Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

In vacuo dispersion features for gamma-ray-burst neutrinos and photons


Over the past 15 years there has been considerable interest in the possibility of quantum-gravity-induced in vacuo dispersion, the possibility that spacetime itself might behave essentially like a dispersive medium for particle propagation. Two recent studies have exposed what might be in vacuo dispersion features for gamma-ray-burst (GRB) neutrinos of energy in the range of 100 TeV and for GRB photons with energy in the range of 10 GeV. We here show that these two features are roughly compatible with a description such that the same effects apply over four orders of magnitude in energy. We also show that it should not happen so frequently that such pronounced features arise accidentally, as a result of (still unknown) aspects of the mechanisms producing photons at GRBs or as a result of background neutrinos accidentally fitting the profile of a GRB neutrino affected by in vacuo dispersion.

This is a preview of subscription content

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: Δ t versus E * for our maximum-correlation GRB neutrino candidates
Figure 2: Δ t /(1 + z ) vs E*/(1 + z ) for our GRB photons.
Figure 3: t |/(1 + z ) versus E*/(1 + z ) for our GRB photons and GRB neutrino candidates.


  1. 1

    Amelino-Camelia, G. Quantum-spacetime phenomenology. Living Rev. Rel. 16, 5 (2013).

    Article  Google Scholar 

  2. 2

    Jacob, U. & Piran, T. Neutrinos from gamma-ray bursts as a tool to explore quantum-gravity-induced Lorentz violation. Nat. Phys. 3, 87–90 (2007).

    Article  Google Scholar 

  3. 3

    Amelino-Camelia, G. & Smolin, L. Prospects for constraining quantum gravity dispersion with near term observations. Phys. Rev. D 80, 084017 (2009).

    ADS  Article  Google Scholar 

  4. 4

    Amelino-Camelia, G., Ellis, J., Mavromatos, N. E., Nanopoulos D. V. & Sarkar, S. Tests of quantum gravity from observations of gamma-ray bursts. Nature 393, 763–765 (1998).

    ADS  Article  Google Scholar 

  5. 5

    Gambini R. & Pullin, J. Nonstandard optics from quantum space-time. Phys. Rev. D 59, 124021 (1999).

    ADS  MathSciNet  Article  Google Scholar 

  6. 6

    Alfaro, J., Morales-Tecotl, H. A. & Urrutia, L. F. Quantum gravity corrections to neutrino propagation. Phys. Rev. Lett. 84, 2318–2321 (2000).

    ADS  Article  Google Scholar 

  7. 7

    Amelino-Camelia, G. & Majid, S. Waves on noncommutative space-time and gamma-ray bursts. Int. J. Mod. Phys. A 15, 4301–4324 (2000).

    ADS  MathSciNet  MATH  Google Scholar 

  8. 8

    Myers, R. C. & Pospelov, M. Ultraviolet modifications of dispersion relations in effective field theory. Phys. Rev. Lett. 90, 211601 (2003).

    ADS  MathSciNet  Article  Google Scholar 

  9. 9

    Amelino-Camelia, G., Guetta, D. & Piran, T. IceCube neutrinos and Lorentz invariance violation. Astrophys. J. 806, 269 (2015).

    ADS  Article  Google Scholar 

  10. 10

    Stecker, F. W., Scully, S. T., Liberati, S. & Mattingly, D. Searching for traces of Planck-scale physics with high energy neutrinos. Phys. Rev. D 91, 045009 (2015).

    ADS  Article  Google Scholar 

  11. 11

    Waxman, E. & Bahcall, J. N. High energy neutrinos from cosmological gamma-ray burst fireballs. Phys. Rev. Lett. 78, 2292–2295 (1997).

    ADS  Article  Google Scholar 

  12. 12

    Rachen, J. P. & Meszaros, P. Cosmic rays and neutrinos from gamma-ray bursts. AIP Conf. Proc. 428, 776 (1997).

    ADS  Google Scholar 

  13. 13

    Guetta, D., Hooper, D., Alvarez-Miniz, J., Halzen F. & Reuveni, E. Neutrinos from individual gamma-ray bursts in the BATSE catalog. Astropart. Phys. 20, 429–455 (2004).

    ADS  Article  Google Scholar 

  14. 14

    Ahlers, M., Gonzalez-Garcia, M. C. & Halzen, F. GRBs on probation: testing the UHE CR paradigm with IceCube. Astropart. Phys. 35, 87–94 (2011).

    ADS  Article  Google Scholar 

  15. 15

    Amelino-Camelia, G., Barcaroli, L., D'Amico, G., Loret N. & Rosati, G. IceCube and GRB neutrinos propagating in quantum spacetime. Phys. Lett. B 761, 318–325 (2016).

    ADS  Article  Google Scholar 

  16. 16

    Amelino-Camelia, G., Barcaroli, L., D'Amico, G., Loret N. & Rosati, G. Quantum-gravity-induced dual lensing and IceCube neutrinos. Int. J. Mod. Phys. D 0, 1750076–1750096 (2017).

    Article  Google Scholar 

  17. 17

    Zhang, S. & Ma, B. Q. Lorentz violation from gamma-ray bursts. Astropart. Phys. 61, 108–112 (2014).

    ADS  Article  Google Scholar 

  18. 18

    Xu, H. & Ma, B. Q. Light speed variation from gamma-ray bursts. Astropart. Phys. 82, 72–76 (2016).

    ADS  Article  Google Scholar 

  19. 19

    Xu, H. & Ma, B. Q. Light speed variation from gamma ray burst GRB 160509A. Phys. Lett. B 760, 602–604 (2016).

    ADS  Article  Google Scholar 

  20. 20

    Rosati, G., Amelino-Camelia, G., Marciano, A. & Matassa, M. Planck-scale-modified dispersion relations in FRW spacetime. Phys. Rev. D 92, 124042 (2015).

    ADS  Article  Google Scholar 

  21. 21

    Ade, P. A. R. et al. Planck 2015 results. XIII. Cosmological parameters. Astron. Astrophys. 594, A13 (2016).

    Article  Google Scholar 

  22. 22

    Mattingly, D. Modern tests of Lorentz invariance. Living Rev. Rel. 8, 5 (2005).

    Article  Google Scholar 

  23. 23

    Szabo, R. J. Quantum field theory on noncommutative spaces. Phys. Rep. 378, 207–299 (2003).

    ADS  MathSciNet  Article  Google Scholar 

  24. 24

    Calmet, X., Hsu, S. D. H. & Reeb, D. Grand unification and enhanced quantum gravitational effects. Phys. Rev. Lett. 101, 171802 (2008).

    ADS  MathSciNet  Article  Google Scholar 

  25. 25

    Robinson, S. P. & Wilczek, F. Gravitational correction to running of gauge couplings. Phys. Rev. Lett. 96, 231601 (2006).

    ADS  Article  Google Scholar 

  26. 26

    Shao, L. et al. A new measurement of the spectral lag of gamma-ray bursts and its implications for spectral evolution behaviors. Preprint at (2016).

  27. 27

    Aartsen, M. G. et al. Evidence for astrophysical muon neutrinos from the northern sky with IceCube. Phys. Rev. Lett. 115, 081102 (2015).

    ADS  Article  Google Scholar 

  28. 28

    IceCube Collaboration. Energy reconstruction methods in the IceCube neutrino telescope. J. Instrum. 9, P03009 (2014)

  29. 29

    Kadler, M. et al. Coincidence of a high-fluence blazar outburst with a PeV-energy neutrino event. Nat. Phys. 12, 807–814 (2016)

    Article  Google Scholar 

  30. 30

    Bressieux, J. Testing and Comparison of Muon Energy Estimators for the Icecube Neutrino Observatory. Master’s thesis, Univ. Wisconsin and École Polytechnique Fédérale de Lausanne (2009);

  31. 31

    IceCube Collaboration. First observation of PeV-energy neutrinos with IceCube. Phys. Rev. Lett. 111, 021103–021110 (2013)

  32. 32

    IceCube Collaboration. Evidence for high-energy extraterrestrial neutrinos at the IceCube detector. Science 342, 1242856–1242894 (2013)

  33. 33

    IceCube Collaboration. Observation of high-energy astrophysical neutrinos in three years of IceCube data. Phys. Rev. Lett. 113, 101101–101109 (2014)

  34. 34

    IceCube Collaboration. Observation of astrophysical neutrinos in four years of IceCube data. Proc. Sci. ICRC2015, 1081–1089 (2015)

  35. 35

    Abdo, A. A. et al. A limit on the variation of the speed of light arising from quantum gravity effects. Nature 462, 331–334 (2009).

    ADS  Article  Google Scholar 

  36. 36

    Vasileiou, V. et al. Constraints on Lorentz invariance violation from Fermi-large area telescope observations of gamma-ray bursts. Phys. Rev. D 87, 122001 (2013).

    ADS  Article  Google Scholar 

  37. 37

    Aharonian, F. et al. Limits on an energy dependence of the speed of light from a flare of the active galaxy PKS 2155-304. Phys. Rev. Lett. 101, 170402–170407 (2008).

    ADS  Article  Google Scholar 

Download references


We are very grateful to B.-Q. Ma and S. Puccetti for valuable discussions on some of the data used here. We also gratefully acknowledge conversations with F. Fiore and L. Smolin. The work of G.R. was supported by funds provided by the National Science Center under the agreement DEC-2011/02/A/ST2/00294. N.L. acknowledges support by the European Union Seventh Framework Programme (FP7 2007-2013) under grant agreement 291823 Marie Curie FP7-PEOPLE-2011-COFUND (the new International Fellowship Mobility Programme for Experienced Researchers in Croatia — NEWFELPRO), and also partial support from the H2020 Twinning project no. 692194, ‘RBI-TWINNING’.

Author information




G.A.-C. was in charge of project planning, led most of the interpretation, and assisted in data analysis. G.D'A. and G.R. had the leading role in the data analysis and assisted in the interpretation. N.L. assisted in the data analysis and assisted in the interpretation.

Corresponding author

Correspondence to Giovanni Amelino-Camelia.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Table 1 and Supplementary Figure 1. (PDF 119 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Amelino-Camelia, G., D’Amico, G., Rosati, G. et al. In vacuo dispersion features for gamma-ray-burst neutrinos and photons. Nat Astron 1, 0139 (2017).

Download citation

Further reading


Quick links