Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Binary stars as the key to understanding planetary nebulae


Planetary nebulae are traditionally considered to represent the final evolutionary stage of all intermediate-mass stars (0.7–8 M). Recent evidence seems to contradict this picture. In particular, since the launch of the Hubble Space Telescope, it has been clear that planetary nebulae display a wide range of striking morphologies that cannot be understood in a single-star scenario, instead pointing towards binary evolution in a majority of systems. Here, we summarize our current understanding of the importance of binarity in the formation and shaping of planetary nebulae, as well as the surprises that recent observational studies have revealed with respect to our understanding of binary evolution in general. These advances have critical implications for the understanding of mass transfer processes in binary stars—particularly the all-important but ever-so-poorly understood ‘common envelope phase’—as well as the formation of cosmologically important type Ia supernovae.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: A selection of planetary nebulae known to host binary central stars, highlighting the wide array of morphologies observed in these objects.
Figure 2: The PN Abell 63, the central star of which was the first to be confirmed as a binary (UU Sagittae).
Figure 3: Amplitude of irradiation effect variability as a function of period/separation, inclination and secondary-star spectral type103 for a base system of a 100,000 K, 0.6 M remnant (taken from evolutionary tracks61) in a one-day orbit inclined at 70°.
Figure 4: Period distribution of known binary central stars with the companion type indicated where appropriate.


  1. 1

    Kwitter, K. B. et al. The present and future of planetary nebula research. A white paper by the IAU Planetary Nebula Working Group. Rev. Mex. Astron. Astrophys. 50, 203–223 (2014).

    ADS  Google Scholar 

  2. 2

    Coccato, L., Arnaboldi, M. & Gerhard, O. Signatures of accretion events in the haloes of early-type galaxies from comparing PNe and GCs kinematics. Mon. Not. R. Astron. Soc. 436, 1322–1334 (2013).

    ADS  Google Scholar 

  3. 3

    Magrini, L., Coccato, L., Stanghellini, L., Casasola, V. & Galli, D. Metallicity gradients in local Universe galaxies: Time evolution and effects of radial migration. Astron. Astrophys. 588, A91 (2016).

    ADS  Google Scholar 

  4. 4

    Buzzoni, A., Arnaboldi, M. & Corradi, R. L. M. Planetary nebulae as tracers of galaxy stellar populations. Mon. Not. R. Astron. Soc. 368, 877–894 (2006).

    ADS  Google Scholar 

  5. 5

    Gerhard, O. et al. The kinematics of intracluster planetary nebulae and the on-going subcluster merger in the Coma cluster core. Astron. Astrophys. 468, 815–822 (2007).

    ADS  Google Scholar 

  6. 6

    Arnaboldi, M. et al. Narrowband imaging in [O iii] and Hα to search for intracluster planetary nebulae in the Virgo cluster. Astron. J. 125, 514–524 (2003).

    ADS  Google Scholar 

  7. 7

    Ciardullo, R., Jacoby, G. H., Ford, H. C. & Neill, J. D. Planetary nebulae as standard candles. II. The calibration in M31 and its companions. Astrophys. J. 339, 53–69 (1989).

    ADS  Google Scholar 

  8. 8

    Ciardullo, R. et al. Planetary nebulae as standard candles. XII. Connecting the population I and population II distance scales. Astrophys. J. 577, 31–50 (2002).

    ADS  Google Scholar 

  9. 9

    Kwok, S., Purton, C. R. & Fitzgerald, P. M. On the origin of planetary nebulae. Astrophys. J. 219, 125–127 (1978).

    ADS  Google Scholar 

  10. 10

    Kahn, F. D. & West, K. A. Shapes of planetary nebulae. Mon. Not. R. Astron. Soc. 212, 837–850 (1985).

    ADS  Google Scholar 

  11. 11

    Parker, Q. A. et al. The Macquarie/AAO/Strasbourg Hα planetary nebula catalogue: MASH. Mon. Not. R. Astron. Soc. 373, 79–94 (2006).

    ADS  Google Scholar 

  12. 12

    Chita, S. M., Langer, N., van Marle, A. J., García-Segura, G. & Heger, A. Multiple ring nebulae around blue supergiants. Astron. Astrophys. 488, L37–L41 (2008).

    ADS  Google Scholar 

  13. 13

    García-Segura, G., Villaver, E., Langer, N., Yoon, S.-C. & Manchado, A. Single rotating stars and the formation of bipolar planetary nebula. Astrophys. J. 783, 74 (2014).

    ADS  Google Scholar 

  14. 14

    García-Segura, G. Three-dimensional magnetohydrodynamical modeling of planetary nebulae: The formation of jets, ansae, and point-symmetric nebulae via magnetic collimation. Astrophys. J. Lett. 489, L189–L192 (1997).

    ADS  Google Scholar 

  15. 15

    Matt, S., Frank, A. & Blackman, E. G. Astrophysical explosions driven by a rotating, magnetized, gravitating sphere. Astrophys. J. Lett. 647, L45–L48 (2006).

    ADS  Google Scholar 

  16. 16

    Nordhaus, J., Blackman, E. G. & Frank, A. Isolated versus common envelope dynamos in planetary nebula progenitors. Mon. Not. R. Astron. Soc. 376, 599–608 (2007).

    ADS  Google Scholar 

  17. 17

    Paczynski, B. Common envelope binaries. In Structure and Evolution of Close Binary Systems (eds Eggleton, P., Mitton, S. & Whelan, J. ) 75–80 (IAU, 1976).

    Google Scholar 

  18. 18

    Nordhaus, J. & Blackman, E. G. Low-mass binary-induced outflows from asymptotic giant branch stars. Mon. Not. R. Astron. Soc. 370, 2004–2012 (2006).

    ADS  Google Scholar 

  19. 19

    Tocknell, J., De Marco, O. & Wardle, M. Constraints on common envelope magnetic fields from observations of jets in planetary nebulae. Mon. Not. R. Astron. Soc. 439, 2014–2024 (2014).

    ADS  Google Scholar 

  20. 20

    Eggleton, P. Evolutionary Processes in Binary and Multiple Stars (Cambridge Univ. Press, 2011).

    Google Scholar 

  21. 21

    Hurley, J. R., Tout, C. A. & Pols, O. R. Evolution of binary stars and the effect of tides on binary populations. Mon. Not. R. Astron. Soc. 329, 897–928 (2002).

    ADS  Google Scholar 

  22. 22

    De Marco, O. & Izzard, R. G. Dawes review 6: The impact of companions on stellar evolution. Pub. Astron. Soc. Australia 34, e001 (2017).

    ADS  Google Scholar 

  23. 23

    Raghavan, D. et al. A survey of stellar families: Multiplicity of solar-type stars. Astrophys. J. Suppl. Ser. 190, 1–42 (2010).

    ADS  Google Scholar 

  24. 24

    De Marco, O. The origin and shaping of planetary nebulae: Putting the binary hypothesis to the test. Pub. Astron. Soc. Pacific 121, 316–342 (2009).

    ADS  Google Scholar 

  25. 25

    Ivanova, N. et al. Common envelope evolution: Where we stand and how we can move forward. Astron. Astrophys. Rev. 21, 59 (2013).

    ADS  Google Scholar 

  26. 26

    Iaconi, R. et al. The effect of a wider initial separation on common envelope binary interaction simulations. Mon. Not. R. Astron. Soc. 464, 4028–4044 (2017).

    ADS  Google Scholar 

  27. 27

    Hillwig, T. C. et al. Observational confirmation of a link between common envelope binary interaction and planetary nebula shaping. Astrophys. J. 832, 125 (2016).

    ADS  Google Scholar 

  28. 28

    De Marco, O. & Soker, N. The role of planets in shaping planetary nebulae. Pub. Astron. Soc. Pacific 123, 402–411 (2011).

    ADS  Google Scholar 

  29. 29

    Ruiter, A. J., Belczynski, K. & Fryer, C. Rates and delay times of type Ia supernovae. Astrophys. J. 699, 2026–2036 (2009).

    ADS  Google Scholar 

  30. 30

    Boffin, H. M. J. in Ecology of Blue Straggler Stars (eds Boffin, H. M. J., Carraro, G., Beccari, G. ) Ch. 7, 153–178 (Astrophysics and Space Science Library Vol. 413, 2015).

    Google Scholar 

  31. 31

    Theuns, T., Boffin, H. M. J. & Jorissen, A. Wind accretion in binary stars. II. Accretion rates. Mon. Not. R. Astron. Soc. 280, 1264–1276 (1996).

    ADS  Google Scholar 

  32. 32

    Mohamed, S. & Podsiadlowski, P. Mass transfer in Mira-type binaries. Baltic Astronomy 21, 88–96 (2012).

    ADS  Google Scholar 

  33. 33

    Mauron, N. & Huggins, P. J. Imaging the circumstellar envelopes of AGB stars. Astron. Astrophys. 452, 257–268 (2006).

    ADS  Google Scholar 

  34. 34

    Kim, H. & Taam, R. E. A new method of determining the characteristics of evolved binary systems revealed in the observed circumstellar patterns: Application to AFGL 3068. Astrophys. J. Lett. 759, L22 (2012).

    ADS  Google Scholar 

  35. 35

    Maercker, M. et al. Unexpectedly large mass loss during the thermal pulse cycle of the red giant star R Sculptoris. Nature 490, 232–234 (2012).

    ADS  Google Scholar 

  36. 36

    Kim, H. et al. High-resolution CO observation of the carbon star CIT 6 revealing the spiral structure and a nascent bipolar outflow. Astrophys. J. 814, 61 (2015).

    ADS  Google Scholar 

  37. 37

    Kim, H. et al. The large-scale nebular pattern of a superwind binary in an eccentric orbit. Nat. Astron. 1, 0060 (2017).

    ADS  Google Scholar 

  38. 38

    Kim, H. & Taam, R. E. Wide binary effects on asymmetries in asymptotic giant branch circumstellar envelopes. Astrophys. J. 759, 59 (2012).

    ADS  Google Scholar 

  39. 39

    Bond, H. E. Objects common to the catalogue of galactic planetary nebulae and the general catalogue of variable stars. Pub. Astron. Soc. Pacific 88, 192–194 (1976).

    ADS  Google Scholar 

  40. 40

    Bell, S. A., Pollacco, D. L. & Hilditch, R. W. Direct optical observations of the secondary component of UU Sagittae. Mon. Not. R. Astron. Soc. 270, 449–456 (1994).

    ADS  Google Scholar 

  41. 41

    Hilditch, R. W., Harries, T. J. & Hill, G. On the reflection effect in three sdOB binary stars. Mon. Not. R. Astron. Soc. 279, 1380–1392 (1996).

    ADS  Google Scholar 

  42. 42

    Afşar, M. & Ibanoĝlu, C. Two-colour photometry of the binary planetary nebula nuclei UU Sagitte and V477 Lyrae: Oversized secondaries in post-common-envelope binaries. Mon. Not. R. Astron. Soc. 391, 802–814 (2008).

    ADS  Google Scholar 

  43. 43

    Pollacco, D. & Bell, S. A. Imaging and spectroscopy of ejected common envelopes – I. Mon. Not. R. Astron. Soc. 284, 32–44 (1997).

    ADS  Google Scholar 

  44. 44

    Mitchell, D. L. et al. Proof of polar ejection from close-binary core of the planetary nebula Abell 63. Mon. Not. R. Astron. Soc. 374, 1404–1412 (2007).

    ADS  Google Scholar 

  45. 45

    Wesson, R., Liu, X.-W. & Barlow, M. J. The abundance discrepancy — recombination line versus forbidden line abundances for a northern sample of galactic planetary nebulae. Mon. Not. R. Astron. Soc. 362, 424–454 (2005).

    ADS  Google Scholar 

  46. 46

    García-Rojas, J. & Esteban, C. On the abundance discrepancy problem in H ii regions. Astrophys. J. 670, 457–470 (2007).

    ADS  Google Scholar 

  47. 47

    Corradi, R. L. M., García-Rojas, J., Jones, D. & Rodríguez-Gil, P. Binarity and the abundance discrepancy problem in planetary nebulae. Astrophys. J. 803, 99 (2015).

    ADS  Google Scholar 

  48. 48

    Bond, H. E. & Livio, M. Morphologies of planetary nebulae ejected by close-binary nuclei. Astrophys. J. 335, 568–576 (1990).

    ADS  Google Scholar 

  49. 49

    Exter, K. M., Pollacco, D. & Bell, S. A. The planetary nebula K 1–2 and its binary central star VW Pyx. Mon. Not. R. Astron. Soc. 341, 1349–1359 (2003).

    ADS  Google Scholar 

  50. 50

    Exter, K. M., Pollacco, D. L., Maxted, P. F. L., Napiwotzki, R. & Bell, S. A. A study of two post-common envelope binary systems. Mon. Not. R. Astron. Soc. 359, 315–327 (2005).

    ADS  Google Scholar 

  51. 51

    Bond, H. E. Binarity of central stars of planetary nebulae. In Asymmetrical Planetary Nebulae II: From Origins to Microstructures (eds Kastner, J. H., Soker, N. & Rappaport, S. ) 115 (Astronomical Society of the Pacific, 2000).

    Google Scholar 

  52. 52

    Miszalski, B., Acker, A., Moffat, A. F. J., Parker, Q. A. & Udalski, A. Binary planetary nebulae nuclei towards the Galactic bulge. I. Sample discovery, period distribution, and binary fraction. Astron. Astrophys. 496, 813–825 (2009).

    ADS  Google Scholar 

  53. 53

    Miszalski, B., Acker, A., Parker, Q. A. & Moffat, A. F. J. Binary planetary nebulae nuclei towards the Galactic bulge. II. A penchant for bipolarity and low-ionisation structures. Astron. Astrophys. 505, 249–263 (2009).

    ADS  Google Scholar 

  54. 54

    Miszalski, B. et al. ETHOS 1: A high-latitude planetary nebula with jets forged by a post-common-envelope binary central star. Mon. Not. R. Astron. Soc. 413, 1264–1274 (2011).

    ADS  Google Scholar 

  55. 55

    Miszalski, B. et al. Discovery of close binary central stars in the planetary nebulae NGC 6326 and NGC 6778. Astron. Astrophys. 531, A158 (2011).

    Google Scholar 

  56. 56

    Corradi, R. L. M. et al. The Necklace: equatorial and polar outflows from the binary central star of the new planetary nebula IPHASX J194359.5+170901. Mon. Not. R. Astron. Soc. 410, 1349–1359 (2011).

    ADS  Google Scholar 

  57. 57

    Boffin, H. M. J. et al. An interacting binary system powers precessing outflows of an evolved star. Science 338, 773–775 (2012).

    ADS  Google Scholar 

  58. 58

    Jones, D. et al. The post-common-envelope, binary central star of the planetary nebula Hen 2–11. Astron. Astrophys. 562, A89 (2014).

    Google Scholar 

  59. 59

    Jones, D. et al. The post-common envelope central stars of the planetary nebulae Henize 2–155 and Henize 2–161. Astron. Astrophys. 580, A19 (2015).

    Google Scholar 

  60. 60

    Prša, A. et al. Physics of eclipsing binaries. II. Toward the increased fidelity. Astrophys. J. Suppl. Ser. 227, 29 (2016).

    ADS  Google Scholar 

  61. 61

    Miller Bertolami, M. M. New models for the evolution of post-asymptotic giant branch stars and central stars of planetary nebulae. Astron. Astrophys. 588, A25 (2016).

    ADS  Google Scholar 

  62. 62

    De Marco, O., Hillwig, T. C. & Smith, A. J. Binary central stars of planetary nebulae discovered through photometric variability. I. What we know and what we would like to find out. Astron. J. 136, 323–336 (2008).

    ADS  Google Scholar 

  63. 63

    De Marco, O. et al. Identifying close binary central stars of PN with Kepler. Mon. Not. R. Astron. Soc. 448, 3587–3602 (2015).

    ADS  Google Scholar 

  64. 64

    Mustill, A. J. & Villaver, E. Foretellings of Ragnarök: World-engulfing asymptotic giants and the inheritance of white dwarfs. Astrophys. J. 761, 121 (2012).

    ADS  Google Scholar 

  65. 65

    Madappatt, N., De Marco, O. & Villaver, E. The effect of tides on the population of PN from interacting binaries. Mon. Not. R. Astron. Soc. 463, 1040–1056 (2016).

    ADS  Google Scholar 

  66. 66

    Kochanek, C. S., Adams, S. M. & Belczynski, K. Stellar mergers are common. Mon. Not. R. Astron. Soc. 443, 1319–1328 (2014).

    ADS  Google Scholar 

  67. 67

    Bond, H. E., Pollacco, D. L. & Webbink, R. F. WeBo 1: A young barium star surrounded by a ringlike planetary nebula. Astron. J. 125, 260–264 (2003).

    ADS  Google Scholar 

  68. 68

    Miszalski, B. et al. A barium central star binary in the type I diamond ring planetary nebula Abell 70. Mon. Not. R. Astron. Soc. 419, 39–49 (2012).

    ADS  Google Scholar 

  69. 69

    Miszalski, B. et al. SALT reveals the barium central star of the planetary nebula Hen 2–39. Mon. Not. R. Astron. Soc. 436, 3068–3081 (2013).

    ADS  Google Scholar 

  70. 70

    Tyndall, A. A. et al. Two rings but no fellowship: LoTr 1 and its relation to planetary nebulae possessing barium central stars. Mon. Not. R. Astron. Soc. 436, 2082–2095 (2013).

    ADS  Google Scholar 

  71. 71

    Van Winckel, H. et al. Binary central stars of planetary nebulae with long orbits: The radial velocity orbit of BD+33 2642 (PN G052.7+50.7) and the orbital motion of HD 112313 (PN LoTr5). Astron. Astrophys. 563, L10 (2014).

    ADS  Google Scholar 

  72. 72

    Jones, D., Van Winckel, H., Aller, A., Exter, K. & De Marco, O. The long-period binary central stars of the planetary nebulae NGC 1514 and LoTr 5. Astron. Astrophys. 600, L9 (2017).

    ADS  Google Scholar 

  73. 73

    De Marco, O., Bond, H. E., Harmer, D. & Fleming, A. J. Indications of a large fraction of spectroscopic binaries among nuclei of planetary nebulae. Astrophys. J. 602, 93–96 (2004).

    ADS  Google Scholar 

  74. 74

    De Marco, O., Passy, J.-C., Frew, D. J., Moe, M. & Jacoby, G. H. The binary fraction of planetary nebula central stars. I. A high-precision, I-band excess search. Mon. Not. R. Astron. Soc. 428, 2118–2140 (2013).

    ADS  Google Scholar 

  75. 75

    Douchin, D. et al. The binary fraction of planetary nebula central stars. II. A larger sample and improved technique for the infrared excess search. Mon. Not. R. Astron. Soc. 448, 3132–3155 (2015).

    ADS  Google Scholar 

  76. 76

    Moe, M. & De Marco, O. Do most planetary nebulae derive from binaries? I. Population synthesis model of the galactic planetary nebula population produced by single stars and binaries. Astrophys. J. 650, 916–932 (2006).

    ADS  Google Scholar 

  77. 77

    Wilson, R. E. & Devinney, E. J. Realization of accurate close-binary light curves: Application to MR Cygni. Astrophys. J. 166, 605–619 (1971).

    ADS  Google Scholar 

  78. 78

    Hillwig, T. C., Bond, H. E., Frew, D. J., Schaub, S. C. & Bodman, E. H. L. Binary central stars of planetary nebulae discovered through photometric variability. IV. The central stars of HaTr 4 and Hf 2–2. Astron. J. 152, 34 (2016).

    ADS  Google Scholar 

  79. 79

    Prialnik, D. & Livio, M. The outcome of accretion on to a fully convective star expansion or contraction? Mon. Not. R. Astron. Soc. 216, 37–52 (1985).

    ADS  Google Scholar 

  80. 80

    Miszalski, B., Boffin, H. M. J. & Corradi, R. L. M. A carbon dwarf wearing a Necklace: First proof of accretion in a post-common-envelope binary central star of a planetary nebula with jets. Mon. Not. R. Astron. Soc. 428, L39–L43 (2013).

    ADS  Google Scholar 

  81. 81

    Jones, D., Santander-García, M., Boffin, H. M. J., Miszalski, B. & Corradi, R. L. M. The morpho-kinematics of planetary nebulae with binary central stars. In Asymmetrical Planetary Nebulae VI Conf. 43 (Universidad Nacional Autónoma de México, 2014).

    Google Scholar 

  82. 82

    Huggins, P. J. Jets and tori in proto-planetary nebulae. Astrophys. J. 663, 342–349 (2007).

    ADS  Google Scholar 

  83. 83

    Soker, N. & Livio, M. Disks and jets in planetary nebulae. Astrophys. J. 421, 219–224 (1994).

    ADS  Google Scholar 

  84. 84

    Huggins, P. J. Jet power in pre-planetary nebulae: Observations vs. theory. In IAU Symposium Vol. 283 188–191 (2012).

    ADS  Google Scholar 

  85. 85

    Kwok, S. Morphological structures of planetary nebulae. Pub. Astron. Soc. Australia 27, 174–179 (2010).

    ADS  Google Scholar 

  86. 86

    García-Díaz, M. T., Clark, D. M., López, J. A., Steffen, W. & Richer, M. G. The outflows and three-dimensional structure of NGC 6337: A planetary nebula with a close binary nucleus. Astrophys. J. 699, 1633–1638 (2009).

    ADS  Google Scholar 

  87. 87

    Jones, D. et al. Abell 41: Shaping of a planetary nebula by a binary central star. Mon. Not. R. Astron. Soc. 408, 2312–2318 (2010).

    ADS  Google Scholar 

  88. 88

    Jones, D. et al. The morphology and kinematics of the Fine Ring Nebula, planetary nebula Sp 1, and the shaping influence of its binary central star. Mon. Not. R. Astron. Soc. 420, 2271–2279 (2012).

    ADS  Google Scholar 

  89. 89

    Huckvale, L. et al. Spatio-kinematic modelling of Abell 65, a double-shelled planetary nebula with a binary central star. Mon. Not. R. Astron. Soc. 434, 1505–1512 (2013).

    ADS  Google Scholar 

  90. 90

    Liu, X.-W., Barlow, M. J., Zhang, Y., Bastin, R. J. & Storey, P. J. Chemical abundances for Hf 2–2, a planetary nebula with the strongest-known heavy-element recombination lines. Mon. Not. R. Astron. Soc. 368, 1959–1970 (2006).

    ADS  Google Scholar 

  91. 91

    Jones, D., Wesson, R., García-Rojas, J., Corradi, R. L. M. & Boffin, H. M. J. NGC 6778: Strengthening the link between extreme abundance discrepancy factors and central star binarity in planetary nebulae. Mon. Not. R. Astron. Soc. 455, 3263–3272 (2016).

    ADS  Google Scholar 

  92. 92

    Wesson, R., Jones, D., García-Rojas, J., Corradi, R. L. M. & Boffin, H. M. J. Close binary central stars and the abundance discrepancy — new extreme objects. Preprint at (2016).

  93. 93

    García-Rojas, J. et al. Imaging the elusive H-poor gas in the high ADF planetary nebula NGC 6778. Astrophys. J. Lett. 824, L27 (2016).

    ADS  Google Scholar 

  94. 94

    García-Rojas, J. et al. Imaging the elusive H-poor gas in planetary nebulae with large abundance discrepancy factors. Preprint at (2016).

  95. 95

    Richer, M. G., Suárez, G., López, J. A. & García Díaz, M. T. The kinematics of the permitted C ii λ 6578 line in a large sample of planetary nebulae. Astron. J. 153, 140 (2017).

    ADS  Google Scholar 

  96. 96

    Corradi, R. L. M. et al. The planetary nebula IPHASXJ211420.0+434136 (Ou5): Insights into common-envelope dynamical and chemical evolution. Mon. Not. R. Astron. Soc. 441, 2799–2808 (2014).

    ADS  Google Scholar 

  97. 97

    Hillwig, T. C., Bond, H. E., Afşar, M. & De Marco, O. Binary central stars of planetary nebulae discovered through photometric variability. II. Modeling the central stars of NGC6026 and NGC6337. Astron. J. 140, 319–327 (2010).

    ADS  Google Scholar 

  98. 98

    Hillwig, T. C. The physical characteristics of binary central stars of planetary nebulae. In Asymmetric Planetary Nebulae 5 Conf. (eds Zijlstra, A. A., Lykou, F., McDonald, I. & Lagadec, E. ) (Ebrary, 2011).

    Google Scholar 

  99. 99

    Miszalski, B. et al. SALT HRS discovery of a long period double-degenerate binary in the planetary nebula NGC 1360. Preprint at (2017).

  100. 100

    Tovmassian, G. H. et al. A close binary nucleus in the most oxygen-poor planetary nebulae PN G135.9+55.9. Astrophys. J. 616, 485–497 (2004).

    ADS  Google Scholar 

  101. 101

    Santander-García, M. et al. The double-degenerate, super-Chandrasekhar nucleus of the planetary nebula Henize 2–428 Nature 519, 63–65 (2015).

    ADS  Google Scholar 

  102. 102

    Ressler, M. E. et al. The discovery of infrared rings in the planetary nebula NGC 1514 during the WISE all-sky survey. Astron. J. 140, 1882–1890 (2010).

    ADS  Google Scholar 

  103. 103

    Cox, A. N. Allen's Astrophysical Quantities 4th edn (Springer, 2000).

    Google Scholar 

Download references


This work makes use of data obtained from the Isaac Newton Group of Telescopes Archive, which is maintained as part of the CASU Astronomical Data Centre at the Institute of Astronomy, Cambridge. D.J. would like to thank F. Jiménez Luján, P. Jones Jiménez and D. Jones Jiménez.

Author information



Corresponding author

Correspondence to David Jones.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Jones, D., Boffin, H. Binary stars as the key to understanding planetary nebulae. Nat Astron 1, 0117 (2017).

Download citation

Further reading


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing