, which connects the properties of the jet measured at large distances with those at its base through energy and angular momentum conservation7.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: ALMA SiO J = 8–7 maps (green images) of the jet at a spatial resolution of 24 au (0.06″), on top of the dust continuum map (orange image) of the accretion disk at 352 GHz (ref. 19).
Figure 2: A zoom-in to the innermost part of the jet in SiO within 120 au (0.03″) of the central source, at an angular resolution of 8 au (0.02″), on top of the continuum map of the disk.
Figure 3: Jet (Gaussian deconvolved) width measured for the new knots within 100 au of the source.
Figure 4: Position–velocity diagrams cut across the knots (N1–N3 and S1–S3) in the jet.

References

  1. 1

    Frank, A. et al. in Protostars and Planets VI (eds Beuther, H. & Klessen, R. S. ) 451– 474 (Univ. Arizona Press, 2014).

  2. 2

    Greenhill, L. J., Gwinn, C. R., Schwartz, C., Moran, J. M. & Diamond, P. J. Coexisting conical bipolar and equatorial outflows from a high-mass protostar. Nature 396, 650–653 (1998).

  3. 3

    Launhardt, R. et al. Rotating molecular outflows: the young T Tauri star in CB 26. Astron. Astrophys. 494, 147–156 (2009).

  4. 4

    Matthews, L. D. et al. A feature movie of SiO emission 20–100 AU from the massive young stellar object Orion Source I. Astrophys. J. 708, 80–92 (2010).

  5. 5

    Greenhill, L. J., Goddi, C., Chandler, C. J., Matthews, L. D. & Humphreys, E. M. L. Dynamical evidence for a magnetocentrifugal wind from a 20 M binary young stellar object. Astrophys. J. Lett. 770, L32–L37 (2013).

  6. 6

    Bjerkeli, P., van der Wiel, M. H. D., Harsono, D., Ramsey, J. P. & Jørgensen, J. K. Resolved images of a protostellar outflow driven by an extended disk wind. Nature 540, 406–409 (2016).

  7. 7

    Anderson, J. M., Li, Z.-Y., Krasnopolsky, R. & Blandford, R. D. Locating the launching region of T Tauri winds: the case of DG Tauri. Astrophys. J. Lett. 590, L107–L110 (2003).

  8. 8

    Codella, C. et al. A highly-collimated SiO jet in the HH212 protostellar outflow. Astron. Astrophys. 462, L53–L56 (2007).

  9. 9

    Lee, C.-F. et al. SiO shocks of the protostellar jet HH 212: a search for jet rotation. Astrophys. J. 685, 1026–1032 (2008).

  10. 10

    Lee, C.-F., et al. Rotation and outflow motions in the very low-mass class 0 protostellar system HH 211 at subarcsecond resolution. Astrophys. J. 699, 1584–1594 (2009).

  11. 11

    Zapata, L. A. et al. A rotating molecular jet in Orion. Astron. Astrophys. 510, A2 (2010).

  12. 12

    Chen, X., Arce, H. G., Zhang, Q., Launhardt, R. & Henning, T. Rotating bullets from a variable protostar. Astrophys. J. 824, 72 (2016).

  13. 13

    Chrysostomou, A. et al. Investigating the transport of angular momentum from young stellar objects. Do H2 jets from class I YSOs rotate? Astron. Astrophys. 482, 575–583 (2008).

  14. 14

    Bacciotti, F., Ray, T. P., Mundt, R., Eislöffel, J. & Solf, J. Hubble Space Telescope/STIS spectroscopy of the optical outflow from DG Tauri: indications for rotation in the initial jet channel. Astrophys. J. 576, 222–231 (2002).

  15. 15

    Coffey, D., Bacciotti, F., Ray, T. P., Eislöffel, J. & Woitas, J. Further indications of jet rotation in new ultraviolet and optical Hubble Space Telescope STIS spectra. Astrophys. J. 663, 350–364 (2007).

  16. 16

    White, M. C. et al. Multi-epoch sub-arcsecond [Fe ii] spectroimaging of the DG Tau outflows with NIFS – I. First data epoch. Mon. Not. R. Astron. Soc. 441, 1681–1707 (2014).

  17. 17

    Coffey, D., Dougados, C., Cabrit, S., Pety, J. & Bacciotti, F. A search for consistent jet and disk rotation signatures in RY Tau. Astrophys. J. 804, 2 (2015).

  18. 18

    Lee, C.-F. et al. ALMA results of the pseudodisk, rotating disk, and jet in the continuum and HCO+ in the protostellar system HH 212. Astrophys. J. 786, 114 (2014).

  19. 19

    Lee, C.-F. et al. First detection of equatorial dark dust lane in a protostellar disk at submillimeter wavelength. Sci. Adv. 3, e1602935 (2017).

  20. 20

    Zinnecker, H., McCaughrean, M. J. & Rayner, J. T. A symmetrically pulsed jet of gas from an invisible protostar in Orion. Nature 394, 862–865 (1998).

  21. 21

    Claussen, M. J., Marvel, K. B., Wootten, A. & Wilking, B. A. Distribution and motion of the water masers near IRAS 05413-0104. Astrophys. J. Lett. 507, L79–L82 (1998).

  22. 22

    Lee, C.-F. et al. Jet motion, internal working surfaces, and nested shells in the protostellar system HH 212. Astrophys. J. 805, 186 (2015).

  23. 23

    Moraghan, A., Lee, C.-F., Huang, P.-S. & Vaidya, B. A study of the wiggle morphology of HH 211 through numerical simulations. Mon. Not. R. Astron. Soc. 460, 1829–1838 (2016).

  24. 24

    Agra-Amboage, V., Dougados, C., Cabrit, S. & Reunanen, J. Sub-arcsecond Fe [ii] spectro-imaging of the DG Tauri jet. Periodic bubbles and a dusty disk wind? Astron. Astrophys., 532, A59 (2011).

  25. 25

    Cabrit, S. et al. PdBI sub-arcsecond study of the SiO microjet in HH212. Origin and collimation of class 0 jets. Astron. Astrophys. 468, L29–L32 (2007).

  26. 26

    Codella, C. et al. The ALMA view of the protostellar system HH212. The wind, the cavity, and the disk. Astron. Astrophys., 568, L5 (2014).

  27. 27

    Shu, F. H., Najita, J. R., Shang, H. & Li, Z.-Y. in Protostars and Planets IV (eds Mannings, V. et al.) 789–814 (Univ. Arizona Press, 2000).

  28. 28

    Konigl, A. & Pudritz, R. E. in Protostars and Planets IV (eds Mannings, V. et al. ) 759–787 (Univ. Arizona Press, 2000).

  29. 29

    Millan-Gabet, R. et al. in Protostars and Planets V (eds Reipurth, B. et al.) 539–554 (Univ. Arizona Press, 2007).

  30. 30

    Glassgold, A. E., Mamon, G. A. & Huggins, P. J. The formation of molecules in protostellar winds. Astrophys. J. 373, 254–265 (1991).

  31. 31

    Cabrit, S., Codella, C., Gueth, F. & Gusdorf, A. High SiO abundance in the HH212 protostellar jet. Astron. Astrophys. 548, L2 (2012).

  32. 32

    Balbus, S. A. & Hawley, J. F. An exact, three-dimensional, time-dependent wave solution in local Keplerian flow. Astrophys. J. 652, 1020–1027 (2006).

  33. 33

    Leurini, S. et al. Hot methanol from the inner region of the HH 212 protostellar system. Astron. Astrophys. 595, L4–L10 (2016).

Download references

Acknowledgements

The Atacama Large Millimeter/Submillimeter Array (ALMA) is a partnership of the European Southern Observatory (representing its member states), the National Science Foundation (USA) and National Institutes of Natural Sciences (Japan), together with National Research Council Canada, National Science Council and Academia Sinica Institute of Astronomy and Astrophysics (Taiwan) and the Korea Astronomy and Space Science Institute (Republic of Korea) in cooperation with the Republic of Chile. The Joint ALMA Observatory is operated by the European Southern Observatory, Associated Universities Inc./National Radio Astronomy Observatory and the National Astronomical Observatory of Japan. C.-F.L. acknowledges grants from the Ministry of Science and Technology of Taiwan (MoST 104-2119-M-001-015-MY3) and Academia Sinica (Career Development Award). Z.-Y.L. is supported in part by grants from the National Aeronatics and Space Administration (NNX14AB38G) and the National Science Foundation (AST 1313083).

Author information

C.-F.L. led the project, analysis, discussion and drafted the manuscript. P.T.P.H. and Z.-Y.L. commented on the manuscript and participated in the discussion. N.H., Q.Z. and H.S. contributed to the scientific discussion.

Correspondence to Chin-Fei Lee.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Figures 1–2 and Supplementary Tables 1–4. (PDF 261 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Lee, C., Ho, P., Li, Z. et al. A rotating protostellar jet launched from the innermost disk of HH 212. Nat Astron 1, 0152 (2017) doi:10.1038/s41550-017-0152

Download citation

Further reading