Article

Bubble streams in Titan’s seas as a product of liquid N2 + CH4 + C2H6 cryogenic mixture

  • Nature Astronomy 1, Article number: 0102 (2017)
  • doi:10.1038/s41550-017-0102
  • Download Citation
Received:
Accepted:
Published online:

Abstract

Titan, Saturn’s largest moon, is the only extraterrestrial body known to support stable liquid on its surface, in the form of seas and lakes that dot the polar regions. Many indications suggest that the liquid should be composed of a mixture of nitrogen, methane and ethane. Recent observations by Cassini’s Radio Detection and Ranging (RADAR) instrument of Titan’s large sea, called Ligeia Mare, have shown unexplained and ephemeral bright features, possibly due to rising bubbles. Here we report that our numerical model, when combined with experimental data found in the literature, shows that Ligeia Mare’s bed is a favourable place for nitrogen exsolution. This process could produce centimetre-sized and RADAR-detectable bubbles.

  • Subscribe to Nature Astronomy for full access:

    $99

    Subscribe

Additional access options:

Already a subscriber?  Log in  now or  Register  for online access.

References

  1. 1.

    , & Photochemistry of the atmosphere of Titan. Comparison between model and observations. Astrophys. J. Suppl. Ser. 55, 465–506 (1984).

  2. 2.

    A photochemical model of Titan’s atmosphere and ionosphere. Icarus 201, 226–256 (2009).

  3. 3.

    Oceans on Titan? Science 221, 55–57 (1983).

  4. 4.

    , & Ethane ocean on Titan. Science 222, 1229–1230 (1983).

  5. 5.

    et al. The lakes of Titan. Nature 445, 61–64 (2007).

  6. 6.

    , , , & An estimate of the chemical composition of Titan’s lakes. Astrophys. J. Lett. 707, L128–L131 (2009).

  7. 7.

    , & Titan’s atmosphere and surface liquid: new calculation using statistical associating fluid theory. Icarus 222, 53–72 (2013).

  8. 8.

    et al. The identification of liquid ethane in Titan’s Ontario Lacus. Nature 454, 607–610 (2008).

  9. 9.

    et al. Surface of Ligeia Mare, Titan, from Cassini altimeter and radiometer analysis. Geophys. Res. Lett. 41, 308–313 (2014).

  10. 10.

    et al. Transient features in a Titan sea. Nat. Geosci. 7, 493–496 (2014).

  11. 11.

    et al. Titan’s ‘Magic Islands’: transient features in a hydrocarbon sea. Icarus 271, 338–349 (2016).

  12. 12.

    , , & VLL equilibria and critical end points calculation of nitrogen-containing LNG systems: application of SRK and PC-SAFT equations of state. Ind. Eng. Chem. Res. 51, 9409–9418 (2012).

  13. 13.

    , & Liquid phase inversion. Nature 225, 1128–1129 (1970).

  14. 14.

    A Study of Liquid–Liquid–Vapor Equilibria at Low Temperatures. PhD thesis, Univ. Ottawa (1972).

  15. 15.

    , & Three-phase liquid–liquid–vapor equilibria in the methane + n-butane + nitrogen system. Adv. Cryog. Eng. 29, 949–955 (1984).

  16. 16.

    , & Three-phase liquid–liquid–vapor equilibria in the nitrogen + methane + ethane and nitrogen + propane systems. J. Chem. Eng. Data 32, 14–17 (1987).

  17. 17.

    et al. In situ measurements of the physical characteristics of Titan’s environment. Nature 438, 785–791 (2005).

  18. 18.

    et al. Surface temperatures on Titan during northern winter and spring. Astrophys. J. 816, L17 (2016).

  19. 19.

    et al. Composition, seasonal change, and bathymetry of Ligeia Mare, Titan, derived from its microwave thermal emission. J. Geophys. Res. (Planets) 121, 233–251 (2016).

  20. 20.

    & Sun-stirred Kraken Mare: circulation in Titan’s seas induced by solar heating and methane precipitation. Icarus 270, 67–84 (2016).

  21. 21.

    Limnological structure of Titan’s hydrocarbon lakes and its astrobiological implication. Astrobiology 9, 147–164 (2009).

  22. 22.

    et al. The bathymetry of a Titan sea. Geophys. Res. Lett. 41, 1432–1437 (2014).

  23. 23.

    The lakes and seas of Titan. Annu. Rev. Earth Planet. Sci. 44, 57–83 (2016).

  24. 24.

    & Thermophysical properties of fluids. II. Methane, ethane, propane, isobutane, and normal butane. J. Phys. Chem. Ref. Data 16, 577–798 (1987).

  25. 25.

    CRC Handbook of Chemistry and Physics (ed. Lide, D. P. ) (CRC, 1974).

  26. 26.

    & Perturbed-chain SAFT: an equation of state based on a perturbation theory for chain molecules. Ind. Eng. Chem. Res. 40, 1244–1260 (2001).

  27. 27.

    , & Numerical simulation of tides and oceanic angular momentum of Titan’s hydrocarbon seas. Icarus 242, 188–201 (2014).

  28. 28.

    , & Bubbles, Drops and Particles (Academic, 1978).

  29. 29.

    et al. Radar-bright channels on Titan. Icarus 207, 948–958 (2010).

  30. 30.

    et al. Structure of Titan’s evaporites. Icarus 270, 41–56 (2016).

  31. 31.

    et al. Exploring the depths of Kraken Mare — power, thermal analysis, and ballast control for the Saturn Titan submarine. Cryogenics 74, 31–46 (2016).

  32. 32.

    et al. Titan submarine: vehicle design and operations concept for the exploration of the hydrocarbon seas of Saturn’s giant moon. In Lunar and Planetary Science Conference, Lunar and Planetary Institute Technical Report 46, 1259 (2015).

  33. 33.

    et al. Fitting nitrogen solubility lab data for modeling Titan’s lakes and seas. In Lunar and Planetary Science Conference, Lunar and Planetary Institute Technical Report 47, 2292 (2016).

  34. 34.

    , , , & Experimental study of the effects of freezing on liquid hydrocarbons on the surface of Titan. In Lunar and Planetary Science Conference, Lunar and Planetary Institute Technical Report 48, 1974 (2017).

  35. 35.

    & Applications of the augmented van der Waals theory of fluids. I. Pure fluids. Ber. Bunsenges. Phys. Chem. 81, 1048–1052 (1977).

  36. 36.

    , , & Vapor–liquid equilibria of nitrogen-hydrocarbon systems using the PC-SAFT equation of state. Fluid Phase Equilib. 217, 241–253 (2004).

  37. 37.

    , , & Calculation of critical points for multicomponent mixtures containing hydrocarbon and nonhydrocarbon components with the PC-SAFT equation of state. Fluid Phase Equilib. 265, 192–204 (2008).

  38. 38.

    , , & Modeling of the multiphase behavior of nitrogen-containing systems at low temperatures with equations of state. J. Chem. Eng. Data 54, 2689–2695 (2009).

Download references

Author information

Affiliations

  1. Groupe de Spectrométrie Moléculaire et Atmosphérique — UMR CNRS 7331 Campus Moulin de la Housse — BP 1039, Université de Reims Champagne-Ardenne 51687 Reims, France.

    • Daniel Cordier
    •  & Gérard Liger-Belair
  2. Engineering Management of Additional Recovery, Mexican Petroleum Institute, Eje Central Lázaro Cárdenas Norte 152, 07730 Mexico City, Mexico.

    • Fernando García-Sánchez
  3. Department of Chemical and Petroleum Engineering, ESIQIE, National Polytechnic Institute. Unidad Profesional Adolfo López Mateos, 07738 Mexico City, Mexico.

    • Daimler N. Justo-García

Authors

  1. Search for Daniel Cordier in:

  2. Search for Fernando García-Sánchez in:

  3. Search for Daimler N. Justo-García in:

  4. Search for Gérard Liger-Belair in:

Contributions

D.C. wrote the paper and performed PC-SAFT computations, F.G.-S. and D.N.J.-G. made the stability analysis of the N2 + CH4 + C2H6 mixtures, and G.L.-B. provided expertise on the physics of bubbles and effervescence.

Competing interests

The authors declare no competing financial interests.

Corresponding author

Correspondence to Daniel Cordier.

Supplementary information

PDF files

  1. 1.

    Supplementary Information

    Supplementary Tables 1–3