Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Silicate–SiO reaction in a protoplanetary disk recorded by oxygen isotopes in chondrules


The formation of planetesimals and planetary embryos during the earliest stages of the solar protoplanetary disk largely determined the composition and structure of the terrestrial planets. Within a few million years of the birth of the Solar System, chondrule formation and the accretion of the parent bodies of differentiated achondrites and the terrestrial planets took place in the inner protoplanetary disk1,2. Here we show that, for chondrules in unequilibrated enstatite chondrites, high-precision Δ17O values (where Δ17O is the deviation of the δ17O value from a terrestrial silicate fractionation line) vary significantly (ranging from −0.49 to +0.84‰) and fall on an array with a steep slope of 1.27 on a three-oxygen-isotope plot. This array can be explained by the reaction between an olivine-rich chondrule melt and an SiO-rich gas derived from vaporized dust and nebular gas. Our study suggests that a large proportion of the building blocks of planetary embryos formed by successive silicate–gas interaction processes: silicate–H2O followed by silicate–SiO interactions under more oxidized and reduced conditions, respectively, within a few million years of the formation of the Solar System.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: Oxygen isotopic compositions of chondrule and enstatite separates from enstatite chondrites.
Figure 2: Mineralogical characteristics of the silica-rich chondrule (SRC).
Figure 3: Oxygen isotopic compositions of enstatite chondrite chondrules and enstatite and compiled bulk achondrites.


  1. 1

    Kleine, T. et al. Hf–W chronology of the accretion and early evolution of asteroids and terrestrial planets. Geochim. Cosmochim. Acta 73, 5150–5188 (2009).

    ADS  Article  Google Scholar 

  2. 2

    Connelly, J. N. et al. Absolute chronology and thermal processing of solids in the solar protoplanetary disk. Science 338, 651–655 (2012).

    ADS  Article  Google Scholar 

  3. 3

    Clayton, R. N., Onuma, N. & Mayeda, T. K. A classification of meteorites based on oxygen isotopes. Earth Planet. Sci. Lett. 30, 10–18 (1976).

    ADS  Article  Google Scholar 

  4. 4

    Warren, P. H. Stable-isotopic anomalies and the accretionary assemblage of the Earth and Mars: a subordinate role for carbonaceous chondrites. Earth Planet. Sci. Lett. 311, 93–100 (2011).

    ADS  Article  Google Scholar 

  5. 5

    Lodders, K. An oxygen isotope mixing model for the accretion and composition of rocky planets. Space Sci. Rev. 92, 341–354 (2000).

    ADS  Article  Google Scholar 

  6. 6

    Clayton, R. N., Mayeda, T. K. & Rubin, A. E. Oxygen isotopic compositions of enstatite chondrites and aubrites. J. Geophys. Res. Solid Earth 89, C245–C249 (1984).

    ADS  Article  Google Scholar 

  7. 7

    Clayton, R. N. & Mayeda, T. K. Oxygen isotopes in chondrules from enstatite chondrites: possible identification of a major nebular reservoir. Lunar Planet. Sci. Conf. XVI, 142–143 (1985).

    ADS  Google Scholar 

  8. 8

    Clayton, R. N., Mayeda, T. K., Goswami, J. N. & Olsen, E. J. Oxygen isotope studies of ordinary chondrites. Geochim. Cosmochim. Acta 55, 2317–2337 (1991).

    ADS  Article  Google Scholar 

  9. 9

    Newton, J., Franchi, I. A. & Pillinger, C. T. The oxygen-isotopic record in enstatite meteorites. Meteorit. Planet. Sci. 35, 689–698 (2000).

    ADS  Article  Google Scholar 

  10. 10

    Weisberg, M. K. et al. Petrology and oxygen isotope compositions of chondrules in E3 chondrites. Geochim. Cosmochim. Acta 75, 6556–6569 (2011).

    ADS  Article  Google Scholar 

  11. 11

    Rubin, A. E. Petrologic, geochemical and experimental constraints on models of chondrule formation. Earth-Sci. Rev. 50, 3–27 (2000).

    ADS  Article  Google Scholar 

  12. 12

    Franchi, I. A. Oxygen isotopes in asteroidal materials. Rev. Mineral. Geochem. 68, 345–397 (2008).

    Article  Google Scholar 

  13. 13

    Davis, A. M. in Meteorites and the Early Solar System II (eds Lauretta, D. S. & McSween, H. Y. Jr ) 295–307 (Univ. Arizona Press, 2006).

    Google Scholar 

  14. 14

    Chaussidon, M., Libourel, G. & Krot, A. N. Oxygen isotopic constraints on the origin of magnesian chondrules and on the gaseous reservoirs in the early Solar System. Geochim. Cosmochim. Acta 72, 1924–1938 (2008).

    ADS  Article  Google Scholar 

  15. 15

    Libourel, G., Krot, A. N. & Tissandier, L. Role of gas-melt interaction during chondrule formation. Earth Planet. Sci. Lett. 251, 232–240 (2006).

    ADS  Article  Google Scholar 

  16. 16

    Tissandier, L., Libourel, G. & Robert, F. Gas-melt interactions and their bearing on chondrule formation. Meteorit. Planet. Sci. 37, 1377–1389 (2002).

    ADS  Article  Google Scholar 

  17. 17

    Marrocchi, Y. & Libourel, G. Sulfur and sulfides in chondrules. Geochim. Cosmochim. Acta 119, 117–136 (2013).

    ADS  Article  Google Scholar 

  18. 18

    Piani, L., Marrocchi, Y., Libourel, G. & Tissandier, L. Magmatic sulfides in the porphyritic chondrules of EH enstatite chondrites. Geochim. Cosmochim. Acta 195, 84–99 (2016).

    ADS  Article  Google Scholar 

  19. 19

    Marrocchi, Y. & Chaussidon, M. A systematic for oxygen isotopic variation in meteoritic chondrules. Earth Planet. Sci. Lett. 430, 308–315 (2015).

    ADS  Article  Google Scholar 

  20. 20

    Young, E. D. & Russell, S. S. Oxygen reservoirs in the early solar nebula inferred from an Allende CAI. Science 282, 452–455 (1998).

    ADS  Article  Google Scholar 

  21. 21

    Di Rocco, T. & Pack, A. Triple oxygen isotope exchange between chondrule melt and water vapor: An experimental study. Geochim. Cosmochim. Acta 164, 17–34 (2015).

  22. 22

    Ebel, D. S. & Grossman, L. Condensation in dust-enriched systems. Geochim. Cosmochim. Acta 64, 339–366 (2000).

    ADS  Article  Google Scholar 

  23. 23

    Alexander, C. M. O. D., Grossman, J. N., Ebel, D. S. & Ciesla, F. J. The formation conditions of chondrules and chondrites. Science 320, 1617–1619 (2008).

    ADS  Article  Google Scholar 

  24. 24

    Sugiura, N. & Fujiya, W. Correlated accretion ages and ε54Cr of meteorite parent bodies and the evolution of the solar nebula. Meteorit. Planet. Sci.49, 772–787 (2014).

    ADS  Article  Google Scholar 

  25. 25

    Olsen, M. B. et al. Magnesium and 54Cr isotope compositions of carbonaceous chondrite chondrules — insights into early disk processes. Geochim. Cosmochim. Acta 191, 118–138 (2016).

    ADS  Article  Google Scholar 

  26. 26

    Eiler, J. M. Oxygen isotope variations of basaltic lavas and upper mantle rocks. Rev. Mineral. Geochem. 43, 319–364 (2001).

    Article  Google Scholar 

  27. 27

    Clayton, R. N. Oxygen isotopes in meteorites. Annu. Rev. Earth Planet. Sci. 21, 115–149 (1993).

    ADS  Article  Google Scholar 

  28. 28

    Krot, A. N., Fegley, B. J., Lodders, K. & Palme, H. in Protostars and Planets IV (eds Mannings, V., Boss, A. P. & Russell, S. S. ) 1019–1054 (Univ. Arizona Press, 2000).

    Google Scholar 

  29. 29

    Ciesla, F. J. & Cuzzi, J. N. The evolution of the water distribution in a viscous protoplanetary disk. Icarus 181, 178–204 (2006).

    ADS  Article  Google Scholar 

  30. 30

    Greig, J. W. Immiscibility in silicate melts; part I. Am. J. Sci. Ser. 5 13, 1–44 (1927).

    Google Scholar 

  31. 31

    Yachi, Y., Kitagawa, H., Kunihiro, T. & Nakamura, E. Software dedicated for the curation of geochemical data sets in analytical laboratories. Geostand. Geoanal. Res. 38, 95–102 (2014).

    Article  Google Scholar 

  32. 32

    Tanaka, R. et al. Evaluation of the applicability of acid leaching for the 238U–230Th internal isochron method. Chem. Geol. 396, 255–264 (2015).

    ADS  Article  Google Scholar 

  33. 33

    Sharp, Z. D. A laser-based microanalytical method for the in site determination of oxygen isotope ratios of silicates and oxides. Geochim. Cosmochim. Acta 54, 1353–1357 (1990).

    ADS  Article  Google Scholar 

  34. 34

    Tanaka, R. & Nakamura, E. Determination of 17O-excess of terrestrial silicate/oxide minerals with respect to Vienna Standard Mean Ocean Water (VSMOW). Rapid Commun. Mass Spectrom. 27, 285–297 (2013).

    Article  Google Scholar 

  35. 35

    Pack, A. et al. The oxygen isotope composition of San Carlos olivine on the VSMOW2-SLAP2 scale. Rapid Commun. Mass Spectrom. 30, 1495–1504 (2016).

    ADS  Article  Google Scholar 

  36. 36

    Zheng, Y.-F. Calculation of oxygen isotope fractionation in anhydrous silicate minerals. Geochim. Cosmochim. Acta 57, 1079–1091 (1993).

    ADS  Article  Google Scholar 

  37. 37

    Bao, H. & Thiemens, M. H. Generation of O2 from BaSO4 using a CO2−laser fluorination system for simultaneous analysis of δ18O and δ17O. Anal. Chem. 72, 4029–4032 (2000).

    Article  Google Scholar 

  38. 38

    Keil, K. Mineralogical and chemical relationships among enstatite chondrites. J. Geophys. Res. 73, 6945–6976 (1968).

    ADS  Article  Google Scholar 

  39. 39

    Zhang, Y., Benoit, P. H. & Sears, D. W. G. The classification and complex thermal history of the enstatite chondrites. J. Geophys. Res. 100, 9417–9438 (1995).

    ADS  Article  Google Scholar 

  40. 40

    Weisberg, M. K. et al. EH3 and EL3 chondrites: a petrologic-oxygen isotopic study. Lunar Planet. Sci. Conf. XXVI, 1481–1482 (1995).

  41. 41

    Young, E. D., Galy, A. & Nagahara, H. Kinetic and equilibrium mass-dependent isotope fractionation laws in nature and their geochemical and cosmochemical significance. Geochim. Cosmochim. Acta 66, 1095–1104 (2002).

    ADS  Article  Google Scholar 

  42. 42

    Bergin, E. A. et al. Implications of submillimeter wave astronomy satellite observations for interstellar chemistry and star formation. Astrophys. J. Lett. 539, L129–L132 (2000).

    ADS  Article  Google Scholar 

  43. 43

    Marechal, P., Viala, Y. P. & Benayoun, J. J. Chemistry and rotational excitation of O-2 in interstellar clouds 1. Predicted emissivities of lines for the ODIN, SWAS, PRONAOS-SMH and PIROG 8 submillimeter receivers. Astron. Astrophys. 324, 221–236 (1997).

    ADS  Google Scholar 

  44. 44

    Lodders, K. Solar System abundances and condensation temperatures of the elements. Astrophys. J. 591, 1220–1247 (2003).

    ADS  Article  Google Scholar 

  45. 45

    Javoy, M. et al. First-principles investigation of equilibrium isotopic fractionation of O- and Si-isotopes between refractory solids and gases in the solar nebula. Earth Planet. Sci. Lett. 319–320, 118–127 (2012).

    ADS  Article  Google Scholar 

  46. 46

    Young, E. D. et al. Mass-independent oxygen isotope variation in the solar nebula. Rev. Mineral. Geochem. 68, 187–218 (2008).

    Article  Google Scholar 

  47. 47

    Russell, S. D. J., Longstaffe, F. J., King, P. L. & Larson, T. E. The oxygen-isotope composition of chondrules and isolated forsterite and olivine grains from the Tagish Lake carbonaceous chondrite. Geochim. Cosmochim. Acta 74, 2484–2499 (2010).

    ADS  Article  Google Scholar 

  48. 48

    Clayton, R. N. & Mayeda, T. K. The oxygen isotope record in Murchison and other carbonaceous chondrites. Earth Planet. Sci. Lett. 67, 151–161 (1984).

    ADS  Article  Google Scholar 

  49. 49

    Ushikubo, T., Kimura, M., Kita, N. T. & Valley, J. W. Primordial oxygen isotope reservoirs of the solar nebula recorded in chondrules in Acfer 094 carbonaceous chondrite. Geochim. Cosmochim. Acta 90, 242–264 (2012).

    ADS  Article  Google Scholar 

  50. 50

    Greenwood, R. C., Franchi, I. A., Jambon, A. & Buchanan, P. C. Widespread magma oceans on asteroidal bodies in the early Solar System. Nature 435, 916–918 (2005).

    ADS  Article  Google Scholar 

  51. 51

    Greenwood, R. C., Franchi, I. A., Gibson, J. M. & Benedix, G. K. Oxygen isotope variation in primitive achondrites: the influence of primordial, asteroidal and terrestrial processes. Geochim. Cosmochim. Acta 94, 146–163 (2012).

    ADS  Article  Google Scholar 

  52. 52

    Greenwood, R. C. et al. Oxygen isotope variation in stony-iron meteorites. Science 313, 1763–1765 (2006).

    ADS  Article  Google Scholar 

  53. 53

    McDermott, K. H. et al. Oxygen isotope and petrological study of silicate inclusions in IIE iron meteorites and their relationship with H chondrites. Geochim. Cosmochim. Acta 173, 97–113 (2016).

    ADS  Article  Google Scholar 

  54. 54

    Wiechert, U. H., Halliday, A. N., Palme, H. & Rumble, D. Oxygen isotope evidence for rapid mixing of the HED meteorite parent body. Earth Planet. Sci. Lett. 221, 373–382 (2004).

    ADS  Article  Google Scholar 

  55. 55

    Herwartz, D., Pack, A., Friedrichs, B. & Bischoff, A. Identification of the giant impactor Theia in lunar rocks. Science 344, 1146–1150 (2014).

    ADS  Article  Google Scholar 

  56. 56

    Young, E. D. et al. Oxygen isotopic evidence for vigorous mixing during the Moon-forming giant impact. Science 351, 493–496 (2016).

    ADS  Article  Google Scholar 

  57. 57

    Franchi, I. A., Wright, I. P., Sexton, A. S. & Pillinger, C. T. The oxygen-isotopic composition of Earth and Mars. Meteorit. Planet. Sci. 34, 657–661 (1999).

    ADS  Article  Google Scholar 

Download references


We thank M.R.M. Izawa, Y. Shimaki, T. Kunihiro and G.E. Bebout for their constructive suggestions, which improved this paper. We also thank Y. Shimaki and K. Tanaka for assistance in the laboratory. We are grateful for the loan of the meteorites from the National Institute of Polar Research and the Natural History Museum in Vienna. This study was partly supported by the Grant-in-Aid for Scientific Research from Japan Society for the Promotion of Science (Grant Number 16K05578).

Author information




R.T. designed the study, analysed the data and wrote the paper. E.N. was involved in the study design. Both authors discussed the results and commented on the manuscript.

Corresponding author

Correspondence to Ryoji Tanaka.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Figures 1–3, Supplementary Tables 1–6 and Supplementary References. (PDF 1034 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Tanaka, R., Nakamura, E. Silicate–SiO reaction in a protoplanetary disk recorded by oxygen isotopes in chondrules. Nat Astron 1, 0137 (2017).

Download citation


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing