Abstract
HD 219134 is a K-dwarf star at a distance of 6.5 parsecs around which several low-mass planets were recently discovered1,2. The Spitzer Space Telescope detected a transit of the innermost of these planets, HD 219134 b, whose mass and radius (4.5 M⊕ and 1.6 R⊕ respectively) are consistent with a rocky composition1. Here, we report new high-precision time-series photometry of the star acquired with Spitzer revealing that the second innermost planet of the system, HD 219134c, is also transiting. A global analysis of the Spitzer transit light curves and the most up-to-date HARPS-N velocity data set yields mass and radius estimations of 4.74 ± 0.19 M⊕ and 1.602 ± 0.055 R⊕ for HD 219134 b, and of 4.36 ± 0.22 M⊕ and 1.511 ± 0.047 R⊕ for HD 219134 c. These values suggest rocky compositions for both planets. Thanks to the proximity and the small size of their host star (0.778 ± 0.005 R⊙)3, these two transiting exoplanets — the nearest to the Earth yet found — are well suited for a detailed characterization (for example, precision of a few per cent on mass and radius, and constraints on the atmospheric properties) that could give important constraints on the nature and formation mechanism of the ubiquitous short-period planets of a few Earth masses.
This is a preview of subscription content, access via your institution
Access options
Access Nature and 54 other Nature Portfolio journals
Get Nature+, our best-value online-access subscription
$29.99 / 30 days
cancel any time
Subscribe to this journal
Receive 12 digital issues and online access to articles
$119.00 per year
only $9.92 per issue
Buy this article
- Purchase on SpringerLink
- Instant access to full article PDF
Prices may be subject to local taxes which are calculated during checkout
Similar content being viewed by others
References
Motalebi, F. et al. The HARPS-N rocky planet search. I. HD 219134 b: a transiting rocky planet in a multi-planet system at 6.5 pc from the Sun. Astron. Astrophys. 584, A72 (2015).
Vogt, S. S. et al. Six planets orbiting HD 219134. Astrophys. J. 814, 12 (2015).
Boyajian, T. S. et al. Stellar diameters and temperatures. II. Main-sequence K- and M-stars. Astrophys. J. 757, 112 (2012).
Gillon, M. et al. An educated search for transiting habitable planets: targetting M dwarfs with known transiting planets. Astron. Astrophys. 525, A32 (2011).
Cosentino, R. et al. HARPS-N: the new planet hunter at TNG. Proc. SPIE http://dx.doi.org/10.1117/12.925738 (2012).
Fazio, G. G. et al. The Infrared Array Camera (IRAC) for the Spitzer Space Telescope. Astrophys. J. Suppl. Ser. 154, 10–17 (2004).
Ingalls, J. G. et al. Intra-pixel gain variations and high-precision photometry with the Infrared Array Camera (IRAC). Proc. SPIE http://dx.doi.org/10.1117/12.926947 (2012).http://dx.doi.org/10.1117/12.926947
Knutson, H. A., Charbonneau, D., Allen, L. E., Burrows, A. & Megeath, S. T. The 3.6-8.0 μm broadband emission spectrum of HD 209458b: evidence for an atmospheric temperature inversion. Astrophys. J. 673, 526–531 (2008).
Gillon, M. et al. The TRAPPIST survey of southern transiting planets. I. Thirty eclipses of the ultra-short period planet WASP-43 b. Astron. Astrophys. 542, A4 (2012).
Mandel, K. & Agol, E. Analytic light curves for planetary transit searches. Astrophys. J. 580, 171–175 (2002).
Schwarz, G. E. Estimating the dimension of a model. Ann. Stat. 6, 461–464 (1978).
Jeffreys, H. The Theory of Probability 3rd edn (Oxford Univ. Press, 1998).
Scuflaire, R. et al. The Liège oscillation code. Astrophys. Space Sci. 316, 149–154 (2008).
Johnson, M. C. et al. A 12-year activity cycle for the nearby planet host star HD 219134. Astrophys. J. 821, 74 (2016).
Ramírez, I. et al. Lithium abundances in nearby FGK dwarf and subgiant stars: internal destruction, galactic chemical evolution, and exoplanets. Astrophys. J. 756, 46 (2012).
Ramírez, I., Allende Prieto, C. & Lambert, D. L. Oxygen abundances in nearby FGK stars and the galactic chemical evolution of the local disk and halo. Astrophys. J. 764, 78 (2013).
Pace, G. Chromospheric activity as age indicator. An L-shaped chromospheric-activity versus age diagram. Astron. Astrophys. 551, L8 (2013).
Goldreich, P. & Soter, S. Q in the Solar System. Icarus 5, 375–389 (1966).
Murray, C. D. & Dermott, S. F. Solar System Dynamics (Cambridge Univ. Press, 2001).
Zeng, L. & Sasselov, D. A detailed model grid for solid planets from 0.1 through 100 Earth masses. Publ. Astron. Soc. Pacif. 125, 227–239 (2013).
Zeng, L., Sasselov, D. D. & Jacobsen, S. B. Mass–radius relation for rocky planets based on PREM. Astrophys. J. 819, 127 (2016).
Miller-Ricci, E., Seager, S. & Sasselov, D. The atmospheric signatures of super-Earths: how to distinguish between hydrogen-rich and hydrogen-poor atmospheres. Astrophys. J. 690, 1056–1067 (2009).
Kley, W & Nelson, R. P. Planet–disk interaction and orbital evolution. Annu. Rev. Astron. Astrophys. 50, 211–249 (2012).
Hansen, B. M. S. & Murray, N. Migration then assembly: formation of Neptune-mass planets inside 1 AU, Astrophys. J. 751, 158 (2012).
Chatterjee, S. & Tan, J. C. Inside-out planet formation, Astrophys. J. 780, 53 (2014).
Hansen, B. M. S. & Murray, N. Testing in situ assembly with the Kepler planet candidate sample. Astrophys. J. 775, 53 (2013).
Chatterjee, S. & Tan, J. C. Vulcan planets: inside-out formation of the innermost super-Earths. Astrophys. J. 798, L32 (2015).
Martin, R. G. & Livio, M. On the formation of super-Earths with implications for the Solar System. Astrophys. J. 822, 90 (2016).
Ricker, G. R. et al. The transiting exoplanet survey satellite (TESS). Proc. SPIE http://dx.doi.org/10.1117/12.2063489 (2014).
Fortier, A. et al. CHEOPS: a space telescope for ultra-high precision photometry of exoplanet transits. Proc. SPIE http://dx.doi.org/10.1117/12.2056687 (2014).
Meschiari, S. et al. Systemic: a testbed for characterizing the detection of extrasolar planets. I. The Systemic Console package. Publ. Astron. Soc. Pacif. 121, 1016–1027 (2009).
Baranne, A. et al. ELODIE: a spectrograph for accurate radial velocity measurements. Astron. Astrophys. Suppl. 119, 373–390 (1996).
Noyes, R. W. et al. Rotation, convection, and magnetic activity in lower main-sequence stars. Astrophys. J. 279, 763–777 (1984).
Wright, J. T. Radial velocity jitter in stars from the California and Carnegie Planet Search at Keck Observatory. Publ. Astron. Soc. Pacif. 117, 657–664 (2005).
Maldonado, J. & Villaver, E. Evolved stars and the origin of abundance trends in planet hosts. Astron. Astrophys. 588, A98 (2016)
Asplund, M., Grevesse, N., Sauval, A. J. & Scott, P. The chemical composition of the Sun. Annu. Rev. Astron. Astrophys. 47, 481–452 (2009).
Thoul, A., Bahcall, J. N. & Loeb, A. Element diffusion in the solar interior. Astrophys. J. 421, 828–842 (1994).
Claret, A. A new non-linear limb-darkening law for LTE stellar atmosphere models. Calculations for –5.0 ≤ log[M/H] ≤ +1, 2000K ≤ Teff ≤ 50000 K at several surface gravities. Astron. Astrophys. 363, 1081–1190 (2000).
Claret, A. & Bloemen, S. Gravity and limb-darkening coefficients for the Kepler, CoRoT, Spitzer, uvby, UBVRIJHK, and Sloan photometric systems. Astron. Astrophys. 529, A75 (2011).
Stevenson, K. B. et al. Transit and eclipse analyses of the exoplanet HD 149026b using BLISS mapping. Astrophys. J. 754, 136 (2012).
Gelman, A. & Rubin, D. B. Inference from iterative simulation using multiple sequences. Stat. Sci. 7, 457–472 (1992).
Winn, J. N. Exoplanets transits and occultations. Exoplanets (ed. Seager, S. ) 55–77 (Univ. Arizona Press, 2010).
Lovis, C. & Fischer, D. A. Radial velocity technique for exoplanets, in Exoplanets (ed. Seager S., ) 27–53 (Univ. Arizona Press, 2010).
Kasting, J. F., Whitmire, D. P. & Reynolds, R. T. Habitable zones around main-sequence stars. Icarus 101, 108–128 (1993).
de Wit, J. & Seager, S. Constraining exoplanet mass from transmission spectroscopy. Science 342, 1473–1477 (2013).
Tsiaras, A. et al. Detection of an atmosphere around the super-Earth 55 Cancri e. Astrophys. J. 820, 99 (2016).
Clampin, M. The James Webb Space Telescope: capabilities for transiting exoplanets observations. Proc. Pathways Towards Habitable Planets (16 July 2015); https://pathways2015.sciencesconf.org/66278
Schlawin, E. et al. Two NIRCAM channels are better than one: how JWST can do more science with NIRCAM’s short-wavelength dispersed Hartmann sensor. Publ. Astron. Soc. Pacif., 129, 015001 (2017).
Ridden-Harper, A. A. et al. Search for an exosphere in sodium and calcium in the transmission spectrum of exoplanet 55 Cancri e. Astron. Astrophys. 593, A219 (2016).
Ehrenreich, D. et al. A giant comet-like cloud of hydrogen escaping the warm Neptune-mass exoplanet GJ 436 b. Nature 522, 459–461 (2015).
Acknowledgements
This work is based in part on observations made with the Spitzer Space Telescope, which is operated by the Jet Propulsion Laboratory, California Institute of Technology, under a contract with NASA. Support for this work was provided by NASA. M.G. is grateful to NASA and SSC Director for having supported his searches for RV planets with Spitzer. M.G. and V.V.G. are Research Associates at the Belgian Scientific Research Fund (F.R.S.-FNRS). The research leading to these results has received funding from the ARC grant for Concerted Research Actions, financed by the Wallonia–Brussels Federation. The authors thank N. Lewis for information on the potential for atmospheric characterization of HD 219134 b and c with JWST.
Author information
Authors and Affiliations
Contributions
M.G. led the HD 219134 b+c transit search with Spitzer, planned and analysed the Spitzer observations, performed the global analysis of the Spitzer and HARPS-N data, and wrote most of the manuscript. B.-O.D. performed an independent analysis of the Spitzer data to verify M.G.’s results. V.V.G. performed the stellar evolutionary modelling of the host star. A.C.C., D.C., D.L., C.L., E.M., F.M., G.M., M.M., F.A.P., G.P., D.Sa., D.Sé., A.S. and S.U. form the HARPS-N science team which managed the RV monitoring of the system. All authors contributed to the writing of the manuscript.
Corresponding author
Ethics declarations
Competing interests
The authors declare no competing financial interests.
Supplementary information
Supplementary Information
Supplementary Figures 1–2 and Supplementary Tables 1–3. (PDF 707 kb)
Rights and permissions
About this article
Cite this article
Gillon, M., Demory, BO., Van Grootel, V. et al. Two massive rocky planets transiting a K-dwarf 6.5 parsecs away. Nat Astron 1, 0056 (2017). https://doi.org/10.1038/s41550-017-0056
Received:
Accepted:
Published:
DOI: https://doi.org/10.1038/s41550-017-0056
This article is cited by
-
The Exosphere as a Boundary: Origin and Evolution of Airless Bodies in the Inner Solar System and Beyond Including Planets with Silicate Atmospheres
Space Science Reviews (2022)
-
Transit detection of the long-period volatile-rich super-Earth ν2 Lupi d with CHEOPS
Nature Astronomy (2021)
-
A compact multi-planet system around a bright nearby star from the Dispersed Matter Planet Project
Nature Astronomy (2019)
-
A Catalog of Smaller Planets
Earth, Moon, and Planets (2019)