A tidal disruption event in the nearby ultra-luminous infrared galaxy F01004-2237

Abstract

Tidal disruption events (TDEs), in which stars are gravitationally disrupted as they pass close to the supermassive black holes in the centres of galaxies1, are potentially important probes of strong gravity and accretion physics. Most TDEs have been discovered in large-area monitoring surveys of many thousands of galaxies, and a relatively low rate of one event every 104–105 years per galaxy has been deduced24. However, given the selection effects inherent in such surveys, considerable uncertainties remain about the conditions that favour TDEs. Here we report the detection of unusually strong and broad helium emission lines following a luminous optical flare in the nucleus of the nearby ultra-luminous infrared galaxy F01004-2237. This particular combination of variabi­lity and post-flare emission line spectrum is unlike any known supernova or active galactic nucleus. The most plausible explanation is a TDE — the first detected in a galaxy with an ongoing massive starburst. The fact that this event has been detected in repeat spectroscopic observations of a sample of 15 ultra-luminous infrared galaxies over a period of just 10 years suggests a much higher rate of TDEs in starburst galaxies than in the general galaxy population.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: Comparison of optical spectra of F01004-2237 taken in September 2015 with those taken in September 2000.
Figure 2: Catalina Sky Survey (CSS) 12 light curves for F01004-2237 and the other 14 sources in our spectroscopic sample.

References

  1. 1

    Rees, M. J . Tidal disruption of stars by black holes of 106–108M in nearby galaxies. Nature 333, 523–528 (1988).

    Article  ADS  Google Scholar 

  2. 2

    Donley, J. L., Brandt, W. N., Eracleous, M. & Bollter, Th. Large-amplitude X-ray outbursts from galactic nuclei: a systematic survey using ROSAT archival data. Astron. J. 124, 1308–1321 (2002).

    Article  ADS  Google Scholar 

  3. 3

    Gezari, S. et al. UV/optical detections of candidate tidal disruption events by GALEX and CFHTLS. Astrophys. J. 676, 944–969 (2008).

    Article  ADS  Google Scholar 

  4. 4

    van Velzen, S. & Farrar, G. R. Measurement of the rate of stellar tidal disruption flares. Astrophys. J. 792, 53–61 (2014).

    Article  ADS  Google Scholar 

  5. 5

    Sanders. D. B. & Mirabel, I. F. Luminous infrared galaxies. Annu. Rev. Astron. Astrophys. 34, 749–792 (1996).

    Article  ADS  Google Scholar 

  6. 6

    Rodríguez Zaurín, J., Tadhunter, C. N., Rose, M. & Holt, J. The importance of warm, AGN-driven outflows in the nuclear regions nearby ULIRGs. Mon. Not. R. Astron. Soc. 432, 138–166 (2013).

    Article  ADS  Google Scholar 

  7. 7

    Rodríguez Zaurín, J., Tadhunter, C. N. & González Delgado, R. M. The properties of the stellar populations in ULIRGs – I. Sample, data and spectral synthesis modeling. Mon. Not. R. Astron. Soc. 400, 1139–1180 (2009).

    Article  ADS  Google Scholar 

  8. 8

    Dasyra, K. M. et al. The dynamical properties of ultraluminous infrared galaxies II. Tracers of dynamical evolution and end products of local ultraluminous mergers. Astrophys. J. 651, 835–852 (2006).

    Article  ADS  Google Scholar 

  9. 9

    Armus, L., Heckman, T. M. & Miley, G. K. The detection of Wolf–Rayet stars in a very powerful far-infrared galaxy: direct evidence for a starburst. Astrophys. J. 326, L45–L49 (1988).

    Article  ADS  Google Scholar 

  10. 10

    Surace, J. A., Sanders, D., Vacca, W. D., Veilleux, S. & Mazzarella, J. M. HST/WFPC2 observations of warm ultraluminous infrared galaxies. Astrophys. J. 492, 116–136 (1998).

    Article  ADS  Google Scholar 

  11. 11

    vanden Berk, D. E. et al. Composite quasar spectra from the Sloan Digital Sky Survey. Astron. J. 122, 549–564 (2001).

    Article  ADS  Google Scholar 

  12. 12

    Drake, A. J. et al. First results from the Catalina Real-time Transient Survey. Astrophys. J. 696, 870–884 (2009).

    Article  ADS  Google Scholar 

  13. 13

    Lonsdale, C. J. et al. VLBI images of 49 radio supernovae in Arp 220. Astrophys. J. 649, 185–193 (2006).

    Article  ADS  Google Scholar 

  14. 14

    La Massa, S. M. et al. The discovery of the first changing look quasar: new insights into the physics and phenomenology of active galactic nucleus. Astrophys. J. 800, 144–153 (2015).

    Article  ADS  Google Scholar 

  15. 15

    MacLeod, C. L. et al. A systematic search for changing look quasars in SDSS. Mon. Not. R. Astron. Soc. 457, 389–404 (2016).

    Article  ADS  Google Scholar 

  16. 16

    Gaskell, C. M. & Rojas Lobos, P. A. The production of strong broad He ii emission after the tidal disruption of a main sequence star by a supermassive black hole. Mon. Not. R. Astron. Soc. 438, L36–L40 (2014).

    Article  ADS  Google Scholar 

  17. 17

    Crenshaw, D. M. Profiles and profile ratios in Seyfert I galaxies. Astrophys. J. Suppl. 62, 821–838 (1986).

    Article  ADS  Google Scholar 

  18. 18

    Gezari, S. et al. An ultraviolet–optical flare from the tidal disruption of a helium-rich stellar core. Nature 485, 217–220 (2012).

    Article  ADS  Google Scholar 

  19. 19

    Arcavi, I. et al. A continuum of H- to He-rich tidal disruption events with a preference for E+A galaxies. Astrophys. J. 793, 38–53 (2014).

    Article  ADS  Google Scholar 

  20. 20

    Holoien, T. W.-S. et al. Six months of multiwavelength follow-up of the tidal disruption candidate ASASSN-14li and implied TDE rates from ASAS-SN. Mon. Not. R. Astron. Soc. 455, 2918–2935 (2016).

    Article  ADS  Google Scholar 

  21. 21

    Guillochon, J. & Ramirez-Ruiz, E. Hydrodynamic simulations to determine the feedding radio of black holes by the tidal disruption of stars: the importance of impact factor and stellar structure. Astrophys. J. 767, 25–39 (2013).

    Article  ADS  Google Scholar 

  22. 22

    Brown, J. S. et al. The long term evolution of ASASSN-14li. Preprint athttps://arxiv.org/abs/1609.04403 (2016).

  23. 23

    Leloudas, G. et al. The superluminous transient ASASSN-15lh as a tidal disruption event from a Kerr black hole. Nat. Astron. 1, 0002 (2017).

    Article  ADS  Google Scholar 

  24. 24

    Roth, N., Kasen, D., Guillochon, J. & Ramirez-Ruiz, E. The X-ray through optical fluxes and line strengths of tidal disruption events. Astrophys. J. 827, 3–18 (2016).

    Article  ADS  Google Scholar 

  25. 25

    Kochanek, C. S. Abundance anomalies in tidal disruption events. Mon. Not. R. Astron. Soc. 458, 127–134 (2016).

    Article  ADS  Google Scholar 

  26. 26

    French, K., Arcavi, I. & Zabludoff, A. Tidal disruption events prefer unusual host galaxies. Astrophys. J. 818, L21–L26 (2016).

    Article  ADS  Google Scholar 

  27. 27

    Stone, N. C. & van Velzen, S. An enhanced rate of tidal disruption in the centrally overdense E+A galaxy NGC3156. Astrophys. J. 825, 14–20 (2016).

    Article  ADS  Google Scholar 

  28. 28

    Liu, F. K. & Chen, X. Enhanced off-centre tidal disruptions by supermassive black holes in merging galaxies. Astrophys. J. 767, 18–28 (2013).

    Article  ADS  Google Scholar 

  29. 29

    Stone, N. & Loeb, A. Prompt tidal disruption of stars as a signature of supermassive black hole coalescence. Mon. Not. R. Astron. Soc. 412, 75–80 (2011).

    Article  ADS  Google Scholar 

  30. 30

    Coughlin, E. R., Armitage, P. J., Nixon, C. & Begelman, M. C. Tidal disruption events from supermassive black hole binaries. Mon. Not. R. Astron. Soc. 465, 3840–3864 (2017).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The William Herschel Telescope is operated on the island of La Palma by the Isaac Newton Group in the Spanish Observatorio del Roque de los Muchachos of the Instituto de Astrofisica de Canaria. Based on observations made with the NASA/ESA Hubble Space Telescope, obtained from the Data Archive at the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, Inc., under NASA contract NAS 5-26555, these observations are associated with program no. 8190. This project made use of data obtained by the Catalina Sky Survey. C.T., R.S., M.R. and P.C. acknowledge financial support from the UK Science and Technology Facilities Council. We thank J. Maund for discussions about the possibility of a supernova origin for the flare.

Author information

Affiliations

Authors

Contributions

C.T. and R.S. led the project and the scientific interpretation of the data, and C.T. wrote the text of the paper. M.R. extracted the Catalina Sky Survey light curves and contributed to the general interpretation of the emission line spectra. J.M. and P.C. contributed equally to the analysis and interpretation of the results.

Corresponding author

Correspondence to C. Tadhunter.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Figures 1–2, Supplementary Tables 1–2 and Supplementary (PDF 372 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Tadhunter, C., Spence, R., Rose, M. et al. A tidal disruption event in the nearby ultra-luminous infrared galaxy F01004-2237. Nat Astron 1, 0061 (2017). https://doi.org/10.1038/s41550-017-0061

Download citation

Further reading

Search

Sign up for the Nature Briefing newsletter for a daily update on COVID-19 science.
Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing