How dark matter came to matter

  • A Corrigendum to this article was published on 06 March 2017

Abstract

The history of the dark matter problem can be traced back to at least the 1930s, but it was not until the early 1970s that the issue of ‘missing matter’ was widely recognized as problematic. In the latter period, previously separate issues involving missing mass were brought together in a single anomaly. We argue that reference to a straightforward accumulation of evidence alone is inadequate to comprehend this episode. Rather, the rise of cosmological research, the accompanying renewed interest in the theory of relativity and changes in the manpower division of astronomy in the 1960s are key to understanding how dark matter came to matter. At the same time, this story may also enlighten us on the methodological dimensions of past practices of physics and cosmology.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: Indications of flat rotation curves in the early 1970s.
Figure 2: The rise in astronomy personnel during the 1960s.
Figure 3: The growth in cosmology papers.
Figure 4: Peebles, Abell, Longair and Einasto.

COLLECTION OF J. EINASTO

Figure 5: Two 1974 diagrams that plot the relation between the mass and the radius of galactic systems.

References

  1. 1

    Bertone, G. Particle Dark Matter: Observations, Models and Searches (Cambridge Univ. Press, 2010).

    Google Scholar 

  2. 2

    Trimble, V. Existence and nature of dark matter in the Universe. Ann. Rev. Astron. Astrophys. 25, 425–472 (1987).

    Article  ADS  Google Scholar 

  3. 3

    Trimble, V. in Planets, Stars and Stellar Systems Vol. 5 (eds Oswalt, T. D. & Gilmore, G. ) 1091–1118 (Springer, 2013).

    Google Scholar 

  4. 4

    Sanders, R. H. The Dark Matter Problem: A Historical Perspective (Cambridge Univ. Press, 2010).

    Google Scholar 

  5. 5

    Einasto, J. Dark Matter and Cosmic Web Story (World Scientific Publishing, 2014).

    Google Scholar 

  6. 6

    Bertone, G. & Hooper, D. A history of dark matter. Preprint at http://arxiv.org/abs/1605.04909 (2016).

  7. 7

    Kapteyn, J. C. First attempt at a theory of the arrangement and motion of the sidereal system. Astrophys. J. 55, 302–328 (1922).

    Article  ADS  Google Scholar 

  8. 8

    Jeans, J. H. The motions of stars in a Kapteyn-Universe. Mon. Not. R. Astron. Soc. 82, 122–132 (1922).

    Article  ADS  Google Scholar 

  9. 9

    Oort, J. H. Observational evidence confirming Lindblad's hypothesis of a rotation of the galactic system. Bull. Astron. Inst. the Netherlands 3, 275–282 (1927).

    ADS  Google Scholar 

  10. 10

    Zwicky, F. Die Rotverschiebung von extragalaktischen Nebeln. Helv. Phys. Acta 6, 110–127 (1933).

    MATH  ADS  Google Scholar 

  11. 11

    Smith, S. The mass of the Virgo cluster. Astrophys. J. 83, 23–30 (1936).

    Article  ADS  Google Scholar 

  12. 12

    Holmberg, E. A Study of double and multiple galaxies together with inquiries into some general metagalactic problems. Ann. Observatory of Lund 6, 3–173 (1937).

    ADS  Google Scholar 

  13. 13

    Faber, S. M. & Gallagher, J. S. Masses and mass-to-light ratios of galaxies. Ann. Rev. Astron. Astrophys. 17, 135–187 (1979).

    Article  ADS  Google Scholar 

  14. 14

    Riess, A. Dark Matter. Encyclopædia Britannica (5 April 2016); http://www.britannica.com/science/dark-matter.

  15. 15

    Ostriker, J. P., Peebles, P. J. E. & Yahil, A. The size and mass of galaxies, and the mass of the Universe. Astrophys. J. 193, L1–L4 (1974).

    Article  ADS  Google Scholar 

  16. 16

    Einasto, J., Kaasik, A. & Saar, E. Dynamic evidence on massive coronas of galaxies. Nature 250, 309–310 (1974).

    Article  ADS  Google Scholar 

  17. 17

    Zwicky, F. Statistics of Clusters of Galaxies. In Proc. Third Berkeley Symp. on Math. Statist. and Prob. Volume 3: Contributions to Astronomy, Meteorology, and Physics (ed Neyman, J. ) 113–144 (Univ. of Calif. Press, 1956).

  18. 18

    Shane, C. D. & Wirtanen, C. A. The distribution of extragalactic nebulae. Astron. J. 59, 285–304 (1954).

    Article  ADS  Google Scholar 

  19. 19

    Abell, G. O. The Distribution of Rich Clusters of Galaxies PhD thesis, Caltech (1958).

  20. 20

    Abell, G. O. The National Geographic Society–Palomar Observatory Sky Survey. Astron. Soc. Pac. Leafl. 8, 121–126 (1959).

    ADS  Google Scholar 

  21. 21

    Kahn, F. D. & Woltjer, L. Intergalactic matter and the galaxy. Astrophys. J. 130, 705–717 (1959).

    Article  ADS  Google Scholar 

  22. 22

    Page, T. Masses of the double galaxies. Astron. J. 64, 53 (1959).

    Article  ADS  Google Scholar 

  23. 23

    Ambartsumian, V. A. in La structure et l’evolution de l’universe (ed. Stoops, R. ) 241–279 (Onzième Conseil de Physique, 1958).

    Google Scholar 

  24. 24

    Burbidge, G. R. & Burbidge, E. M. The Hercules clusters of nebulae. Astrophys. J. 130, 629–640 (1959).

    Article  ADS  Google Scholar 

  25. 25

    van den Bergh, S. The stability of clusters of galaxies. Astron. J. 66, 566–571 (1961).

    MathSciNet  Article  ADS  Google Scholar 

  26. 26

    Neyman, J., Page, T. & Scott, E. Conference on the Instability of Systems of Galaxies: Foreword. Astron. J. 66, 633–636 (1961).

    Article  ADS  Google Scholar 

  27. 27

    Burbidge, G. R. Multiple Systems, Clusters, Radiogalaxies: Summary. In Problems of Extra-Galactic Research, Proc. IAU Symp. No. 15 (ed. McVittie, G. ) 258–265 (Macmillan, 1962).

  28. 28

    Woolf, N. J. On the stabilization of clusters of galaxies by ionized gas. Astrophys. J. 148, 287–290 (1967).

    Article  ADS  Google Scholar 

  29. 29

    Reddish, V. C. The evolution of galaxies. Q. J. R. Astron. Soc. 9, 409–423 (1968).

    ADS  Google Scholar 

  30. 30

    Finzi, A. On the validity of Newton's law at a long distance. Mon. Not. R. Astron. Soc. 127, 21–30 (1963).

    MathSciNet  MATH  Article  ADS  Google Scholar 

  31. 31

    Forman, W. R. A reduction of the mass deficit in clusters of galaxies by means of a negative cosmological constant. Astrophys. J. 159, 719–722 (1970).

    Article  ADS  Google Scholar 

  32. 32

    Jackson, J. C. The dynamics of clusters of galaxies in Universes with non-zero cosmological constant, and the virial theorem mass discrepancy. Mon. Not. R. Astron. Soc. 148, 249–260 (1970).

    Article  ADS  Google Scholar 

  33. 33

    Field, G. B. & Saslaw, W. C. Groups of galaxies: hidden mass or quick disintegration?. Astrophys. J. 170, 199–206 (1971).

    Article  ADS  Google Scholar 

  34. 34

    Hawking, S. Gravitationally collapsed objects of very low mass. Mon. Not. R. Astron. Soc. 152, 75–78 (1971).

    Article  ADS  Google Scholar 

  35. 35

    Gott, J. R. III, Wrixon, G. T. & Wannier, P. A Study of Three Groups of Galaxies: Plausible Explanation of the Virial Mass Discrepancy. Astrophys. J. 186, 777 (1973).

  36. 36

    Cowsik, R. & McClelland, J. An upper limit on the neutrino rest mass. Phys. Rev. Lett. 29, 669–670 (1973).

    Article  ADS  Google Scholar 

  37. 37

    Abell, G. O. in Galaxies and the Universe Vol. 9 (eds Sandage, A., Sandage, M. & Kristian, J. ) Ch. 15, 601–646 (Univ. of Chicago Press, 1975).

    Google Scholar 

  38. 38

    Karachentsev, I. D. The virial mass-luminosity ratio and the instability of different galactic systems. Astrophysics 2, 39–49 (1966).

    Article  ADS  Google Scholar 

  39. 39

    Burbidge, G. R. & Sargent, W. L. W. The case of the missing mass. Comments Astrophys. Space 1, 220–225 (1969).

    ADS  Google Scholar 

  40. 40

    de Vaucouleurs, G. in Galaxies and the Universe Vol. 9 (eds Sandage, A., Sandage, M. & Kristian, J. ) Ch. 14, 557–600 (Univ. of Chicago Press, 1975).

    Google Scholar 

  41. 41

    Lindblad, B. On the state of motion in the galactic system. Mon. Not. R. Astron. Soc. 87, 553–564 (1927).

    MATH  Article  ADS  Google Scholar 

  42. 42

    Babcock, H. W. The rotation of the Andromeda nebula. Lick Observatory Bull. 19, 41–51 (1939).

    Article  ADS  Google Scholar 

  43. 43

    Mayall, N. & Aller, L. The rotation of the spiral nebula Messier 33. Astrophys. J. 95, 5–23 (1942).

    Article  ADS  Google Scholar 

  44. 44

    Ewen, H. I. & Purcell, E. M. Radiation from galactic hydrogen at 1,420 Mc./sec. Nature 168, 356 (1951).

  45. 45

    Muller, C. A. & Oort, J. H. The interstellar hydrogen line at 1,420 Mc./sec., and an estimate of galactic rotation. Nature 168, 357–358 (1951).

    Article  ADS  Google Scholar 

  46. 46

    Pawsey, J. L. The interstellar hydrogen line at 1,420 Mc./sec., and an estimate of galactic rotation. Nature 168, 358 (1951).

    Article  ADS  Google Scholar 

  47. 47

    Freeman, K. C. On the disks of spiral and S0 galaxies. Astrophys. J. 160, 811–830 (1970).

    Article  ADS  Google Scholar 

  48. 48

    Rubin, V. C. & Ford, W. K. Jr Rotation of the Andromeda nebula from a spectroscopic survey of emission regions. Astrophys. J. 159, 379–403 (1970).

    Article  ADS  Google Scholar 

  49. 49

    Roberts, M. S. & Rots, A. H. Comparison of rotation curves of different galaxy types. Astron. Astrophys. 26, 483–485 (1973).

    ADS  Google Scholar 

  50. 50

    Shostak, G. S. Aperture Synthesis Observations of Neutral Hydrogen in Three Galaxies PhD thesis, Caltech (1972).

  51. 51

    Rogstad, D. H. & Shostak, G. S. Gross properties of five Scd galaxies as determined from 21-cm observations. Astrophys. J. 176, 315–322 (1972).

    Article  ADS  Google Scholar 

  52. 52

    Rogstad, D. H., Shostak, G. S. & Rots, A. H. Aperture synthesis study of neutral hydrogen in the galaxies NGC 6946 and IC 342. Astron. Astrophys. 22, 111–119 (1973).

    ADS  Google Scholar 

  53. 53

    Brandt, J. C. On the distribution of mass in galaxies. I. The large-scale structure of ordinary spirals with applications to M31. Astrophys. J. 131, 293–303 (1960).

    Article  ADS  Google Scholar 

  54. 54

    Toomre, A. On the distribution of matter within highly flattened galaxies. Astrophys. J. 138, 385–392 (1963).

    MathSciNet  MATH  Article  ADS  Google Scholar 

  55. 55

    Huchtmeier, W. Rotation-curves of galaxies from 21 cm-line observations. Astron. Astrophys. 45, 259–268 (1975).

    ADS  Google Scholar 

  56. 56

    Emerson, D. T. & Baldwin, J. E. The rotation curve and mass distribution in M31. Mon. Not. R. Astron. Soc. 165, 9P–13P (1973).

    Article  ADS  Google Scholar 

  57. 57

    Baldwin, J. E. M/L Ratios in Galactic Disks. In Dynamics of Stellar Systems: Proc. IAU Symp. No. 69 (ed Hayli, A. ) 341–348 (D. Reidel, 1975).

    Google Scholar 

  58. 58

    Roberts, M. S. in Galaxies and the Universe Vol. 9 (eds Sandage, A., Sandage, M. & Kristian, J. ) Ch. 9, 309–358 (Univ. of Chicago Press, 1975).

    Google Scholar 

  59. 59

    Schwarzschild, M. Mass distribution and mass-luminosity ratio in galaxies. Astron. J. 59, 273–284 (1954).

    Article  ADS  Google Scholar 

  60. 60

    Smith, R. W. Beyond the galaxy: The development of extragalactic astronomy 1885–1965, Part 1. J. Hist. Astron. 39, 91–119 (2008).

    Article  ADS  Google Scholar 

  61. 61

    Smith, R. W. Beyond the galaxy: The development of extragalactic astronomy 1885–1965, Part 2. J. Hist. Astron. 40, 71–107 (2009).

    Article  ADS  Google Scholar 

  62. 62

    Roberts, M. S. Recent discoveries in radio astronomy. Phys. Today 18, 28–36 (February, 1965).

    Article  ADS  Google Scholar 

  63. 63

    Schmidt, M. 3C 273: A star-like object with large red-shift. Nature 197, 1040 (1963).

    Article  ADS  Google Scholar 

  64. 64

    Kragh, H. S. Conceptions of Cosmos: From Myths to the Accelerating Universe: A History of Cosmology (Oxford Univ. Press, 2006).

    Google Scholar 

  65. 65

    Eisenstaedt, J. The Curious History of Relativity: How Einstein's Theory of Gravity Was Lost and Found Again (Princeton Univ. Press, 2006).

    Google Scholar 

  66. 66

    van Dongen, J. Einstein's Unification (Cambridge Univ. Press, 2010).

    Google Scholar 

  67. 67

    Gold, T. After-Dinner Speech. In Quasi-Stellar Sources and Gravitational Collapse, Proc. First Texas Symp. Relativistic Astrophysics (eds Robinson, I., Schild, A. & Schucking, E. L. ) 470 (Univ. of Chicago Press, 1965).

    Google Scholar 

  68. 68

    Blum, A., Lalli, R. & Renn, J. The reinvention of general relativity: A historiographical framework for assessing one hundred years of curved space-time. Isis 106, 598–620 (2015).

    MathSciNet  Article  Google Scholar 

  69. 69

    Sciama, D. W. Modern Cosmology 1st edn (Cambridge Univ. Press, 1971).

    Google Scholar 

  70. 70

    Dressler, A. The evolution of galaxies in clusters. Ann. Rev. Astron. Astrophys. 22, 185–222 (1984).

    Article  ADS  Google Scholar 

  71. 71

    Tinsley, B. M. Evolution of the stars and gas in galaxies. Astrophys. J. 151, 547 (1968).

    Article  ADS  Google Scholar 

  72. 72

    Hewish, A., Bell, S. J., Pilkington, J. D. H., Scott, P. F. & Collins, R. A. Observation of a rapidly pulsating radio source. Nature 217, 709–713 (1968).

    Article  ADS  Google Scholar 

  73. 73

    Astronomy and Astrophysics for the 1970s: Volume 1: Report of the Astronomy Survey Committee (National Academy of Sciences, 1972).

  74. 74

    Ground-based Astronomy: A Ten-year Program (National Academy of Sciences, 1964).

  75. 75

    Astronomy and Astrophysics for the 1970s: Volume 2: Report of the Panels (National Academy of Sciences, 1973).

  76. 76

    Kaiser, D. Cold War requisitions, scientific manpower, and the production of American physicists after World War II. Hist. Stud. Phys. Biol. Sci. 33, 131–159 (2002).

    Article  Google Scholar 

  77. 77

    Kaiser, D. Whose mass is it anyway? Particle cosmology and the objects of theory. Soc. Stud. Sci. 36, 533–564 (2006).

    Article  Google Scholar 

  78. 78

    Astronomy and Astrophysics for the 1980s: Volume 2: Reports of the Panels (National Academy of Sciences, 1983).

  79. 79

    Peebles, P. J. E. Physical Cosmology (Princeton Univ. Press, 1971).

    Google Scholar 

  80. 80

    Weinberg, S. Gravitation and Cosmology: Principles and Applications of the General Theory of Relativity Vol. 41 (Wiley, 1972).

    Google Scholar 

  81. 81

    Misner, C. W., Thorne, K. S. & Wheeler, J. A. Gravitation (W. H. Freeman, 1973).

    Google Scholar 

  82. 82

    Hawking, S. W. & Ellis, G. F. R. The Large-Scale Structure of Space-Time. (Cambridge Univ. Press, 1973).

    Google Scholar 

  83. 83

    Sandage, A. R. Cosmology: A search for two numbers. Phys. Today 23, 34–41 (February, 1970).

    Article  Google Scholar 

  84. 84

    Trimble, V. H 0: The incredible shrinking constant 1925–1975. Publ. Astron. Soc. Pac. 108, 1073–1082 (1996).

    Article  ADS  Google Scholar 

  85. 85

    Burbidge, G. R. Intergalactic Matter and Radiation. In External Galaxies and Quasi-Stellar Objects, Proc. IAU Symp. No. 44 (eds Evans, D. S., Wills, D. & Wills, B. J. ) Ch. 79, 492–517 (D. Reidel, 1972).

    Google Scholar 

  86. 86

    Rindler, W. Relativistic cosmology. Phys. Today 20, 23–31 (November, 1967).

    Article  Google Scholar 

  87. 87

    Peebles, P. J. E. & Partridge, R. B. Upper limit on the mean mass density due to galaxies. Astrophys. J. 148, 713–717 (1967).

    Article  ADS  Google Scholar 

  88. 88

    Gott, J. R. III, Gunn, J. E., Schramm, D. N. & Tinsley, B. M. An unbound Universe. Astrophys. J. 194, 543–553 (1974).

    Article  ADS  Google Scholar 

  89. 89

    Shapiro, S. L. The density of matter in the form of galaxies. Astron. J. 76, 291–293 (1971).

    Article  ADS  Google Scholar 

  90. 90

    Noonan, T. W. The mean cosmic density from galaxy counts and mass data. Publ. Astron. Soc. Pac. 83, 31–34 (1971).

    Article  ADS  Google Scholar 

  91. 91

    Ostriker, J. P. & Peebles, P. J. E. A numerical study of the stability of flattened galaxies: or, can cold galaxies survive? Astrophys. J. 186, 467–480 (1973).

    Article  ADS  Google Scholar 

  92. 92

    Page, T. Average masses of the double galaxies. In Proc. Fourth Berkeley Symp. on Math. Statist. and Prob. Volume 3: Contributions to Astronomy, Meteorology, and Physics (ed Neyman, J. ) 277–306 (Univ. of Calif. Press, 1961).

    Google Scholar 

  93. 93

    Peebles, P. J. E. Structure of the Coma Cluster of galaxies. Astron. J. 75, 13–20 (1970).

    Article  ADS  Google Scholar 

  94. 94

    Page, T. Spectral lines and radial velocities of galaxies in pairs. Astrophys. J. 159, 791–797 (1970).

    Article  ADS  Google Scholar 

  95. 95

    Janssen, M. COI Stories: Explanation and evidence in the history of science. Perspect. Sci. 10, 457–522 (2002).

    MathSciNet  MATH  Article  Google Scholar 

  96. 96

    Ellis, G. & Silk, J. Scientific method: Defend the integrity of physics. Nature 516, 321–323 (2014).

    Article  ADS  Google Scholar 

  97. 97

    Popper, K. Conjectures and Refutations (Routledge, 1963).

    Google Scholar 

  98. 98

    Kuhn, T. S. in Criticism and the Growth of Knowledge (eds Lakatos, I. & Musgrave, A. ) 1–23 (Cambridge Univ. Press, 1970).

    Google Scholar 

  99. 99

    Abell, G. O. Evidence regarding second-order clustering of galaxies and interactions between clusters of galaxies. Astron. J. 66, 607–613 (1961).

    Article  ADS  Google Scholar 

  100. 100

    Longair, M. S. Observational cosmology. Rep. Prog. Phys. 34, 1125–1248 (1971).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The transcripts of the interviews are archived at the Niels Bohr Library & Archive, American Institute of Physics. We warmly thank V. Trimble for her elaborate comments and suggestions, and all interviewees for their interest and cooperation. The interviews in this article have been made possible by a grant-in-aid from the Friends of the Center for History of Physics, American Institute of Physics, and the kind support of the Department of Astrophysical Sciences, Princeton University. This work is partly financed by the Netherlands Organisation for Scientific Research (NWO; project number SPI 63-260). G.B. acknowledges support from the European Research Council through the ERC starting grant WIMPs Kairos.

Author information

Affiliations

Authors

Contributions

J.G.d.S. conducted the historical research and interviews, and prepared the manuscript. G.B. and J.v.D. defined the project, supervised the research, gave technical and conceptual advice, and contributed to the writing of the manuscript.

Corresponding author

Correspondence to J. G. de Swart.

Ethics declarations

Competing interests

The authors declare no competing financial interest.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

de Swart, J., Bertone, G. & van Dongen, J. How dark matter came to matter. Nat Astron 1, 0059 (2017). https://doi.org/10.1038/s41550-017-0059

Download citation

Further reading

Search

Quick links

Sign up for the Nature Briefing newsletter for a daily update on COVID-19 science.
Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing