Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

The large-scale nebular pattern of a superwind binary in an eccentric orbit

An Erratum to this article was published on 06 March 2017

Abstract

Preplanetary nebulae and planetary nebulae are evolved, mass-losing stellar objects that show a wide variety of morphologies. Many of these nebulae consist of outer structures that are nearly spherical (spiral/shell/arc/halo) and inner structures that are highly asymmetric (bipolar/multipolar)1,2. The coexistence of such geometrically distinct structures is enigmatic because it hints at the simultaneous presence of both wide and close binary interactions, a phenomenon that has been attributed to stellar binary systems with eccentric orbits3. Here, we report high-resolution molecular line observations of the circumstellar spiral-shell pattern of AFGL 3068, an asymptotic giant branch star transitioning to the preplanetary nebula phase. The observations clearly reveal that the dynamics of the mass loss is influenced by the presence of an eccentric-orbit binary. This quintessential object opens a window on the nature of deeply embedded binary stars through the circumstellar spiral-shell patterns that reside at distances of several thousand au from the stars.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: ALMA velocity channel maps of AFGL 3068.
Figure 2: Systemic velocity channel of AFGL 3068 in an angle−radius plot.
Figure 3: Bifurcation and undulation of AFGL 3068, and an eccentric binary model.

References

  1. 1

    Balick, B. & Frank, A. Shapes and shaping of planetary nebulae. Annu. Rev. Astron. Astrophys. 40, 439–486 (2002).

    Article  ADS  Google Scholar 

  2. 2

    Sahai, R., Morris, M. R. & Villar, G. G. Young planetary nebulae: Hubble Space Telescope imaging and a new morphological classification system. Astron. J. 141, 134 (2011).

    Article  ADS  Google Scholar 

  3. 3

    Kim, H. et al. High-resolution CO observation of the carbon star CIT 6 revealing the spiral structure and a nascent bipolar outflow. Astrophys. J. 814, 61 (2015).

    Article  ADS  Google Scholar 

  4. 4

    Morris, M. et al. A binary-induced pinwheel outflow from the extreme carbon star, AFGL 3068. In Planetary Nebulae in our Galaxy and Beyond, Proc. International Astronomical Union Symp. No. 234 (eds Barlow, M. J. & Méndez, R. H. ) 469–470 (Cambridge Univ. Press, 2006).

    Google Scholar 

  5. 5

    Mauron, N. & Huggins, P. J. Imaging the circumstellar envelopes of AGB stars. Astron. Astrophys. 452, 257–268 (2006).

    Article  ADS  Google Scholar 

  6. 6

    Soker, N. Influences of wide binaries on the structures of planetary nebulae. Mon. Not. R. Astron. Soc. 270, 774–780 (1994).

    Article  ADS  Google Scholar 

  7. 7

    Mastrodemos, N. & Morris, M. Bipolar pre-planetary nebulae: hydrodynamics of dusty winds in binary systems. II. Morphology of the circumstellar envelopes. Astrophys. J. 523, 357–380 (1999).

    Article  ADS  Google Scholar 

  8. 8

    Kim, H. & Taam, R. E. Wide binary effects on asymmetries in asymptotic giant branch circumstellar envelopes. Astrophys. J. 759, 59 (2012).

    Article  ADS  Google Scholar 

  9. 9

    Kim, H. & Taam, R. E. A new method of determining the characteristics of evolved binary systems revealed in the observed circumstellar patterns: application to AFGL 3068. Astrophys. J. Lett. 759, L22 (2012).

    Article  ADS  Google Scholar 

  10. 10

    Kim, H., Hsieh, I.-T., Liu, S.-Y. & Taam, R. E. Evidence of a binary-induced spiral from an incomplete ring pattern of CIT 6. Astrophys. J. 776, 86 (2013).

    Article  ADS  Google Scholar 

  11. 11

    Cernicharo, J., Marcelino, N., Agúndez, M. & Guélin, M. Molecular shells in IRC+10216: tracing the mass loss history. Astron. Astrophys. 575, A91 (2015).

    Article  ADS  Google Scholar 

  12. 12

    Soker, N. in Asymmetrical Planetary Nebulae III: Winds, Structure and the Thunderbird (eds Meixner, M., Kastner, J. H., Balick, B. & Soker, N. ) 562–568 (Astron. Soc. Pacif. Conf. Ser. Vol. 313, 2004).

    Google Scholar 

  13. 13

    Soker, N. Why magnetic fields cannot be the main agent shaping planetary nebulae. Publ. Astron. Soc. Pacif. 118, 260–269 (2006).

    Article  ADS  Google Scholar 

  14. 14

    Bond, H. E. in Asymmetrical Planetary Nebulae II: From Origins to Microstructures (eds Kastner, J. H., Soker, N. & Rappaport, S. ) 115–123 (Astron. Soc. Pacif. Conf. Ser. Vol. 199, 2000).

    Google Scholar 

  15. 15

    Miszalski, B., Acker, A., Moffat, A. F. J., Parker, Q. A. & Udalski, A. Binary planetary nebulae nuclei towards the Galactic bulge. I. Sample discovery, period distribution, and binary fraction. Astron. Astrophys. 496, 813–825 (2009).

    Article  ADS  Google Scholar 

  16. 16

    Douchin, D. et al. The binary fraction of planetary nebula central stars — II. A larger sample and improved technique for the infrared excess search. Mon. Not. R. Astron. Soc. 448, 3132–3155 (2015).

    Article  ADS  Google Scholar 

  17. 17

    Sahai, R., Findeisen, K., Gil de Paz, A. & Sánchez Contreras, C. Binarity in cool asymptotic giant branch stars: a GALEX search for ultraviolet excesses. Astrophys. J. 689, 1274–1278 (2008).

    Article  ADS  Google Scholar 

  18. 18

    Morris, M. Models for the structure and origin of bipolar nebulae. Astrophys. J. 249, 572–585 (1981).

    Article  ADS  Google Scholar 

  19. 19

    Su, K. Y. L. in Asymmetrical Planetary Nebulae III: Winds, Structure and the Thunderbird (eds Meixner, M., Kastner, J. H., Balick, B. & Soker, N. ) 247–253 (Astron. Soc. Pacif. Conf. Ser. Vol. 313, 2004).

    Google Scholar 

  20. 20

    Corradi, R. L. M., Sánchez-Blázquez, P., Mellema, G., Giammanco, C. & Schwarz, H. E. Rings in the haloes of planetary nebulae. Astron. Astrophys. 417, 637–646 (2004).

    Article  ADS  Google Scholar 

  21. 21

    Ramos-Larios, G. et al. Rings and arcs around evolved stars — I. Fingerprints of the last gasps in the formation process of planetary nebulae. Mon. Not. R. Astron. Soc. 462, 610–635 (2016).

    Article  ADS  Google Scholar 

  22. 22

    Sahai, R., Scibelli, S. & Morris, M. R. High-speed bullet ejections during the AGB-to-planetary nebula transition: HST observations of the carbon star, V Hydrae. Astrophys. J. 827, 92 (2016).

    Article  ADS  Google Scholar 

  23. 23

    Huarte-Espinosa, M., Carroll-Nellenback, J., Nordhaus, J., Frank, A. & Blackman, E. G. The formation and evolution of wind-capture discs in binary systems. Mon. Not. R. Astron. Soc. 433, 295–306 (2013).

    Article  ADS  Google Scholar 

  24. 24

    Verbunt, F. & Phinney, E. S. Tidal circularization and the eccentricity of binaries containing giant stars. Astron. Astrophys. 296, 709–721 (1995).

    ADS  Google Scholar 

  25. 25

    Maercker, M. et al. Unexpectedly large mass loss during the thermal pulse cycle of the red giant star R Sculptoris. Nature 490, 232–234 (2012).

    Article  ADS  Google Scholar 

  26. 26

    Claussen, M. J. et al. A pilot imaging line survey of RW LMi and IK Tau using the Expanded Very Large Array. Astrophys. J. Lett. 739, L5 (2011).

    Article  ADS  Google Scholar 

  27. 27

    Ramstedt, S. et al. The wonderful complexity of the Mira AB system. Astron. Astrophys. 570, L14 (2014).

    Article  ADS  Google Scholar 

  28. 28

    Decin, L. et al. ALMA data suggest the presence of spiral structure in the inner wind of CW Leonis. Astron. Astrophys. 574, A5 (2015).

    Article  Google Scholar 

  29. 29

    Raga, A. C., Cantó, J., Esquivel, A., Huggins, P. J. & Mauron, N. in Asymmetric Planetary Nebulae V (eds Zijlstra, A. A., Lykou, F., McDonald, I . & Lagadec, E. ) 185–191 (Jodrell Bank Centre for Astrophysics, 2011).

    Google Scholar 

  30. 30

    Tuthill, P. G., Monnier, J. D. & Danchi, W. C. A dusty pinwheel nebula around the massive star WR104. Nature 398, 487–489 (1999).

    Article  ADS  Google Scholar 

  31. 31

    McMullin, J. P., Waters, B., Schiebel, D., Young, W. & Golap, K. in Astronomical Data Analysis Software and Systems XVI (eds Shaw, R. A., Hill, F. & Bell, D. J. ) 127–130 (Astron. Soc. Pacif. Conf. Ser. Vol. 376, 2007).

    Google Scholar 

  32. 32

    Pearson, T. J. & Readhead, A. C. S. Image formation by self-calibration in radio astronomy. Annu. Rev. Astron. Astrophys. 22, 97–130 (1984).

    Article  ADS  Google Scholar 

  33. 33

    Fryxell, B. et al. FLASH: an adaptive mesh hydrodynamics code for modeling astrophysical thermonuclear flashes. Astrophys. J. Suppl. Ser. 131, 273–334 (2000).

    Article  ADS  Google Scholar 

  34. 34

    Colella, P. & Woodward, P. R. The piecewise parabolic method (PPM) for gas-dynamical simulations. J. Comput. Phys. 54, 174–201 (1984).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This paper makes use of the following ALMA data: ADS/JAO.ALMA#2013.1.00179.S. ALMA is a partnership of the European Southern Observatory (representing its member states), the National Science Foundation (USA) and the National Institutes of Natural Sciences (Japan), together with the National Research Council (Canada), the National Science Council and Academia Sinica Institute of Astronomy and Astrophysics (Taiwan), and Korea Astronomy (Taiwan), Space Science Institute (Republic of Korea), in cooperation with the Republic of Chile. The Joint ALMA Observatory is operated by the European Southern Observatory, Associated Universities, Inc. National Radio Astronomy Observatory and the National Astronomical Observatory of Japan. H.K. acknowledges support through the East Asian Core Observatories Association Fellowship, and thanks F. Kemper for encouraging the project and reviewing an early version of the manuscript. R.S.’s contribution to this research was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with NASA, with financial support in part from a NASA/STScI HST award (GO 11676.02).

Author information

Affiliations

Authors

Contributions

H.K. planned the project, prepared and submitted the proposal, and wrote the manuscript. A.T. was involved in observation preparation, data reduction and analysis, and commented on the manuscript. S.-Y.L. was involved in project planning, data interpretation, and manuscript preparation. R.S., R.E.T., M.R.M. and N.H. were involved in the science discussion as well as writing the proposal and manuscript. I.-T.H. did the radiative transfer modelling in the proposal preparation that generated the data for this study.

Corresponding author

Correspondence to Hyosun Kim.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Figures 1–4 and Supplementary Video 1 caption. (PDF 1889 kb)

Supplementary Information

Supplementary Video 1 (GIF 6547 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Kim, H., Trejo, A., Liu, SY. et al. The large-scale nebular pattern of a superwind binary in an eccentric orbit. Nat Astron 1, 0060 (2017). https://doi.org/10.1038/s41550-017-0060

Download citation

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing