Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Mass inventory of the giant-planet formation zone in a solar nebula analogue

Abstract

The initial mass distribution in the solar nebula is a critical input to planet formation models that seek to reproduce today’s Solar System1. Traditionally, constraints on the gas mass distribution are derived from observations of the dust emission from disks2,3, but this approach suffers from large uncertainties in dust opacity and gas-to-dust ratio2. On the other hand, previous observations of gas tracers only probe surface layers above the bulk mass reservoir4. Here we present the first partially spatially resolved observations of the 13C18O J = 3–2 line emission in the closest protoplanetary disk, TW Hydrae, a gas tracer that probes the bulk mass distribution. Combining it with the C18O J = 3–2 emission and the previously detected HD J = 1–0 flux, we directly constrain the mid-plane temperature and optical depths of gas and dust emission. We report a gas mass distribution with radius, R, of 13 5 + 8 × ( R / 20 .5 au ) 0.9 0.3 + 0.4  g cm−2 in the expected formation zone of gas and ice giants (5–21 au). We find that the mass ratio of total gas to millimetre-sized dust is 140 in this region, suggesting that at least 2.4M of dust aggregates have grown to centimetre sizes (and perhaps much larger). The radial distribution of gas mass is consistent with a self-similar viscous disk profile but much flatter than the posterior extrapolation of mass distribution in our own and extrasolar planetary systems.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Figure 1: ALMA observations of the C 18O and 13C18O (3–2) line emission in the TW Hya protoplanetary disk, and best-fitting models.
Figure 2: Representative vertical contributions of four CO isotopologues in the J = 3–2 line and 0.93-mm dust continuum emission in the inner region of the TW Hya disk.
Figure 3: Comparisons of the gas mass distribution in the TW Hya disk with models of in situplanet formation.

References

  1. Pollack, J. B. et al. Formation of the giant planets by concurrent accretion of solids and gas. Icarus 124, 62–85 (1996).

    ADS  Article  Google Scholar 

  2. Andrews, S. M. & Williams, J. P. A submillimeter view of circumstellar dust disks in ρ Ophiuchi. Astrophys. J. 671, 1800–1812 (2007).

    ADS  Article  Google Scholar 

  3. Isella, A., Carpenter, J. M. & Sargent, A. I. Structure and evolution of pre-main-sequence circumstellar disks. Astrophys. J. 701, 260–282 (2009).

    ADS  Article  Google Scholar 

  4. Williams, J. P. & McPartland, C. Measuring protoplanetary disk gas surface density profiles with ALMA. Astrophys. J. 830, 32–41 (2016).

    ADS  Article  Google Scholar 

  5. Weidenschilling, S. J. Aerodynamics of solid bodies in the solar nebula. Mon. Not. R. Astron. Soc. 180, 57–70 (1977).

    ADS  Article  Google Scholar 

  6. Birnstiel, T., Klahr, H. & Ercolano, B. A simple model for the evolution of the dust population in protoplanetary disks. Astron. Astrophys. 539, A148 (2012).

    ADS  Article  Google Scholar 

  7. van Leeuwen, F. Validation of the new Hipparcos reduction. Astron. Astrophys. 474, 653–664 (2007).

    ADS  Article  Google Scholar 

  8. Webb, R. A. et al. Discovery of seven T Tauri stars and a brown dwarf candidate in the nearby TW Hydrae association. Astrophys. J. Lett. 512, L63–L67 (1999).

    ADS  Article  Google Scholar 

  9. Bergin, E. A. et al. An old disk still capable of forming a planetary system. Nature 493, 644–646 (2013).

    ADS  Article  Google Scholar 

  10. Donaldson, J. K. et al. New parallaxes and a convergence analysis for the TW Hya association. Astrophys. J. 833, 95–105 (2016).

    ADS  Article  Google Scholar 

  11. Chabrier, G., Johansen, A., Janson, M. & Rafikov, R. in Protostars and Planets VI (eds Beuther, H. et al. ) 619–642 (Univ. Arizona Press, 2014).

    Google Scholar 

  12. Qi, C. et al. Imaging of the CO snow line in a solar nebula analog. Science 341, 630–632 (2013).

    ADS  Article  Google Scholar 

  13. Wilson, T. L. Isotopes in the interstellar medium and circumstellar envelopes. Rep. Prog. Phys. 62, 143–185 (1999).

    ADS  Article  Google Scholar 

  14. Dullemond, C. P. & Dominik, C. Flaring vs. self-shadowed disks: the SEDs of Herbig Ae/Be stars. Astron. Astrophys. 417, 159–168 (2004).

    ADS  Article  Google Scholar 

  15. Andrews, S. M. et al. Ringed substructure and a gap at 1 au in the nearest protoplanetary disk. Astrophys. J. Lett. 820, L40 (2016).

    ADS  Article  Google Scholar 

  16. Weidenschilling, S. J. The distribution of mass in the planetary system and solar nebula. Astrophys. Space Sci. 51, 153–158 (1977).

    ADS  Article  Google Scholar 

  17. Hayashi, C. Structure of the solar nebula, growth and decay of magnetic fields and effects of magnetic and turbulent viscosities on the nebula. Prog. Theor. Phys. Suppl. 70, 35–53 (1981).

    ADS  Article  Google Scholar 

  18. Chiang, E. & Laughlin, G. The minimum-mass extrasolar nebula: in situ formation of close-in super-Earths. Mon. Not. R. Astron. Soc. 431, 3444–3455 (2013).

    ADS  Article  Google Scholar 

  19. Schlichting, H. E. Formation of close in super-Earths and mini-Neptunes: required disk masses and their implications. Astrophys. J. Lett. 795, L15 (2014).

    ADS  Article  Google Scholar 

  20. Tsukagoshi, T. et al. A gap with a deficit of large grains in the protoplanetary disk around TW Hya. Astrophys. J. Lett. 829, L35 (2016).

    ADS  Article  Google Scholar 

  21. Draine, B. T. On the submillimeter opacity of protoplanetary disks. Astrophys. J. 636, 1114–1120 (2006).

    ADS  Article  Google Scholar 

  22. ALMA Partnership et al. The 2014 ALMA Long Baseline Campaign: first results from high angular resolution observations toward the HL Tau region. Astrophys. J. Lett. 808, L3 (2015).

    ADS  Article  Google Scholar 

  23. Zhang, K. et al. On the commonality of 10–30 au sized axisymmetric dust structures in protoplanetary disks. Astrophys. J. Lett. 818, L16 (2016).

    ADS  Article  Google Scholar 

  24. Dipierro, G. et al. On planet formation in HL Tau. Mon. Not. R. Astron. Soc. 453, L73–L77 (2015).

    ADS  Article  Google Scholar 

  25. Jin, S., Li, S., Isella, A., Li, H. & Ji, J. Modeling dust emission of HL Tau disk based on planet–disk interactions. Astrophys. J. 818, 76 (2016).

    ADS  Article  Google Scholar 

  26. Wright, J. T. et al. The frequency of hot Jupiters orbiting nearby solar-type stars. Astrophys. J. 753, 160 (2012).

    ADS  Article  Google Scholar 

  27. Desch, S. J. Mass distribution and planet formation in the solar nebula. Astrophys. J. 671, 878–893 (2007).

    ADS  Article  Google Scholar 

  28. Pringle, J. E. Accretion discs in astrophysics. Annu. Rev. Astron. Astrophys. 19, 137–162 (1981).

    ADS  Article  Google Scholar 

  29. Bai, X.-N. Towards a global evolutionary model of protoplanetary disks. Astrophys. J. 821, 80 (2016).

    ADS  Article  Google Scholar 

  30. Suzuki, T. K., Ogihara, M., Morbidelli, A., Crida, A. & Guillot, T. Evolution of protoplanetary discs with magnetically driven disc winds. Astron. Astrophys. 596, A74 (2016).

    ADS  Article  Google Scholar 

  31. Beckwith, S. V. W. & Sargent, A. I. Molecular line emission from circumstellar disks. Astrophys. J. 402, 280–291 (1993).

    ADS  Article  Google Scholar 

  32. Piétu, V., Dutrey, A. & Guilloteau, S. Probing the structure of protoplanetary disks: a comparative study of DM Tau, LkCa 15, and MWC 480. Astron. Astrophys. 467, 163–178 (2007).

    ADS  Article  Google Scholar 

  33. Miotello, A., Bruderer, S. & van Dishoeck, E. F. Protoplanetary disk masses from CO isotopologue line emission. Astron. Astrophys. 572, A96 (2014).

    ADS  Article  Google Scholar 

  34. Walsh, C., Millar, T. J. & Nomura, H. Chemical processes in protoplanetary disks. Astrophys. J. 722, 1607–1623 (2010).

    ADS  Article  Google Scholar 

  35. Cleeves, L. I., Bergin, E. A., Qi, C., Adams, F. C. & Öberg, K. I. Constraining the X-ray and cosmic-ray ionization chemistry of the TW Hya protoplanetary disk: evidence for a sub-interstellar cosmic-ray rate. Astrophys. J. 799, 204 (2015).

    ADS  Article  Google Scholar 

  36. Teague, R. et al. Measuring turbulence in TW Hydrae with ALMA: methods and limitations. Astron. Astrophys. 592, A49 (2016).

    Article  Google Scholar 

  37. Flaherty, K. M. et al. Weak turbulence in the HD 163296 protoplanetary disk revealed by ALMA CO observations. Astrophys. J. 813, 99 (2015).

    ADS  Article  Google Scholar 

  38. Hogerheijde, M. R. et al. Steepening of the 820 μm continuum surface brightness profile signals dust evolution in TW Hydrae’s disk. Astron. Astrophys. 586, A99 (2016).

    Article  Google Scholar 

  39. Schwarz, K. R. et al. The radial distribution of H2 and CO in TW Hya as revealed by resolved ALMA observations of CO isotopologues. Astrophys. J. 823, 91 (2016).

    ADS  Article  Google Scholar 

  40. Nomura, H. et al. ALMA observations of a gap and a ring in the protoplanetary disk around TW Hya. Astrophys. J. Lett. 819, L7 (2016).

    ADS  Article  Google Scholar 

  41. Foreman-Mackey, D., Hogg, D. W., Lang, D. & Goodman, J. emcee: the MCMC hammer. Publ. Astron. Soc. Pacif. 125, 306–312 (2013).

    ADS  Article  Google Scholar 

  42. van Boekel, R. et al. Three radial gaps in the disk of TW Hydrae imaged with SPHERE. Preprint at https://arxiv.org/abs/1610.08939 (2016).

  43. van ’t Hoff, M. L. R., Walsh, C., Kama, M., Facchini, S. & van Dishoeck, E. F. Robustness of N2H+ as tracer of the CO snowline. Astron. Astrophys. 599, A101 (2017).

    Article  Google Scholar 

  44. Cleeves, L. I. et al. The ancient heritage of water ice in the Solar System. Science 345, 1590–1593 (2014).

    ADS  Article  Google Scholar 

  45. Röllig, M. & Ossenkopf, V. Carbon fractionation in photo-dissociation regions. Astron. Astrophys. 550, A56 (2013).

    ADS  Article  Google Scholar 

  46. Linsky, J. L. Deuterium abundance in the local ISM and possible spatial variations. Space Sci. Rev. 84, 285–296 (1998).

    ADS  Article  Google Scholar 

  47. Dubrulle, B., Morfill, G. & Sterzik, M. The dust subdisk in the protoplanetary nebula. Icarus 114, 237–246 (1995).

    ADS  Article  Google Scholar 

Download references

Acknowledgements

This paper makes use of the following ALMA data: ADS/JAO.ALMA#2015.1.00308.S. ALMA is a partnership of the European Southern Observatory (ESO, representing its member states), National Science Foundation (NSF, United States) and National Institutes of Natural Sciences (Japan), together with the National Research Council (Canada), the National Science Council and Academia Sinica Institute of Astronomy and Astrophysics (Taiwan), and the Korea Astronomy and Space Science Institute (Republic of Korea), in cooperation with the Republic of Chile. The Joint ALMA Observatory is operated by ESO, Associated Universities Inc./National Radio Astronomy Observatory, and the National Astronomical Observatory of Japan. We thank T. Tsukagoshi for sharing radial brightness temperature profiles of ALMA 145 and 233-GHz continuum observations of the TW Hya disk. This work was supported by funding from NSF grant AST-1514670 and NASA NNX16AB48G. L.I.C. acknowledges the support of NASA through Hubble Fellowship grant HST-HF2-51356.001.

Author information

Authors and Affiliations

Authors

Contributions

K.Z. led the data processing, analysis and manuscript preparation. E.A.B. led the preparation of the observing proposal, and K.R.S. assisted with the parameterized modelling. All authors were participants in elaborating the observing proposal, discussion of results, determination of the conclusions and revision of the manuscript.

Corresponding author

Correspondence to Ke Zhang.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Table 1, Supplementary Figures 1–8, Supplementary References (PDF 1112 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Zhang, K., Bergin, E., Blake, G. et al. Mass inventory of the giant-planet formation zone in a solar nebula analogue. Nat Astron 1, 0130 (2017). https://doi.org/10.1038/s41550-017-0130

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41550-017-0130

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing