Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Magnetic origin of black hole winds across the mass scale


Invariably, black hole accretion disks seem to produce plasma outflows that result in blue-shifted absorption features in their spectra1. The X-ray absorption-line properties of these outflows are diverse, ranging in velocity from non-relativistic2 (~300 km s–1) to sub-relativistic3 (~0.1c, where c is the speed of light) and a similarly broad range in the ionization states of the wind plasma2,4. We report here that semi-analytical, self-similar magnetohydrodynamic wind models that have successfully accounted for the X-ray absorber properties of supermassive black holes5,6 also offer a good fit to the high-resolution X-ray spectrum of the accreting stellar-mass black hole GRO J1655–40. This provides an explicit theoretical argument of their magnetohydrodynamic origin (aligned with earlier observational claims)7 and supports the notion of a universal magnetic structure of the observed winds across all known black hole sizes.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: Schematic of MHD accretion disk wind.
Figure 2: Radial wind profiles inferred from our best-fit model of α = 0.2.
Figure 3: The 46-ks Chandra/HETG spectrum of GRO J1655–40 overlaid on the global MHD wind model.
Figure 4: | Modelling the Fe xxvi Ly-α doublet (1.778, 17834 Å) and the Ne x Ly-α doublet (12.132, 12.136 Å) with the MHD winds of α = 0.2 and n ˜ 17 =9.3 .


  1. 1

    Crenshaw, D. M., Kraemer, S. B. & George, I. M. Mass loss from the nuclei of active galaxies Annu. Rev. Astron. Astrophys. 41, 117–167 (2003).

    ADS  Article  Google Scholar 

  2. 2

    Behar, E. et al. A long look at NGC 3783 with the XMM-Newton reflection grating spectrometer. Astrophys. J. 598, 232–241 (2003).

    ADS  Article  Google Scholar 

  3. 3

    Tombesi, F. et al. Evidence for ultra-fast outflows in radio-quiet AGNs. I. Detection and statistical incidence of Fe K-shell absorption lines. Astron. Astrophys. 521, 57–92 (2010).

    Article  Google Scholar 

  4. 4

    Holczer, T., Behar, E. & Kaspi, S. Absorption measure distribution of the outflow in IRAS 13349+2438: direct observation of thermal instability? Astrophys. J. 663, 799–807 (2007).

    ADS  Article  Google Scholar 

  5. 5

    Fukumura, K., Kazanas, D., Contopoulos, I. & Behar, E. Magnetohydrodynamic accretion disk winds as X-ray absorbers in active galactic nuclei. Astrophys. J. 715, 636–650 (2010).

    ADS  Article  Google Scholar 

  6. 6

    Fukumura, K., Kazanas, D., Contopoulos, I. & Behar, E. Modeling high-velocity QSO absorbers with photoionized magnetohydrodynamic disk winds. Astrophys. J. Lett. 723, L228–L232 (2010).

    ADS  Article  Google Scholar 

  7. 7

    Miller, J. M. et al. The magnetic nature of disk accretion onto black holes. Nature 441, 953–955 (2006).

    ADS  Article  Google Scholar 

  8. 8

    Blandford, R. D. & Begelman, M. C. On the fate of gas accreting at a low rate on to a black hole. Mon. Not. R. Astron. Soc. 303, L1–L5 (1999).

    ADS  Article  Google Scholar 

  9. 9

    Tombesi, F. et al. Wind from the black-hole accretion disk driving a molecular outflow in an active galaxy. Nature 519, 436–438 (2015).

    ADS  Article  Google Scholar 

  10. 10

    Begelman, M. C., McKee, C. F. & Shields, G. A. Compton heated winds and coronae above accretion disks. I. Dynamics. Astrophys. J. 271, 70–88 (1983).

    ADS  Article  Google Scholar 

  11. 11

    Murray, N. et al. Accretion disk winds from active galactic nuclei. Astrophys. J. 451, 498 (1995).

    ADS  Article  Google Scholar 

  12. 12

    Blandford, R. D. & Payne, D. G. Hydromagnetic flows from accretion discs and the production of radio jets. Mon. Not. R. Astron. Soc 199, 883–903 (1982).

    ADS  Article  Google Scholar 

  13. 13

    Contopoulos, J. & Lovelace, R. V. E. Magnetically driven jets and winds: exact solutions. Astrophys. J. 429, 139– 152 (1994).

    ADS  Article  Google Scholar 

  14. 14

    Contopoulos, J. A simple type of magnetically driven jets: an astrophysical plasma gun. Astrophys. J. 450, 616–627 (1995).

    ADS  Article  Google Scholar 

  15. 15

    Ferreira, J. Magnetically-driven jets from Keplerian accretion discs. Astron. Astrophys. 319, 340–359 (1997).

    ADS  Google Scholar 

  16. 16

    Neilsen, J. & Homan, J. A hybrid magnetically/thermally driven wind in the black hole GRO J1655–40? Astrophys. J. 750, 27–35 (2012).

    ADS  Article  Google Scholar 

  17. 17

    Miller, J. M. et al. The accretion disk wind in the black hole GRO J1655–40. Astrophys. J. 680, 1359 (2008).

    ADS  Article  Google Scholar 

  18. 18

    Kallman, T. R. et al. Spectrum synthesis modeling of the X-ray spectrum of GRO J1655–40 taken during the 2000 outburst. Astrophys. J. 701, 865–884 (2009).

    ADS  Article  Google Scholar 

  19. 19

    Luketic, S., Proga, D., Kallman, T. R., Raymond, J. C. & Miller, J. M. On the properties of thermal disk winds in X-ray transient sources: a case study of GRO J1655–40. Astrophys. J. 719, 515–522 (2010).

    ADS  Article  Google Scholar 

  20. 20

    Fukumura, K. et al. Magnetically driven accretion disk winds and ultra-fast outflows in PG 1211+143. Astrophys. J. 805, 17–27 (2015).

    ADS  Article  Google Scholar 

  21. 21

    Kazanas, D., Fukumura, K., Behar, E., Contopoulos, I. & Shrader, C. Toward a unified AGN structure. Astron. Rev. 7, 92–123 (2012).

    Article  Google Scholar 

  22. 22

    Shidatsu, M., Done, C. & Ueda, Y. An optically thick disk wind in GRO J1655–40? Astrophys. J. 823, 159–171 (2016).

    ADS  Article  Google Scholar 

  23. 23

    Neilsen, J., Rahoui, F., Homan, J. & Buxton, M. A super-Eddington, Compton-thick wind in GRO J1655–40? Astrophys. J. 822, 20–34 (2016).

    ADS  Article  Google Scholar 

  24. 24

    Netzer, H. A thermal wind model for the X-ray outflow in GRO J1655–40. Astrophys. J. Lett. 652, L117–L120 (2006).

    ADS  Article  Google Scholar 

  25. 25

    Castor, J. I., Abbot, D. C. & Klein, R. I. Radiation-driven winds in Of stars. Astrophys. J. 195, 157–174 (1975).

    ADS  Article  Google Scholar 

  26. 26

    Proga, D., Stone, J. M. & Kallman, T. R. Dynamics of line-driven disk winds in active galactic nuclei. Astrophys. J. 543, 686–696 (2000).

    ADS  Article  Google Scholar 

  27. 27

    Behar, E. Density profiles in Seyfert outflows. Astrophys.J. 703, 1346–1351 (2009).

    ADS  Article  Google Scholar 

  28. 28

    Miller, J. M. et al. Powerful, rotating disk winds from stellar-mass black holes. Astrophys.J. 814, 87–114 (2015).

    ADS  Article  Google Scholar 

  29. 29

    Kallman, T. R & Bautista, M. A. Photoionzation and high density gas. Astrophys. J. Suppl. 133, 221–253 (2001).

    ADS  Article  Google Scholar 

  30. 30

    Neilsen, J. & Lee, J. C. Accretion disk winds as the jet suppression mechanism in the microquasar GRS 1915+105. Nature 458, 481–484 (2009).

    ADS  Article  Google Scholar 

  31. 31

    Hjellming, R. M. & Rupen, M. P. Episodic ejection of relativistic jets by the X-ray transient GRO J1655–40. Nature. 375, 464–468 (1995).

    ADS  Article  Google Scholar 

  32. 32

    Dickey, J. M. & Lockman, F. J. H i in the Galaxy. Annu. Rev. Astron. Astr. 28, 215–261 (1990).

    ADS  Article  Google Scholar 

  33. 33

    Blustin, A. J., Page, M. J., Fuerst, S. V., Branduardi-Raymont, G. & Ashton, C. E. The nature and origin of Seyfert warm absorbers. Astron. Astrophys. 431, 111–125 (2005).

    ADS  Article  Google Scholar 

  34. 34

    George, I. M. et al. ASCA observations of Seyfert 1 galaxies. III. The evidence for absorption and emission due to photoionized gas. Astrophys. J. Suppl. 114, 73–120 (1998).

    ADS  Article  Google Scholar 

  35. 35

    McKernan, B., Yaqoob, T. & Reynolds, C. S. A soft X-ray study of type I active galactic nuclei observed with Chandra high-energy transmission grating spectrometer. Mon. Not. R. Astron. Soc. 379, 1359–1372 (2007).

    ADS  Article  Google Scholar 

  36. 36

    Laha, S. et al. Warm absorbers in X-rays (WAX), a comprehensive high-resolution grating spectral study of a sample of Seyfert galaxies. I. A global view and frequency of occurrence of warm absorbers. Mon. Not. R. Astron. Soc., 441, 2613–2643 (2014).

    ADS  Article  Google Scholar 

  37. 37

    Chartas, G., Saez, C., Brandt, W. N., Giustini, M. & Garmire, G. P. Confirmation of and variable energy injection by a near-relativistic outflow in APM 08279+5255. Astrophys. J. 706, 644–656 (2009).

    ADS  Article  Google Scholar 

  38. 38

    Schurch, N. J. & Done, C. The impact of accretion disc winds on the X-ray spectrum of AGN. I. XSCORT. Mon. Not. R. Astron. Soc. 381, 1413–1425 (2007).

    ADS  Article  Google Scholar 

  39. 39

    Sim, S. A., Long, K. S., Miller, L. & Turner, T. J. Multidimensional modelling of X-ray spectra for AGN accretion disc outflows. Mon. Not. R. Astron. Soc. 388, 611–624 (2008).

    ADS  Article  Google Scholar 

  40. 40

    Mihalas, D. Stellar Atmospheres (Freeman, 1978).

    Google Scholar 

  41. 41

    Crenshaw, D. M. & Kraemer, S. B. Feedback from mass outflows in nearby active galactic nuclei. I. Ultraviolet and X-ray absorbers. Astrophys. J. 753, 75–85 (2012).

    ADS  Article  Google Scholar 

  42. 42

    King, A. L. et al. Regulation of black hole winds and jets across the mass scale. Astrophys. J. 762, 103–121 (2013).

    ADS  Article  Google Scholar 

  43. 43

    Chakravorty, S. et al. Absorption lines from magnetically driven winds in X-ray binaries. Astron. Astrophys. 589, A119–A135 (2016).

    Article  Google Scholar 

Download references


We thank T. Kallman for providing us with the Chandra/HETG data for GRO J1655–40. K.F., D.K. and C.S. acknowledge support by a NASA/ADP grant. E.B. received funding from the European Unions Horizon 2020 research and innovation programm under the Marie Sklodowska-Curie grant agreement no. 655324. and from the I-CORE program of the Planning and Budgeting Committee (grant number 1937/12). Support for this work was in part provided by NASA through Chandra Award Number AR6-17013A issued by the Chandra X-ray Observatory Center, which is operated by the Smithsonian Astrophysical Observatory for and on behalf of NASA under contract NAS8-03060.

Author information




K.F. led the overall model development and data fitting procedures. D.K., C.S, E.B. and F.T. each contributed to the validation, interpretation and presentation of the final results. The baseline wind model was originally formulated by I.C. In particular, D.K. provided insights connecting our results to the broader picture of accretion-induced outflows in astrophysical environments and E.B. provided technical advice on the details of atomic physics crucial to the X-ray spectroscopic analyses in this work. All authors contributed to writing the manuscript and preparing the figures and tables.

Corresponding author

Correspondence to Keigo Fukumura.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Figures 1–4 and Supplementary Tables 1–2. (PDF 541 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Fukumura, K., Kazanas, D., Shrader, C. et al. Magnetic origin of black hole winds across the mass scale. Nat Astron 1, 0062 (2017).

Download citation

Further reading


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing