Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

High-resolution observations of flare precursors in the low solar atmosphere


Solar flares are generally believed to be powered by free magnetic energy stored in the corona1, but the build up of coronal energy alone may be insufficient to trigger the flare to occur2. The flare onset mechanism is a critical but poorly understood problem, insights into which could be gained from small-scale energy releases known as precursors. These precursors are observed as small pre-flare brightenings in various wavelengths313 and also from certain small-scale magnetic configurations such as opposite-polarity fluxes1416, where the magnetic orientation of small bipoles is opposite to that of the ambient main polarities. However, high-resolution observations of flare precursors together with the associated photospheric magnetic field dynamics are lacking. Here we study precursors of a flare using the unprecedented spatiotemporal resolution of the 1.6-m New Solar Telescope, complemented by new microwave data. Two episodes of precursor brightenings are initiated at a small-scale magnetic channel1720 (a form of opposite-polarity flux) with multiple polarity inversions and enhanced magnetic fluxes and currents, lying near the footpoints of sheared magnetic loops. Microwave spectra corroborate that these precursor emissions originate in the atmosphere. These results provide evidence of low-atmospheric small-scale energy release, possibly linked to the onset of the main flare.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: Precursor brightenings.
Figure 2: Magnetic field structure and evolution.
Figure 3: Properties of magnetic channel region.
Figure 4: Microwave emission.


  1. 1

    Priest, E. R. & Forbes, T. G. The magnetic nature of solar flares. Astron. Astrophys. Rev. 10, 313–377 (2002).

    ADS  Article  Google Scholar 

  2. 2

    Benz, A. O. Flare observations. Living Rev. Sol. Phys. 5, 1 (2008).

    ADS  Article  Google Scholar 

  3. 3

    Bumba, V. & Křivský, L. Chromospheric pre-flares. Bull. Astron. Inst. Czech 10, 221–223 (1959).

    ADS  Google Scholar 

  4. 4

    Martin, S. F. Preflare conditions, changes and events. Sol. Phys. 68, 217–236 (1980).

    ADS  Article  Google Scholar 

  5. 5

    van Hoven, G. & Hurford, G. J. Solar flare precursors. Adv. Space Res. 6, 83–91 (1986).

    ADS  Article  Google Scholar 

  6. 6

    Kai, K., Nakajima, H. & Kosugi, T. Radio observations of small activity prior to main energy release in solar flares. Publ. Astron. Soc. Jpn 35, 285–297 (1983).

    ADS  Google Scholar 

  7. 7

    Warren, H. P. & Warshall, A. D. Ultraviolet flare ribbon brightenings and the onset of hard X-ray emission. Astrophys. J. Lett. 560, L87–L90 (2001).

    ADS  Article  Google Scholar 

  8. 8

    Asai, A. et al. Preflare nonthermal emission observed in microwaves and hard X-rays. Publ. Astron. Soc. Jpn 58, L1–L5 (2006).

    ADS  Article  Google Scholar 

  9. 9

    Chifor, C., Tripathi, D., Mason, H. E. & Dennis, B. R. X-ray precursors to flares and filament eruptions. Astron. Astrophys. 472, 967–979 (2007).

    ADS  Article  Google Scholar 

  10. 10

    Battaglia, M., Fletcher, L. & Benz, A. O. Observations of conduction driven evaporation in the early rise phase of solar flares. Astron. Astrophys. 498, 891–900 (2009).

    ADS  Article  Google Scholar 

  11. 11

    Altyntsev, A. A., Fleishman, G. D., Lesovoi, S. V. & Meshalkina, N. S. Thermal to nonthermal energy partition at the early rise phase of solar flares. Astrophys. J. 758, 138 (2012).

    ADS  Article  Google Scholar 

  12. 12

    Fleishman, G. D., Nita, G. M. & Gary, D. E. Energy partitions and evolution in a purely thermal solar flare. Astrophys. J. 802, 122 (2015).

    ADS  Article  Google Scholar 

  13. 13

    Zhang, Y. et al. Solar radio bursts with spectral fine structures in preflares. Astrophys. J. 799, 30 (2015).

    ADS  Article  Google Scholar 

  14. 14

    Kusano, K. et al. Magnetic field structures triggering solar flares and coronal mass ejections. Astrophys. J. 760, 31 (2012).

    ADS  Article  Google Scholar 

  15. 15

    Toriumi, S. et al. The magnetic systems triggering the M6.6 class solar flare in NOAA active region 11158. Astrophys. J. 773, 128 (2013).

    ADS  Article  Google Scholar 

  16. 16

    Bamba, Y., Kusano, K., Yamamoto, T. T. & Okamoto, T. J. Study on the triggering process of solar flares based on Hinode/SOT observations. Astrophys. J. 778, 48 (2013).

    ADS  Article  Google Scholar 

  17. 17

    Zirin, H. & Wang, H. Narrow lanes of transverse magnetic field in sunspots. Nature 363, 426–428 (1993).

    ADS  Article  Google Scholar 

  18. 18

    Kubo, M. et al. Hinode observations of a vector magnetic field change associated with a flare on 2006 December 13. Publ. Astron. Soc. Jpn 59, S779–S784 (2007).

    Article  Google Scholar 

  19. 19

    Wang, H., Jing, J., Tan, C., Wiegelmann, T. & Kubo, M. Study of magnetic channel structure in active region 10930. Astrophys. J. 687, 658–667 (2008).

    ADS  Article  Google Scholar 

  20. 20

    Lim, E.-K., Chae, J., Jing, J., Wang, H. & Wiegelmann, T. The formation of a magnetic channel by the emergence of current-carrying magnetic fields. Astrophys. J. 719, 403–414 (2010).

    ADS  Article  Google Scholar 

  21. 21

    Goode, P. R., Coulter, R., Gorceix, N., Yurchyshyn, V. & Cao, W. The NST: first results and some lessons for ATST and EST. Astron. Nachr. 331, 620–623 (2010).

    ADS  Article  Google Scholar 

  22. 22

    Cao, W. et al. Scientific instrumentation for the 1.6 m New Solar Telescope in Big Bear. Astron. Nachr. 331, 636–639 (2010).

    ADS  Article  Google Scholar 

  23. 23

    Cao, W. et al. NIRIS: the second generation near-infrared imaging spectro-polarimeter for the 1.6 meter New Solar Telescope. Astron. Soc. Pacif. Conf. Series 463, 291–299 (2012).

    ADS  Google Scholar 

  24. 24

    Lin, R. P. et al. The Reuven Ramaty High-Energy Solar Spectroscopic Imager (RHESSI). Sol. Phys. 210, 3–32 (2002).

    ADS  Article  Google Scholar 

  25. 25

    Pesnell, W. D., Thompson, B. J. & Chamberlin, P. C. The Solar Dynamics Observatory (SDO). Sol. Phys. 275, 3–15 (2012).

    ADS  Article  Google Scholar 

  26. 26

    Kopp, R. A. & Pneuman, G. W. Magnetic reconnection in the corona and the loop prominence phenomenon. Sol. Phys. 50, 85–98 (1976).

    ADS  Article  Google Scholar 

  27. 27

    Janvier, M. et al. Electric currents in flare ribbons: observations and three-dimensional standard model. Astrophys. J. 788, 60 (2014).

    ADS  Article  Google Scholar 

  28. 28

    Fleishman, G. D., Nita, G. M., Kontar, E. P. & Gary, D. E. Narrowband gyrosynchrotron bursts: probing electron acceleration in solar flares. Astrophys. J. 826, 38 (2016).

    ADS  Article  Google Scholar 

  29. 29

    Stahli, M., Gary, D. E. & Hurford, G. J. High-resolution microwave spectra of solar bursts. Sol. Phys. 120, 351–368 (1989).

    ADS  Article  Google Scholar 

  30. 30

    Ahn, K., Cao, W., Shumko, S. & Chae, J. Data processing of the magnetograms for the Near InfraRed Imaging Spectropolarimeter at Big Bear Solar Observatory. Am. Astron. Soc. Sol. Phys. Div. Meeting 47, 2.07 (2016);

    Google Scholar 

  31. 31

    Tsuneta, S. et al. The Solar Optical Telescope for the Hinode mission: an overview. Sol. Phys. 249, 167–196 (2008).

    ADS  Article  Google Scholar 

  32. 32

    Schou, J. et al. Design and ground calibration of the Helioseismic and Magnetic Imager (HMI) instrument on the Solar Dynamics Observatory (SDO). Sol. Phys. 275, 229–259 (2012).

    ADS  Article  Google Scholar 

  33. 33

    Leka, K. D., Barnes, G. & Crouch, A. An automated ambiguity-resolution code for Hinode/SP vector magnetic field data. Astron. Soc. Pacif. Conf. Series 415, 365–368 (2009).

    ADS  Google Scholar 

  34. 34

    Metcalf, T. R. Resolving the 180-degree ambiguity in vector magnetic field measurements: the ‘minimum’ energy solution. Sol. Phys. 155, 235–242 (1994).

    ADS  Article  Google Scholar 

  35. 35

    Metcalf, T. R. et al. An overview of existing algorithms for resolving the 180° ambiguity in vector magnetic fields: quantitative tests with synthetic data. Sol. Phys. 237, 267–296 (2006).

    ADS  Article  Google Scholar 

  36. 36

    Gary, G. A. & Hagyard, M. J. Transformation of vector magnetograms and the problems associated with the effects of perspective and the azimuthal ambiguity. Sol. Phys. 126, 21–36 (1990).

    ADS  Article  Google Scholar 

  37. 37

    Wang, H., Ewell, M. W. Jr, Zirin, H. & Ai, G. Vector magnetic field changes associated with X-class flares. Astrophys. J. 424, 436–443 (1994).

    ADS  Article  Google Scholar 

  38. 38

    Wang, H. et al. The relationship between magnetic gradient and magnetic shear in five super active regions producing great flares. Chinese J. Astron. Astr. 6, 477–488 (2006).

    ADS  Article  Google Scholar 

  39. 39

    Metcalf, T. R. et al. Nonlinear force-free modeling of coronal magnetic fields. II. Modeling a filament arcade and simulated chromospheric and photospheric vector fields. Sol. Phys. 247, 269–299 (2008).

    ADS  Article  Google Scholar 

  40. 40

    Lemen, J. R. et al. The Atmospheric Imaging Assembly (AIA) on the Solar Dynamics Observatory (SDO). Sol. Phys. 275, 17–40 (2012).

    ADS  Article  Google Scholar 

  41. 41

    Gary, D. E. Early observations with the expanded Owens Valley Solar Array. Am. Astron. Soc. Sol. Phys. Div. Meeting 47, 301.01 (2016);

    ADS  Google Scholar 

  42. 42

    Fleishman, G. D. & Kuznetsov, A. A. Fast gyrosynchrotron codes. Astrophys. J. 721, 1127–1141 (2010).

    ADS  Article  Google Scholar 

  43. 43

    Fleishman, G. D., Nita, G. M. & Gary, D. E. Dynamic magnetography of solar flaring loops. Astrophys. J. Lett. 698, L183–L187 (2009).

    ADS  Article  Google Scholar 

  44. 44

    Wiegelmann, T., Inhester, B. & Sakurai, T. Preprocessing of vector magnetograph data for a nonlinear force-free magnetic field reconstruction. Sol. Phys. 233, 215–232 (2006).

    ADS  Article  Google Scholar 

  45. 45

    Wheatland, M. S., Sturrock, P. A. & Roumeliotis, G. An optimization approach to reconstructing force-free fields. Astrophys. J. 540, 1150–1155 (2000).

    ADS  Article  Google Scholar 

  46. 46

    Wiegelmann, T. Optimization code with weighting function for the reconstruction of coronal magnetic fields. Sol. Phys. 219, 87–108 (2004).

    ADS  Article  Google Scholar 

  47. 47

    Liu, R. et al. Structure, stability, and evolution of magnetic flux ropes from the perspective of magnetic twist. Astrophys. J. 818, 148 (2016).

    ADS  Article  Google Scholar 

Download references


We thank the BBSO, EOVSA, SDO, RHESSI, GOES and Hinode teams for obtaining the data. This work was supported by NASA under grants NNX13AF76G, NNX13AG13G, NNX14AC12G, NNX14AC87G, NNX16AL67G and NNX16AF72G, and by the NSF under grants AGS 1250374, 1262772, 1250818, 1348513, 1408703 and 1539791. R.L. acknowledges support from the Thousand Young Talents Program of China and NSFC 41474151. K.K. acknowledges support from MEXT/JSPS KAKENHI 15H05814. The BBSO operation is supported by NJIT, US NSF AGS 1250818 and NASA NNX13AG14G grants, and partly supported by the Korea Astronomy and Space Science Institute and Seoul National University and by the Chinese Academy of Science’s strategic priority research programme, Grant No. XDB09000000.

Author information




H.W. initiated the idea and carried out the data processing, analysis, interpretation and manuscript writing. C.L. contributed to the azimuth disambiguation of NIRIS data, data analysis and interpretation, and manuscript revision. K.A. developed tools for NIRIS data calibration, polarization inversion, and processed the NIRIS data. Y.X. was the Principal Investigator for this BBSO/NST observation run and contributed to the data processing. J.J. and N.D. contributed to the data analysis. N.H. contributed to this NST observation run. R.L. contributed to the NLFFF modelling and result interpretation. K.K. contributed to the interpretation of observations. G.D.F. and D.E.G. carried out the microwave data analysis and modelling. W.C. developed instruments at BBSO. All authors discussed the results and commented on the manuscript.

Corresponding authors

Correspondence to Haimin Wang or Wenda Cao.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Figures 1–4 (PDF 1558 kb)

Supplementary Video 1

Time sequence of BBSO/NST H+ 0.6 Å images. (MP4 2131 kb)

Supplementary Video 2

Time sequence of BBSO/NST NIRIS photospheric vertical magnetic field images. (MP4 2160 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Wang, H., Liu, C., Ahn, K. et al. High-resolution observations of flare precursors in the low solar atmosphere. Nat Astron 1, 0085 (2017).

Download citation

Further reading


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing