Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Rapid formation of massive black holes in close proximity to embryonic protogalaxies

Abstract

The appearance of supermassive black holes at very early times13 in the Universe is a challenge to our understanding of star and black hole formation. The direct-collapse4,5 black hole scenario provides a potential solution. A prerequisite for forming a direct-collapse black hole is that the formation of (much less massive) population III stars be avoided6,7; this can be achieved by destroying H2 by means of Lyman–Werner radiation (photons of energy around 12.6 eV). Here we show that two conditions must be met in the protogalaxy that will host the direct-collapse black hole. First, prior star formation must be delayed; this can be achieved with a background Lyman–Werner flux of JBG 100J21 (J21 is the intensity of background radiation in units of 10−21 erg cm−2 s−1 Hz−1 sr−1). Second, an intense burst of Lyman–Werner radiation from a neighbouring star-bursting protogalaxy is required, just before the gas cloud undergoes gravitational collapse, to suppress star formation completely. Using high-resolution hydrodynamical simulations that include full radiative transfer, we find that these two conditions inevitably move the host protogalaxy onto the isothermal atomic cooling track, without the deleterious effects of either photo-evaporating the gas or polluting it with heavy elements. These atomically cooled, massive protogalaxies are expected ultimately to form a direct-collapse black hole of mass 104−105M.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Modelling synchronized haloes.
Figure 2: Ray profiles for six selected haloes.
Figure 3: The synchronized halo zone.
Figure 4: Mass inflow rates.

Similar content being viewed by others

References

  1. Fan, X., Carilli, C. L. & Keating, B. Observational constraints on cosmic reionization. Annu. Rev. Astron. Astrophys. 44, 415–462 (2006).

    Google Scholar 

  2. Mortlock, D. J. et al. A luminous quasar at a redshift of z = 7.085. Nature 474, 616–619 (2011).

    Google Scholar 

  3. Wu, X.-B. et al. An ultraluminous quasar with a twelve-billion-solar-mass black hole at redshift 6.30. Nature 518, 512–515 (2015).

    Google Scholar 

  4. Loeb, A. & Rasio, F. A. Collapse of primordial gas clouds and the formation of quasar black holes. Astrophys. J. 432, 52–61 (1994).

    Google Scholar 

  5. Begelman, M. C., Volonteri, M. & Rees, M. J. Formation of supermassive black holes by direct collapse in pre-galactic haloes. Mon. Not. R. Astron. Soc. 370, 289–298 (2006).

    Google Scholar 

  6. Omukai, K. Primordial star formation under far-ultraviolet radiation. Astrophys. J. 546, 635–651 (2001).

    Google Scholar 

  7. Oh, S. P. & Haiman, Z. Second-generation objects in the universe: radiative cooling and collapse of halos with virial temperatures above 104 K. Astrophys. J. 569, 558–572 (2002).

    Google Scholar 

  8. Bryan, G. L. et al. Enzo: an adaptive mesh refinement code for astrophysics. Astrophys. J. Suppl. 211, 19 (2014).

    Google Scholar 

  9. Smith, B. D. et al. Grackle: a chemistry and cooling library for astrophysics. Preprint at https://arxiv.org/abs/1610.09591 (2016).

  10. Wise, J. H. & Abel, T. Enzo+Moray: radiation hydrodynamics adaptive mesh refinement simulations with adaptive ray tracing. Mon. Not. R. Astron. Soc. 414, 3458–3491 (2011).

    Google Scholar 

  11. Dijkstra, M., Haiman, Z., Mesinger, A. & Wyithe, J. S. B. Fluctuations in the high-redshift Lyman–Werner background: close halo pairs as the origin of supermassive black holes. Mon. Not. R. Astron. Soc. 391, 1961–1972 (2008).

    Google Scholar 

  12. Yue, B., Ferrara, A., Salvaterra, R., Xu, Y. & Chen, X. The brief era of direct collapse black hole formation. Mon. Not. R. Astron. Soc. 440, 1263–1273 (2014).

    Google Scholar 

  13. Agarwal, B., Davis, A. J., Khochfar, S., Natarajan, P. & Dunlop, J. S. Unravelling obese black holes in the first galaxies. Mon. Not. R. Astron. Soc. 432, 3438–3444 (2013).

    Google Scholar 

  14. Agarwal, B., Dalla Vecchia, C., Johnson, J. L., Khochfar, S. & Paardekooper, J.-P. The First Billion Years project: birthplaces of direct collapse black holes. Mon. Not. R. Astron. Soc. 443, 648–657 (2014).

    Google Scholar 

  15. Visbal, E., Haiman, Z. & Bryan, G. L. Direct collapse black hole formation from synchronized pairs of atomic cooling haloes. Mon. Not. R. Astron. Soc. 445, 1056–1063 (2014).

    Google Scholar 

  16. Smith, B. D., Wise, J. H., O’Shea, B. W., Norman, M. L. & Khochfar, S. The first Population II stars formed in externally enriched mini-haloes. Mon. Not. R. Astron. Soc. 452, 2822–2836 (2015).

    Google Scholar 

  17. Regan, J. A., Johansson, P. H. & Wise, J. H. Forming super-massive black hole seeds under the influence of a nearby anisotropic multi-frequency source. Mon. Not. R. Astron. Soc. 459, 3377–3394 (2016).

    Google Scholar 

  18. Xu, H., Wise, J. H. & Norman, M. L. Population III stars and remnants in high-redshift galaxies. Astrophys. J. 773, 83 (2013).

    Google Scholar 

  19. Chon, S., Hirano, S., Hosokawa, T. & Yoshida, N. Cosmological simulations of early black hole formation: halo mergers, tidal disruption, and the conditions for direct collapse. Astrophys. J. 832, 134 (2016).

    Google Scholar 

  20. Ahn, K., Shapiro, P. R., Iliev, I. T., Mellema, G. & Pen, U.-L. The inhomogeneous background of H2-dissociating radiation during cosmic reionization. Astrophys. J. 695, 1430–1445 (2009).

    Google Scholar 

  21. Dijkstra, M., Ferrara, A. & Mesinger, A. Feedback-regulated supermassive black hole seed formation. Mon. Not. R. Astron. Soc. 442, 2036–2047 (2014).

    Google Scholar 

  22. Pacucci, F., Ferrara, A., Volonteri, M. & Dubus, G. Shining in the dark: the spectral evolution of the first black holes. Mon. Not. R. Astron. Soc. 454, 3771–3777 (2015).

    Google Scholar 

  23. Natarajan, P. et al. Unveiling the first black holes with JWST: multi-wavelength spectral predictions. Preprint at http://arxiv.org/abs/1610.05312 (2016).

  24. Glover, S. C. O. Simulating the formation of massive seed black holes in the early Universe. I: An improved chemical model. Mon. Not. R. Astron. Soc. 451, 2082–2096 (2015).

    Google Scholar 

  25. Glover, S. C. O. Simulating the formation of massive seed black holes in the early Universe. II: Impact of rate coefficient uncertainties. Mon. Not. R. Astron. Soc. 453, 2901–2918 (2015).

    Google Scholar 

  26. Regan, J. A., Johansson, P. H. & Wise, J. H. The effect of dark matter resolution on the collapse of baryons in high-redshift numerical simulations. Mon. Not. R. Astron. Soc. 449, 3766–3779 (2015).

    Google Scholar 

  27. Hahn, O. & Abel, T. Multi-scale initial conditions for cosmological simulations. Mon. Not. R. Astron. Soc. 415, 2101–2121 (2011).

    Google Scholar 

  28. Kitsionas, S. & Whitworth, A. P. Smoothed particle hydrodynamics with particle splitting, applied to self-gravitating collapse. Mon. Not. R. Astron. Soc. 330, 129–136 (2002).

    Google Scholar 

  29. Shang, C., Bryan, G. L. & Haiman, Z. Supermassive black hole formation by direct collapse: keeping protogalactic gas H2 free in dark matter haloes with virial temperatures Tvir 104 K. Mon. Not. R. Astron. Soc. 402, 1249–1262 (2010).

    Google Scholar 

  30. Latif, M. A. et al. A UV flux constraint on the formation of direct collapse black holes. Mon. Not. R. Astron. Soc. 443, 1979–1987 (2014).

    Google Scholar 

  31. Latif, M. A., Schleicher, D. R. G., Bovino, S., Grassi, T. & Spaans, M. The formation of massive primordial stars in the presence of moderate UV backgrounds. Astrophys. J. 792, 78 (2014).

    Google Scholar 

  32. Agarwal, B. & Khochfar, S. Revised rate coefficients for H2 and H destruction by realistic stellar spectra. Mon. Not. R. Astron. Soc. 446, 160–168 (2015).

    Google Scholar 

  33. Wolcott-Green, J. & Haiman, Z. Feedback from the infrared background in the early Universe. Mon. Not. R. Astron. Soc. 425, L51–L55 (2012).

    Google Scholar 

  34. Wolcott-Green, J., Haiman, Z. & Bryan, G. L. Beyond Jcrit: a critical curve for suppression of H2-cooling in protogalaxies. Preprint at http://arxiv.org/abs/1609.02142 (2016).

  35. Machacek, M. E., Bryan, G. L. & Abel, T. Simulations of pregalactic structure formation with radiative feedback. Astrophys. J. 548, 509–521 (2001).

    Google Scholar 

  36. O’Shea, B. W. & Norman, M. L. Population III star formation in a ΛCDM universe. II: Effects of a photodissociating background. Astrophys. J. 673, 14–33 (2008).

    Google Scholar 

  37. Abel, T. & Wandelt, B. D. Adaptive ray tracing for radiative transfer around point sources. Mon. Not. R. Astron. Soc. 330, L53–L56 (2002).

    Google Scholar 

  38. Górski, K. M. et al. HEALPix: a framework for high-resolution discretization and fast analysis of data distributed on the sphere. Astrophys. J. 622, 759–771 (2005).

    Google Scholar 

  39. Wolcott-Green, J., Haiman, Z. & Bryan, G. L. Photodissociation of H2 in protogalaxies: modelling self-shielding in three-dimensional simulations. Mon. Not. R. Astron. Soc. 418, 838–852 (2011).

    Google Scholar 

  40. Chen, P., Wise, J. H., Norman, M. L., Xu, H. & O’Shea, B. W. Scaling relations for galaxies prior to reionization. Astrophys. J. 795, 144 (2014).

    Google Scholar 

  41. Bruzual, G. & Charlot, S. Stellar population synthesis at the resolution of 2003. Mon. Not. R. Astron. Soc. 344, 1000–1028 (2003).

    Google Scholar 

  42. Schaerer, D. On the properties of massive Population III stars and metal-free stellar populations. Astron. Astrophys. 382, 28–42 (2002).

    Google Scholar 

  43. Gunn, J. E. & Gott, J. R. III . On the infall of matter into clusters of galaxies and some effects on their evolution. Astrophys. J. 176, 1–19 (1972).

    Google Scholar 

  44. Gisler, G. R. The fate of gas in elliptical galaxies and the density evolution of radio sources. Astron. Astrophys. 51, 137–150 (1976).

    Google Scholar 

  45. McCarthy, I. G. et al. Ram pressure stripping the hot gaseous haloes of galaxies in groups and clusters. Mon. Not. R. Astron. Soc. 383, 593–605 (2008).

    Google Scholar 

  46. Hosokawa, T., Omukai, K. & Yorke, H. W. Rapidly accreting supergiant protostars: embryos of supermassive black holes? Astrophys. J. 756, 93 (2012).

    Google Scholar 

  47. Hosokawa, T., Yorke, H. W., Inayoshi, K., Omukai, K. & Yoshida, N. Formation of primordial supermassive stars by rapid mass accretion. Astrophys. J. 778, 178 (2013).

    Google Scholar 

  48. Schleicher, D. R. G., Palla, F., Ferrara, A., Galli, D. & Latif, M. Massive black hole factories: Supermassive and quasi-star formation in primordial halos. Astron. Astrophys. 558, A59 (2013).

    Google Scholar 

  49. Fiacconi, D. & Rossi, E. M. Bright vigorous winds as signposts of supermassive black hole birth. Mon. Not. R. Astron. Soc. 455, 2–16 (2016).

    Google Scholar 

  50. Nakauchi, D., Hosokawa, T., Omukai, K., Saio, H. & Nomoto, K. Do stellar winds prevent the formation of supermassive stars by accretion? Mon. Not. R. Astron. Soc. 465, 5016–5025 (2017).

    Google Scholar 

  51. Regan, J. A., Johansson, P. H. & Haehnelt, M. G. Numerical resolution effects on simulations of massive black hole seeds. Mon. Not. R. Astron. Soc. 439, 1160–1175 (2014).

    Google Scholar 

  52. Inayoshi, K. & Haiman, Z. Does disc fragmentation prevent the formation of supermassive stars in protogalaxies? Mon. Not. R. Astron. Soc. 445, 1549–1557 (2014).

    Google Scholar 

  53. Regan, J. A. & Haehnelt, M. G. Pathways to massive black holes and compact star clusters in pre-galactic dark matter haloes with virial temperatures 10000 K. Mon. Not. R. Astron. Soc. 396, 343–353 (2009).

    Google Scholar 

  54. Fialkov, A., Barkana, R., Visbal, E., Tseliakhovich, D. & Hirata, C. M. The 21-cm signature of the first stars during the Lyman–Werner feedback era. Mon. Not. R. Astron. Soc. 432, 2909–2916 (2013).

    Google Scholar 

  55. Visbal, E., Haiman, Z., Terrazas, B., Bryan, G. L. & Barkana, R. High-redshift star formation in a time-dependent Lyman–Werner background. Mon. Not. R. Astron. Soc. 445, 107–114 (2014).

    Google Scholar 

  56. Visbal, E., Haiman, Z. & Bryan, G. L. Limits on Population III star formation in minihaloes implied by Planck. Mon. Not. R. Astron. Soc. 453, 4456–4466 (2015).

    Google Scholar 

  57. Tseliakhovich, D. & Hirata, C. Relative velocity of dark matter and baryonic fluids and the formation of the first structures. Phys. Rev. D 82, 083520 (2010).

    Google Scholar 

  58. Stacy, A., Bromm, V. & Loeb, A. Effect of streaming motion of baryons relative to dark matter on the formation of the first stars. Astrophys. J. Lett. 730, L1 (2011).

    Google Scholar 

  59. Fialkov, A., Barkana, R., Tseliakhovich, D. & Hirata, C. M. Impact of the relative motion between the dark matter and baryons on the first stars: semi-analytical modelling. Mon. Not. R. Astron. Soc. 424, 1335–1345 (2012).

    Google Scholar 

  60. Naoz, S., Yoshida, N. & Gnedin, N. Y. Simulations of early baryonic structure formation with stream velocity. II: The gas fraction. Astrophys. J. 763, 27 (2013).

    Google Scholar 

  61. Tanaka, T. L. & Li, M. The formation of massive black holes in z 30 dark matter haloes with large baryonic streaming velocities. Mon. Not. R. Astron. Soc. 439, 1092–1100 (2014).

    Google Scholar 

  62. Fernandez, R., Bryan, G. L., Haiman, Z. & Li, M. H2 suppression with shocking inflows: testing a pathway for supermassive black hole formation. Mon. Not. R. Astron. Soc. 439, 3798–3807 (2014).

    Google Scholar 

  63. Visbal, E., Haiman, Z. & Bryan, G. L. A no-go theorem for direct collapse black holes without a strong ultraviolet background. Mon. Not. R. Astron. Soc. 442, L100–L104 (2014).

    Google Scholar 

Download references

Acknowledgements

This work was supported by the Science and Technology Facilities Council (grant numbers ST/L00075X/1 and RF040365) and by NASA grant NNX15AB19G (to Z.H.). J.R. acknowledges support from the EU Commission via the Marie Skłodowska-Curie Grant SMARTSTARS, grant number 699941. J.W. is supported by National Science Foundation grants AST-1333360 and AST-1614333, and by Hubble theory grants HST-AR-13895 and HST-AR-14326. P.H.J. acknowledges the support of the Academy of Finland grant 1274931. G.B. acknowledges financial support from NASA grant NNX15AB20G and NSF grant AST-1312888. This work used the DiRAC Data Centric system at Durham University, operated by the Institute for Computational Cosmology on behalf of the STFC DiRAC HPC Facility (www.dirac.ac.uk). This equipment was funded by BIS National E-infrastructure capital grant ST/K00042X/1, STFC capital grant ST/H008519/1 and STFC DiRAC Operations grant ST/K003267/1, and by Durham University. DiRAC is part of the National E-Infrastructure. Some of the preliminary numerical simulations were also performed on facilities hosted by the CSC-IT Center for Science in Espoo, Finland, which are financed by the Finnish ministry of education. The Flatiron Institute is supported by the Simons Foundation. Z.H. acknowledges support from a Simons Fellowship for Theoretical Physics. The freely available astrophysical analysis code yt and plotting library matplotlib were used to construct numerous plots within this paper. Computations described in this work were performed using the publicly available Enzo code, which is the product of a collaborative effort of many independent scientists from institutions around the world.

Author information

Authors and Affiliations

Authors

Contributions

J.A.R. modified the publicly available Enzo code and Grackle codes used in this work, ran and analysed the code results, and wrote the initial manuscript. J.A.R., Z.H., J.H.W. and E.V. determined the simulation set-up. The radiation particle model was conceived and designed by J.A.R., P.H.J. and J.H.W. All authors contributed to the interpretation of the results and to the text of the final manuscript.

Corresponding author

Correspondence to John A. Regan.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Figure 1 and Supplementary Tables 1–2. (PDF 150 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Regan, J., Visbal, E., Wise, J. et al. Rapid formation of massive black holes in close proximity to embryonic protogalaxies. Nat Astron 1, 0075 (2017). https://doi.org/10.1038/s41550-017-0075

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41550-017-0075

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing