Abstract
The history of the dark matter problem can be traced back to at least the 1930s, but it was not until the early 1970s that the issue of ‘missing matter’ was widely recognized as problematic. In the latter period, previously separate issues involving missing mass were brought together in a single anomaly. We argue that reference to a straightforward accumulation of evidence alone is inadequate to comprehend this episode. Rather, the rise of cosmological research, the accompanying renewed interest in the theory of relativity and changes in the manpower division of astronomy in the 1960s are key to understanding how dark matter came to matter. At the same time, this story may also enlighten us on the methodological dimensions of past practices of physics and cosmology.
This is a preview of subscription content, access via your institution
Relevant articles
Open Access articles citing this article.
-
Towards a microwave single-photon counter for searching axions
npj Quantum Information Open Access 18 May 2022
Access options
Access Nature and 54 other Nature Portfolio journals
Get Nature+, our best-value online-access subscription
$29.99 / 30 days
cancel any time
Subscribe to this journal
Receive 12 digital issues and online access to articles
$119.00 per year
only $9.92 per issue
Rent or buy this article
Prices vary by article type
from$1.95
to$39.95
Prices may be subject to local taxes which are calculated during checkout




COLLECTION OF J. EINASTO

References
Bertone, G. Particle Dark Matter: Observations, Models and Searches (Cambridge Univ. Press, 2010).
Trimble, V. Existence and nature of dark matter in the Universe. Ann. Rev. Astron. Astrophys. 25, 425–472 (1987).
Trimble, V. in Planets, Stars and Stellar Systems Vol. 5 (eds Oswalt, T. D. & Gilmore, G. ) 1091–1118 (Springer, 2013).
Sanders, R. H. The Dark Matter Problem: A Historical Perspective (Cambridge Univ. Press, 2010).
Einasto, J. Dark Matter and Cosmic Web Story (World Scientific Publishing, 2014).
Bertone, G. & Hooper, D. A history of dark matter. Preprint at http://arxiv.org/abs/1605.04909 (2016).
Kapteyn, J. C. First attempt at a theory of the arrangement and motion of the sidereal system. Astrophys. J. 55, 302–328 (1922).
Jeans, J. H. The motions of stars in a Kapteyn-Universe. Mon. Not. R. Astron. Soc. 82, 122–132 (1922).
Oort, J. H. Observational evidence confirming Lindblad's hypothesis of a rotation of the galactic system. Bull. Astron. Inst. the Netherlands 3, 275–282 (1927).
Zwicky, F. Die Rotverschiebung von extragalaktischen Nebeln. Helv. Phys. Acta 6, 110–127 (1933).
Smith, S. The mass of the Virgo cluster. Astrophys. J. 83, 23–30 (1936).
Holmberg, E. A Study of double and multiple galaxies together with inquiries into some general metagalactic problems. Ann. Observatory of Lund 6, 3–173 (1937).
Faber, S. M. & Gallagher, J. S. Masses and mass-to-light ratios of galaxies. Ann. Rev. Astron. Astrophys. 17, 135–187 (1979).
Riess, A. Dark Matter. Encyclopædia Britannica (5 April 2016); http://www.britannica.com/science/dark-matter.
Ostriker, J. P., Peebles, P. J. E. & Yahil, A. The size and mass of galaxies, and the mass of the Universe. Astrophys. J. 193, L1–L4 (1974).
Einasto, J., Kaasik, A. & Saar, E. Dynamic evidence on massive coronas of galaxies. Nature 250, 309–310 (1974).
Zwicky, F. Statistics of Clusters of Galaxies. In Proc. Third Berkeley Symp. on Math. Statist. and Prob. Volume 3: Contributions to Astronomy, Meteorology, and Physics (ed Neyman, J. ) 113–144 (Univ. of Calif. Press, 1956).
Shane, C. D. & Wirtanen, C. A. The distribution of extragalactic nebulae. Astron. J. 59, 285–304 (1954).
Abell, G. O. The Distribution of Rich Clusters of Galaxies PhD thesis, Caltech (1958).
Abell, G. O. The National Geographic Society–Palomar Observatory Sky Survey. Astron. Soc. Pac. Leafl. 8, 121–126 (1959).
Kahn, F. D. & Woltjer, L. Intergalactic matter and the galaxy. Astrophys. J. 130, 705–717 (1959).
Page, T. Masses of the double galaxies. Astron. J. 64, 53 (1959).
Ambartsumian, V. A. in La structure et l’evolution de l’universe (ed. Stoops, R. ) 241–279 (Onzième Conseil de Physique, 1958).
Burbidge, G. R. & Burbidge, E. M. The Hercules clusters of nebulae. Astrophys. J. 130, 629–640 (1959).
van den Bergh, S. The stability of clusters of galaxies. Astron. J. 66, 566–571 (1961).
Neyman, J., Page, T. & Scott, E. Conference on the Instability of Systems of Galaxies: Foreword. Astron. J. 66, 633–636 (1961).
Burbidge, G. R. Multiple Systems, Clusters, Radiogalaxies: Summary. In Problems of Extra-Galactic Research, Proc. IAU Symp. No. 15 (ed. McVittie, G. ) 258–265 (Macmillan, 1962).
Woolf, N. J. On the stabilization of clusters of galaxies by ionized gas. Astrophys. J. 148, 287–290 (1967).
Reddish, V. C. The evolution of galaxies. Q. J. R. Astron. Soc. 9, 409–423 (1968).
Finzi, A. On the validity of Newton's law at a long distance. Mon. Not. R. Astron. Soc. 127, 21–30 (1963).
Forman, W. R. A reduction of the mass deficit in clusters of galaxies by means of a negative cosmological constant. Astrophys. J. 159, 719–722 (1970).
Jackson, J. C. The dynamics of clusters of galaxies in Universes with non-zero cosmological constant, and the virial theorem mass discrepancy. Mon. Not. R. Astron. Soc. 148, 249–260 (1970).
Field, G. B. & Saslaw, W. C. Groups of galaxies: hidden mass or quick disintegration?. Astrophys. J. 170, 199–206 (1971).
Hawking, S. Gravitationally collapsed objects of very low mass. Mon. Not. R. Astron. Soc. 152, 75–78 (1971).
Gott, J. R. III, Wrixon, G. T. & Wannier, P. A Study of Three Groups of Galaxies: Plausible Explanation of the Virial Mass Discrepancy. Astrophys. J. 186, 777 (1973).
Cowsik, R. & McClelland, J. An upper limit on the neutrino rest mass. Phys. Rev. Lett. 29, 669–670 (1973).
Abell, G. O. in Galaxies and the Universe Vol. 9 (eds Sandage, A., Sandage, M. & Kristian, J. ) Ch. 15, 601–646 (Univ. of Chicago Press, 1975).
Karachentsev, I. D. The virial mass-luminosity ratio and the instability of different galactic systems. Astrophysics 2, 39–49 (1966).
Burbidge, G. R. & Sargent, W. L. W. The case of the missing mass. Comments Astrophys. Space 1, 220–225 (1969).
de Vaucouleurs, G. in Galaxies and the Universe Vol. 9 (eds Sandage, A., Sandage, M. & Kristian, J. ) Ch. 14, 557–600 (Univ. of Chicago Press, 1975).
Lindblad, B. On the state of motion in the galactic system. Mon. Not. R. Astron. Soc. 87, 553–564 (1927).
Babcock, H. W. The rotation of the Andromeda nebula. Lick Observatory Bull. 19, 41–51 (1939).
Mayall, N. & Aller, L. The rotation of the spiral nebula Messier 33. Astrophys. J. 95, 5–23 (1942).
Ewen, H. I. & Purcell, E. M. Radiation from galactic hydrogen at 1,420 Mc./sec. Nature 168, 356 (1951).
Muller, C. A. & Oort, J. H. The interstellar hydrogen line at 1,420 Mc./sec., and an estimate of galactic rotation. Nature 168, 357–358 (1951).
Pawsey, J. L. The interstellar hydrogen line at 1,420 Mc./sec., and an estimate of galactic rotation. Nature 168, 358 (1951).
Freeman, K. C. On the disks of spiral and S0 galaxies. Astrophys. J. 160, 811–830 (1970).
Rubin, V. C. & Ford, W. K. Jr Rotation of the Andromeda nebula from a spectroscopic survey of emission regions. Astrophys. J. 159, 379–403 (1970).
Roberts, M. S. & Rots, A. H. Comparison of rotation curves of different galaxy types. Astron. Astrophys. 26, 483–485 (1973).
Shostak, G. S. Aperture Synthesis Observations of Neutral Hydrogen in Three Galaxies PhD thesis, Caltech (1972).
Rogstad, D. H. & Shostak, G. S. Gross properties of five Scd galaxies as determined from 21-cm observations. Astrophys. J. 176, 315–322 (1972).
Rogstad, D. H., Shostak, G. S. & Rots, A. H. Aperture synthesis study of neutral hydrogen in the galaxies NGC 6946 and IC 342. Astron. Astrophys. 22, 111–119 (1973).
Brandt, J. C. On the distribution of mass in galaxies. I. The large-scale structure of ordinary spirals with applications to M31. Astrophys. J. 131, 293–303 (1960).
Toomre, A. On the distribution of matter within highly flattened galaxies. Astrophys. J. 138, 385–392 (1963).
Huchtmeier, W. Rotation-curves of galaxies from 21 cm-line observations. Astron. Astrophys. 45, 259–268 (1975).
Emerson, D. T. & Baldwin, J. E. The rotation curve and mass distribution in M31. Mon. Not. R. Astron. Soc. 165, 9P–13P (1973).
Baldwin, J. E. M/L Ratios in Galactic Disks. In Dynamics of Stellar Systems: Proc. IAU Symp. No. 69 (ed Hayli, A. ) 341–348 (D. Reidel, 1975).
Roberts, M. S. in Galaxies and the Universe Vol. 9 (eds Sandage, A., Sandage, M. & Kristian, J. ) Ch. 9, 309–358 (Univ. of Chicago Press, 1975).
Schwarzschild, M. Mass distribution and mass-luminosity ratio in galaxies. Astron. J. 59, 273–284 (1954).
Smith, R. W. Beyond the galaxy: The development of extragalactic astronomy 1885–1965, Part 1. J. Hist. Astron. 39, 91–119 (2008).
Smith, R. W. Beyond the galaxy: The development of extragalactic astronomy 1885–1965, Part 2. J. Hist. Astron. 40, 71–107 (2009).
Roberts, M. S. Recent discoveries in radio astronomy. Phys. Today 18, 28–36 (February, 1965).
Schmidt, M. 3C 273: A star-like object with large red-shift. Nature 197, 1040 (1963).
Kragh, H. S. Conceptions of Cosmos: From Myths to the Accelerating Universe: A History of Cosmology (Oxford Univ. Press, 2006).
Eisenstaedt, J. The Curious History of Relativity: How Einstein's Theory of Gravity Was Lost and Found Again (Princeton Univ. Press, 2006).
van Dongen, J. Einstein's Unification (Cambridge Univ. Press, 2010).
Gold, T. After-Dinner Speech. In Quasi-Stellar Sources and Gravitational Collapse, Proc. First Texas Symp. Relativistic Astrophysics (eds Robinson, I., Schild, A. & Schucking, E. L. ) 470 (Univ. of Chicago Press, 1965).
Blum, A., Lalli, R. & Renn, J. The reinvention of general relativity: A historiographical framework for assessing one hundred years of curved space-time. Isis 106, 598–620 (2015).
Sciama, D. W. Modern Cosmology 1st edn (Cambridge Univ. Press, 1971).
Dressler, A. The evolution of galaxies in clusters. Ann. Rev. Astron. Astrophys. 22, 185–222 (1984).
Tinsley, B. M. Evolution of the stars and gas in galaxies. Astrophys. J. 151, 547 (1968).
Hewish, A., Bell, S. J., Pilkington, J. D. H., Scott, P. F. & Collins, R. A. Observation of a rapidly pulsating radio source. Nature 217, 709–713 (1968).
Astronomy and Astrophysics for the 1970s: Volume 1: Report of the Astronomy Survey Committee (National Academy of Sciences, 1972).
Ground-based Astronomy: A Ten-year Program (National Academy of Sciences, 1964).
Astronomy and Astrophysics for the 1970s: Volume 2: Report of the Panels (National Academy of Sciences, 1973).
Kaiser, D. Cold War requisitions, scientific manpower, and the production of American physicists after World War II. Hist. Stud. Phys. Biol. Sci. 33, 131–159 (2002).
Kaiser, D. Whose mass is it anyway? Particle cosmology and the objects of theory. Soc. Stud. Sci. 36, 533–564 (2006).
Astronomy and Astrophysics for the 1980s: Volume 2: Reports of the Panels (National Academy of Sciences, 1983).
Peebles, P. J. E. Physical Cosmology (Princeton Univ. Press, 1971).
Weinberg, S. Gravitation and Cosmology: Principles and Applications of the General Theory of Relativity Vol. 41 (Wiley, 1972).
Misner, C. W., Thorne, K. S. & Wheeler, J. A. Gravitation (W. H. Freeman, 1973).
Hawking, S. W. & Ellis, G. F. R. The Large-Scale Structure of Space-Time. (Cambridge Univ. Press, 1973).
Sandage, A. R. Cosmology: A search for two numbers. Phys. Today 23, 34–41 (February, 1970).
Trimble, V. H 0: The incredible shrinking constant 1925–1975. Publ. Astron. Soc. Pac. 108, 1073–1082 (1996).
Burbidge, G. R. Intergalactic Matter and Radiation. In External Galaxies and Quasi-Stellar Objects, Proc. IAU Symp. No. 44 (eds Evans, D. S., Wills, D. & Wills, B. J. ) Ch. 79, 492–517 (D. Reidel, 1972).
Rindler, W. Relativistic cosmology. Phys. Today 20, 23–31 (November, 1967).
Peebles, P. J. E. & Partridge, R. B. Upper limit on the mean mass density due to galaxies. Astrophys. J. 148, 713–717 (1967).
Gott, J. R. III, Gunn, J. E., Schramm, D. N. & Tinsley, B. M. An unbound Universe. Astrophys. J. 194, 543–553 (1974).
Shapiro, S. L. The density of matter in the form of galaxies. Astron. J. 76, 291–293 (1971).
Noonan, T. W. The mean cosmic density from galaxy counts and mass data. Publ. Astron. Soc. Pac. 83, 31–34 (1971).
Ostriker, J. P. & Peebles, P. J. E. A numerical study of the stability of flattened galaxies: or, can cold galaxies survive? Astrophys. J. 186, 467–480 (1973).
Page, T. Average masses of the double galaxies. In Proc. Fourth Berkeley Symp. on Math. Statist. and Prob. Volume 3: Contributions to Astronomy, Meteorology, and Physics (ed Neyman, J. ) 277–306 (Univ. of Calif. Press, 1961).
Peebles, P. J. E. Structure of the Coma Cluster of galaxies. Astron. J. 75, 13–20 (1970).
Page, T. Spectral lines and radial velocities of galaxies in pairs. Astrophys. J. 159, 791–797 (1970).
Janssen, M. COI Stories: Explanation and evidence in the history of science. Perspect. Sci. 10, 457–522 (2002).
Ellis, G. & Silk, J. Scientific method: Defend the integrity of physics. Nature 516, 321–323 (2014).
Popper, K. Conjectures and Refutations (Routledge, 1963).
Kuhn, T. S. in Criticism and the Growth of Knowledge (eds Lakatos, I. & Musgrave, A. ) 1–23 (Cambridge Univ. Press, 1970).
Abell, G. O. Evidence regarding second-order clustering of galaxies and interactions between clusters of galaxies. Astron. J. 66, 607–613 (1961).
Longair, M. S. Observational cosmology. Rep. Prog. Phys. 34, 1125–1248 (1971).
Acknowledgements
The transcripts of the interviews are archived at the Niels Bohr Library & Archive, American Institute of Physics. We warmly thank V. Trimble for her elaborate comments and suggestions, and all interviewees for their interest and cooperation. The interviews in this article have been made possible by a grant-in-aid from the Friends of the Center for History of Physics, American Institute of Physics, and the kind support of the Department of Astrophysical Sciences, Princeton University. This work is partly financed by the Netherlands Organisation for Scientific Research (NWO; project number SPI 63-260). G.B. acknowledges support from the European Research Council through the ERC starting grant WIMPs Kairos.
Author information
Authors and Affiliations
Contributions
J.G.d.S. conducted the historical research and interviews, and prepared the manuscript. G.B. and J.v.D. defined the project, supervised the research, gave technical and conceptual advice, and contributed to the writing of the manuscript.
Corresponding author
Ethics declarations
Competing interests
The authors declare no competing financial interest.
Rights and permissions
About this article
Cite this article
de Swart, J., Bertone, G. & van Dongen, J. How dark matter came to matter. Nat Astron 1, 0059 (2017). https://doi.org/10.1038/s41550-017-0059
Received:
Accepted:
Published:
DOI: https://doi.org/10.1038/s41550-017-0059
This article is cited by
-
Towards a microwave single-photon counter for searching axions
npj Quantum Information (2022)
-
Ultra-weak gravitational field detected
Nature (2021)
-
A philosophical history of programmatic assessment: tracing shifting configurations
Advances in Health Sciences Education (2021)
-
Gravitational-wave physics and astronomy in the 2020s and 2030s
Nature Reviews Physics (2021)