A solar-type star polluted by calcium-rich supernova ejecta inside the supernova remnant RCW 86


When a massive star in a binary system explodes as a supernova, its companion star may be polluted with heavy elements from the supernova ejecta. Such pollution has been detected in a handful of post-supernova binaries1, but none of them is associated with a supernova remnant. We report the discovery of a binary G star strongly polluted with calcium and other elements at the position of the candidate neutron star [GV2003] N within the young galactic supernova remnant RCW 86. Our discovery suggests that the progenitor of the supernova that produced RCW 86 could have been a moving star, which exploded near the edge of its wind bubble and lost most of its initial mass because of common-envelope evolution shortly before core collapse, and that the supernova explosion might belong to the class of calcium-rich supernovae — faint and fast transients2,3, the origin of which is strongly debated46.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: SNR RCW 86 and [GV2003] N.
Figure 2: Keplerian fits to the measured radial velocities for different orbital periods and eccentricities.
Figure 3: Portion of the VLT/FORS2 spectrum of the optical counterpart of [GV2003] N.
Figure 4: Elemental abundances of the optical counterpart of [GV2003] N.


  1. 1

    González Hernández, J. I. et al. Chemical abundances of the secondary star in the black hole X-ray binary V404 Cygni. Astrophys. J. 738, 95 (2011).

    ADS  Article  Google Scholar 

  2. 2

    Perets, H. B. et al. A faint type of supernova from a white dwarf with a helium-rich companion. Nature 465, 322–325 (2010).

    ADS  Article  Google Scholar 

  3. 3

    Kasliwal, M. M. et al. Calcium-rich gap transients in the remote outskirts of galaxies. Astrophys. J. 755, 161 (2012).

    ADS  Article  Google Scholar 

  4. 4

    Kawabata, K. S. et al. A massive star origin for an unusual helium-rich supernova in an elliptical galaxy. Nature 465, 326–328 (2010).

    ADS  Article  Google Scholar 

  5. 5

    Waldman, R. et al. Helium shell detonations on low-mass white dwarfs as a possible explanation for SN 2005E. Astrophys. J. 738, 21 (2011).

    ADS  Article  Google Scholar 

  6. 6

    Moriya, T. J. et al. Light-curve and spectral properties of ultra-stripped core-collapse supernovae leading to binary neutron stars. Mon. Not. R. Astron. Soc. 466, 2085–2098 (2017).

    ADS  Article  Google Scholar 

  7. 7

    Sana, H. et al. Binary interaction dominates the evolution of massive stars. Science 337, 444–446 (2012).

    ADS  Article  Google Scholar 

  8. 8

    Chini, R., Hoffmeister, V. H., Nasseri, A., Stahl, O. & Zinnecker, H. A spectroscopic survey on the multiplicity of high-mass stars. Mon. Not. R. Astron. Soc. 424, 1925–1929 (2012).

    ADS  Article  Google Scholar 

  9. 9

    Langer, N. Presupernova evolution of massive single and binary stars. Annu. Rev. Astron. Astrophys. 50, 107–164 (2012).

    ADS  Article  Google Scholar 

  10. 10

    Podsiadlowski, P., Joss, P. C. & Hsu, J. J. L. Presupernova evolution in massive interacting binaries. Astrophys. J. 391, 246–264 (1992).

    ADS  Article  Google Scholar 

  11. 11

    Lyman, J. et al. Bolometric light curves and explosion parameters of 38 stripped-envelope core-collapse supernovae. Mon. Not. R. Astron. Soc. 457, 328–350 (2016).

    ADS  Article  Google Scholar 

  12. 12

    Bhadkamkar, H. & Ghosh, P. Young pre-low-mass X-ray binaries in the propeller phase. Nature of the 6.7-h periodic X-ray source 1E 161348–5055 in RCW 103. Astron. Astrophys. 506, 1297–1307 (2009).

    ADS  Article  Google Scholar 

  13. 13

    Heinz, S. et al. The youngest known X-ray binary: Circinus X-1 and its natal supernova remnant. Astrophys. J. 779, 171 (2013).

    ADS  Article  Google Scholar 

  14. 14

    Dickel, J. R., Strom, R. G. & Milne D. K. The radio structure of the supernova remnant G315.4–2.3 (MSH 14-63). Astrophys. J. 546, 447–454 (2001).

    ADS  Article  Google Scholar 

  15. 15

    Smith, R. C. The discovery of Balmer-filaments encircling SNR RCW 86. Astron. J. 114, 2664–2670 (1997).

    ADS  Article  Google Scholar 

  16. 16

    Gvaramadze, V. V. & Vikhlinin, A. A. Point X-ray sources in the SNR G315.4−2.30 (MSH 14-63, RCW 86). Astron. Astrophys. 401, 625–630 (2003).

    ADS  Article  Google Scholar 

  17. 17

    Mignani, R. P., Tiengo, A. & de Luca, A. Optical and X-ray observations of candidate isolated neutron stars in the G315.4–2.3 supernova remnant. Mon. Not. R. Astron. Soc. 425, 2309–2312 (2012).

    ADS  Article  Google Scholar 

  18. 18

    Sollerman, J., Ghavamian, P., Lundqvist, P. & Smith, R. C. High resolution spectroscopy of Balmer-dominated shocks in the RCW 86, Kepler and SN 1006 supernova remnants. Astron. Astrophys. 407, 249–257 (2003).

    ADS  Article  Google Scholar 

  19. 19

    Güdel, M. X-ray astronomy of stellar coronae. Astron. Astrophys. Rev. 12, 71–237 (2004).

    ADS  Article  Google Scholar 

  20. 20

    Asplund, M., Grevesse, N., Sauval, A. J. & Scott P. The chemical composition of the Sun. Annu. Rev. Astron. Astrophys. 47, 481–522 (2009).

    ADS  Article  Google Scholar 

  21. 21

    Pecaut, M. J. & Mamajek, E. E. Intrinsic colors, temperatures, and bolometric corrections of pre-main-sequence stars. Astrophys. J. Suppl. 208, 9 (2013).

    ADS  Article  Google Scholar 

  22. 22

    Tognelli, E., Prada Moroni, P. G. & Degl’Innocenti, S. The Pisa pre-main sequence tracks and isochrones. A database covering a wide range of Z, Y, mass, and age values. Astron. Astrophys. 533, A109 (2011).

    ADS  Article  Google Scholar 

  23. 23

    Hills, J. G. The effects of sudden mass loss and a random kick velocity produced in a supernova explosion on the dynamics of a binary star of arbitrary orbital eccentricity — applications to X-ray binaries and to the binary pulsars. Astrophys. J. 267, 322–333 (1983).

    ADS  Article  Google Scholar 

  24. 24

    Tutukov, A. & Yungelson, L. Evolution of massive close binaries. Nauchnye Informatsii 27, 70–85 (1973).

    ADS  Google Scholar 

  25. 25

    D’Antona, F. & Mazzitelli, I. New pre-main-sequence tracks for M less than or equal to 2.5 solar mass as tests of opacities and convection model. Astrophys. J. Suppl. 90, 467–500 (1994).

    ADS  Article  Google Scholar 

  26. 26

    Sukhbold, T., Ertl, T., Woosley, S. E., Brown, J. & Janka, H.-T. Core-collapse supernovae from 9 to 120 solar masses based on neutrino-powered explosions. Astrophys. J. 821, 38 (2016).

    ADS  Article  Google Scholar 

  27. 27

    Gvaramadze, V. V. On the origin of two-shell supernova remnants. UV Astronomy: Stars from Birth to Death (eds Gomez de Castro, A. I. & Barstow, M. A. ) 205–210 (2007).

    Google Scholar 

  28. 28

    Krause, O. et al. The Cassiopeia A supernova was of type IIb. Science 320, 1195–1197 (2008).

    ADS  Article  Google Scholar 

  29. 29

    Krause, O. et al. Tycho Brahe’s 1572 supernova as a standard type Ia as revealed by its light-echo spectrum. Nature 456, 617–619 (2008).

    ADS  Article  Google Scholar 

  30. 30

    Taylor, J. H. A sensitive method for detecting dispersed radio emission. Astron. Astrophys. Suppl. 15, 367–369 (1974).

    ADS  Google Scholar 

  31. 31

    Manchester, R. N. et al. The Parkes multi-beam pulsar survey. I. Observing and data analysis systems, discovery and timing of 100 pulsars. Mon. Not. R. Astron. Soc. 328, 17–35 (2001).

    ADS  Article  Google Scholar 

  32. 32

    Appenzeller, I. et al. Successful commissioning of FORS1 — the first optical instrument on the VLT. Messenger 94, 1–6 (1998).

    ADS  Google Scholar 

  33. 33

    Tody, D. in Astronomical Data Analysis Software and Systems II (eds Hanisch, R. J., Brissenden, R. J. V. & Barnes, J. ) 173–183 (ASP Conf. Ser. 52, 1993).

    Google Scholar 

  34. 34

    Greiner, J. et al. GROND — a 7-channel imager. Publ. Astron. Soc. Pac. 120, 405–424 (2008).

    ADS  Article  Google Scholar 

  35. 35

    Krühler, T. et al. The 2175 Å feature in a gamma-ray burst afterglow at redshift 2.45. Astrophys. J. 685, 376–383 (2008).

    ADS  Article  Google Scholar 

  36. 36

    Aihara, H. et al. The eighth data release of the Sloan Digital Sky Survey: first data from SDSS-III. Astrophys. J. Suppl. 193, 29 (2011).

    ADS  Article  Google Scholar 

  37. 37

    Skrutskie, M. F. et al. The Two Micron All Sky Survey (2MASS). Astron. J. 131, 1163–1183 (2006).

    ADS  Article  Google Scholar 

  38. 38

    Arnouts, S. & Ilbert, O. Le PHARE: Photometric Analysis for Redshift Estimate (2014); http://www.cfht.hawaii.edu/~arnouts/LEPHARE/lephare.html

  39. 39

    Hauschildt, P. H., Allard, F. & Baron E. The NextGen model atmosphere grid for 3000 ≤ T eff ≤ 10,000 K. Astrophys. J. 512, 377–385 (1999).

    ADS  Article  Google Scholar 

  40. 40

    Bagnulo, S., Landstreet, J. D., Fossati, L. & Kochukhov, O. Magnetic field measurements and their uncertainties: the FORS1 legacy. Astron. Astrophys. 538, A129 (2012).

    ADS  Article  Google Scholar 

  41. 41

    Kochukhov, O., Makaganiuk, V. & Piskunov, N. Least-squares deconvolution of the stellar intensity and polarization spectra. Astron. Astrophys. 524, A5 (2010).

    ADS  Article  Google Scholar 

  42. 42

    Piskunov, N. E., Kupka, F., Ryabchikova, T. A., Weiss, W. W. & Jeffery, C. S. VALD: The Vienna Atomic Line Database. Astron. Astrophys. Suppl. 112, 525–535 (1995).

    ADS  Google Scholar 

  43. 43

    Iglesias-Marzoa, R., López-Morales, M. & Jesús Arévalo Morales, M. The rvfit code: a detailed adaptive simulated annealing code for fitting binaries and exoplanets radial velocities. Publ. Astron. Soc. Pac. 127, 567–582 (2015).

    ADS  Article  Google Scholar 

  44. 44

    Kochukhov, O. in Physics of Magnetic Stars (eds Romanyuk, I. I. & Kudryavtsev, D. O. ) 109–118 (2007).

    Google Scholar 

  45. 45

    Shulyak, D., Tsymbal, V., Ryabchikova, T., Stütz, C. & Weiss, W. W. Line-by-line opacity stellar model atmospheres. Astron. Astrophys. 428, 993–1000 (2004).

    ADS  Article  Google Scholar 

  46. 46

    Bruntt, H. et al. Accurate fundamental parameters for 23 bright solar-type stars. Mon. Not. R. Astron. Soc. 405, 1907–1923 (2010).

    ADS  Google Scholar 

  47. 47

    Fuhrmann, K., Axer, M. & Gehren, T. Balmer lines in cool dwarf stars. 1. Basic influence of atmospheric models. Astron. Astrophys. 271, 451–462 (1993).

    ADS  Google Scholar 

  48. 48

    Fossati, L. et al. Late stages of the evolution of A-type stars on the main sequence: comparison between observed chemical abundances and diffusion models for 8 Am stars of the Praesepe cluster. Astron. Astrophys. 476, 911–925 (2007).

    ADS  Article  Google Scholar 

  49. 49

    Fossati, L. et al. The chemical abundance analysis of normal early A- and late B-type stars. Astron. Astrophys. 503, 945–962 (2009).

    ADS  Article  Google Scholar 

  50. 50

    Whiteoak, J. B. Z. & Green, A. J. The MOST supernova remnant catalogue (MSC). Astron. Astrophys. Suppl. 118, 329–380 (1996).

    ADS  Article  Google Scholar 

Download references


This work is based on observations collected at the European Southern Observatory, Chile, under programmes 095.D-0061 and 385.D-0198(A). V.V.G. thanks M. G. Revnivtsev (who passed away in November 2016) and M. R. Gilfanov for discussions and acknowledges support from the Russian Science Foundation grant 14-12-01096. This research was supported in part by the National Science Foundation under Grant No. NSF PHY11-25915.

Author information




V.V.G. and N.L. led the project and the manuscript writing. V.V.G., N.L., L.F. and D.C.-J.B. wrote the telescope proposals. L.F. reduced the VLT/FORS2 spectra, performed the spectral analysis and analysed the radial velocity measurements. S.J. and D.C.-J.B performed and analysed the radio observations. I.Y.G. performed the PSF photometry. J.G. and A.R. performed the GROND observations and the SED fitting. N.C. performed part of the absolute wavelength calibration of the VLT/FORS2 spectra and worked on the removal of the spatially variable Hα emission. T.M.T. performed the Monte Carlo simulations of supernova explosions in binary systems. Figures were prepared by V.V.G., N.L., L.F., A.R. and T.M.T. All authors contributed to the interpretation of the data and commented on the manuscript.

Corresponding authors

Correspondence to Vasilii V. Gvaramadze or Norbert Langer.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary Sections 1–4, Supplementary References, Supplementary Figures 1–3 and Supplementary Tables 1–2. (PDF 277 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Gvaramadze, V., Langer, N., Fossati, L. et al. A solar-type star polluted by calcium-rich supernova ejecta inside the supernova remnant RCW 86. Nat Astron 1, 0116 (2017). https://doi.org/10.1038/s41550-017-0116

Download citation

Further reading


Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing