Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

A likely decade-long sustained tidal disruption event


Multiwavelength flares from tidal disruption and accretion of stars can be used to find and study otherwise dormant massive black holes in galactic nuclei1. Previous well-monitored candidate flares were short-lived, with most emission confined to within 1 year25. Here we report the discovery of a well-observed super-long (>11 years) luminous X-ray flare from the nuclear region of a dwarf starburst galaxy. After an apparently fast rise within 4 months a decade ago, the X-ray luminosity, though showing a weak trend of decay, has been persistently high at around the Eddington limit (when the radiation pressure balances the gravitational force). The X-ray spectra are soft — steeply declining towards higher energies — and can be described with Comptonized emission from an optically thick low-temperature corona, a super-Eddington accretion signature often observed in accreting stellar-mass black holes6. Dramatic spectral softening was also caught in one recent observation, implying either a temporary transition from the super-Eddington accretion state to the standard thermal state, or the presence of a transient highly blueshifted (0.36c) warm absorber. All these properties in concert suggest a tidal disruption event with an unusually long super-Eddington accretion phase that has never before been observed.

This is a preview of subscription content

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: The CFHT/MegaPrime r′-band image around the field of XJ1500+0154 indicates its galactic nuclear origin.
Figure 2: The long-term evolution of the X-ray luminosity and spectrum of XJ1500+0154.


  1. 1

    Rees, M. J. Tidal disruption of stars by black holes of 10 to the 6th-10 to the 8th solar masses in nearby galaxies. Nature 333, 523–528 (1988).

    Article  ADS  Google Scholar 

  2. 2

    Gezari, S. et al. An ultraviolet-optical flare from the tidal disruption of a helium-rich stellar core. Nature 485, 217–220 (2012).

    Article  ADS  Google Scholar 

  3. 3

    Zauderer, B. A. et al. Radio monitoring of the tidal disruption event Swift J164449.3+573451. II. The relativistic jet shuts off and a transition to forward shock X-ray/radio emission. Astrophys. J. 767, 152 (2013).

    Article  ADS  Google Scholar 

  4. 4

    Miller, J. M. et al. Flows of X-ray gas reveal the disruption of a star by a massive black hole. Nature 526, 542–545 (2015).

    Article  ADS  Google Scholar 

  5. 5

    van Velzen, S. et al. A radio jet from the optical and X-ray bright stellar tidal disruption flare ASASSN-14li. Science 351, 62–65 (2016).

    Article  ADS  Google Scholar 

  6. 6

    Middleton, M. J. et al. Bright radio emission from an ultraluminous stellar-mass microquasar in M 31. Nature 493, 187–190 (2013).

    Article  ADS  Google Scholar 

  7. 7

    Randall, S. W. et al. A very deep Chandra observation of the galaxy group NGC 5813: AGN shocks, feedback, and outburst history. Astrophys. J. 805, 112 (2015).

    Article  ADS  Google Scholar 

  8. 8

    Reines, A. E. & Volonteri, M. Relations between central black hole mass and total galaxy stellar mass in the local universe. Astrophys. J. 813, 82 (2015).

    Article  ADS  Google Scholar 

  9. 9

    Gierliński, M. & Done, C. Is the soft excess in active galactic nuclei real? Mon. Not. R. Astron. Soc. 349, L7–L11 (2004).

    Article  ADS  Google Scholar 

  10. 10

    Titarchuk, L. Generalized Comptonization models and application to the recent high-energy observations. Astrophys. J. 434, 570–586 (1994).

    Article  ADS  Google Scholar 

  11. 11

    Gladstone, J. C., Roberts, T. P. & Done, C. The ultraluminous state. Mon. Not. R. Astron. Soc. 397, 1836–1851 (2009).

    Article  ADS  Google Scholar 

  12. 12

    Lin, D., Irwin, J. A., Webb, N. A., Barret, D. & Remillard, R. A. Discovery of a highly variable dipping ultraluminous X-ray source in M94. Astrophys. J. 779, 149 (2013).

    Article  ADS  Google Scholar 

  13. 13

    King, A. & Muldrew, S. I. Black hole winds II: hyper-Eddington winds and feedback. Mon. Not. R. Astron. Soc. 455, 1211–1217 (2016).

    Article  ADS  Google Scholar 

  14. 14

    Pinto, C., Middleton, M. J. & Fabian, A. C. Resolved atomic lines reveal outflows in two ultraluminous X-ray sources. Nature 553, 64–67 (2016).

    Article  ADS  Google Scholar 

  15. 15

    Ulmer, A. Flares from the tidal disruption of stars by massive black holes. Astrophys. J. 514, 180–187 (1999).

    Article  ADS  Google Scholar 

  16. 16

    Ohsuga, K. & Mineshige, S. Why is supercritical disk accretion feasible? Astrophys. J. 670, 1283–1290 (2007).

    Article  ADS  Google Scholar 

  17. 17

    Krolik, J. H. & Piran, T. Jets from tidal disruptions of stars by black holes. Astrophys. J. 749, 92 (2012).

    Article  ADS  Google Scholar 

  18. 18

    Kochanek, C. S. The aftermath of tidal disruption: the dynamics of thin gas streams. Astrophys. J. 422, 508–520 (1994).

    Article  ADS  Google Scholar 

  19. 19

    Guillochon, J. & Ramirez-Ruiz, E. A dark year for tidal disruption events. Astrophys. J. 809, 166 (2015).

    Article  ADS  Google Scholar 

  20. 20

    Piran, T., Svirski, G., Krolik, J., Cheng, R. M. & Shiokawa, H. Disk formation versus disk accretion: what powers tidal disruption events? Astrophys. J. 806, 164 (2015).

    Article  ADS  Google Scholar 

  21. 21

    Shiokawa, H., Krolik, J. H., Cheng, R. M., Piran, T. & Noble, S. C. General relativistic hydrodynamic simulation of accretion flow from a stellar tidal disruption. Astrophys. J. 804, 85 (2015).

    Article  ADS  Google Scholar 

  22. 22

    Hayasaki, K., Stone, N. & Loeb, A. Circularization of tidally disrupted stars around spinning supermassive black holes. Mon. Not. R. Astron. Soc. 461, 3760–3780 (2016).

    Article  ADS  Google Scholar 

  23. 23

    Li, L.-X., Narayan, R. & Menou, K. The giant X-ray flare of NGC 5905: tidal disruption of a star, a brown dwarf, or a planet? Astrophys. J. 576, 753–761 (2002).

    Article  ADS  Google Scholar 

  24. 24

    Komossa, S. et al. A huge drop in the X-ray luminosity of the nonactive galaxy RX J1242.6-1119A, and the first postflare spectrum: testing the tidal disruption scenario. Astrophys. J. 603, L17–L20 (2004).

    Article  ADS  Google Scholar 

  25. 25

    Donley, J. L., Brandt, W. N., Eracleous, M. & Boller, T. Large-amplitude X-ray outbursts from galactic nuclei: a systematic survey using ROSAT archival data. Astron. J. 124, 1308–1321 (2002).

    Article  ADS  Google Scholar 

  26. 26

    Kochanek, C. S. Tidal disruption event demographics. Mon. Not. R. Astron. Soc. 461, 371–384 (2016).

    Article  ADS  Google Scholar 

  27. 27

    Mortlock, D. J. et al. A luminous quasar at a redshift of z = 7.085. Nature 474, 616–619 (2011).

    Article  ADS  Google Scholar 

  28. 28

    Volonteri, M. & Rees, M. J. Rapid growth of high-redshift black holes. Astrophys. J. 633, 624–629 (2005).

    Article  ADS  Google Scholar 

  29. 29

    Martínez-Sansigre, A. et al. The obscuration by dust of most of the growth of supermassive black holes. Nature 436, 666–669 (2005).

    Article  ADS  Google Scholar 

  30. 30

    Maksym, W. P., Ulmer, M. P., Eracleous, M. C., Guennou, L. & Ho, L. C. A tidal flare candidate in Abell 1795. Mon. Not. R. Astron. Soc. 435, 1904–1927 (2013).

    Article  ADS  Google Scholar 

  31. 31

    Jansen, F. et al. XMM-Newton observatory. I. The spacecraft and operations. Astron. Astrophys. 365, L1–L6 (2001).

    Article  ADS  Google Scholar 

  32. 32

    Strüder, L. et al. The European Photon Imaging Camera on XMM-Newton: the pn-CCD camera. Astron. Astrophys. 365, L18–L26 (2001).

    Article  ADS  Google Scholar 

  33. 33

    Turner, M. J. L. et al. The European Photon Imaging Camera on XMM-Newton: the MOS cameras. Astron. Astrophys. 365, L27–L35 (2001).

    Article  ADS  Google Scholar 

  34. 34

    Watson, M. G. et al. The XMM-Newton serendipitous survey. V. The Second XMM-Newton serendipitous source catalogue. Astron. Astrophys. 493, 339–373 (2009).

    Article  ADS  Google Scholar 

  35. 35

    Bautz, M. W. et al. in Society of Photo-Optical Instrumentation Engineers Conference Series Vol. 3444 (eds Hoover, R. B. & Walker, A. B.) 210–224 (SPIE, 1998).

  36. 36

    Gregory, P. C. & Loredo, T. J. A new method for the detection of a periodic signal of unknown shape and period. Astrophys. J. 398, 146–168 (1992).

    Article  ADS  Google Scholar 

  37. 37

    Evans, I. N. et al. The Chandra source catalog. Astrophys. J. Suppl. Ser. 189, 37–82 (2010).

    Article  ADS  Google Scholar 

  38. 38

    Freeman, P. E., Kashyap, V., Rosner, R. & Lamb, D. Q. A wavelet-based algorithm for the spatial analysis of Poisson data. Astrophys. J. Suppl. Ser. 138, 185–218 (2002).

    Article  ADS  Google Scholar 

  39. 39

    Boulade, O. et al. in Instrument Design and Performance for Optical/Infrared Ground-based Telescopes (eds Iye, M. & Moorwood, A. F. M.) 72–81 (Society of Photo-Optical Instrumentation Engineers Conference Series Vol. 4841, 2003).

  40. 40

    Randall, S. W. et al. Shocks and cavities from multiple outbursts in the galaxy group NGC 5813: a window to active galactic nucleus feedback. Astrophys. J. 726, 86 (2011).

    Article  ADS  Google Scholar 

  41. 41

    Kim, M. et al. Chandra multiwavelength project X-ray point source catalog. Astrophys. J. Suppl. Ser. 169, 401–429 (2007).

    Article  ADS  Google Scholar 

  42. 42

    Lin, D. et al. Discovery of the candidate off-nuclear ultrasoft hyper-luminous X-ray source 3XMM J141711.1+522541. Astrophys. J. 821, 25 (2016).

    Article  ADS  Google Scholar 

  43. 43

    Gehrels, N. et al. The Swift gamma-ray burst mission. Astrophys. J. 611, 1005–1020 (2004).

    Article  ADS  Google Scholar 

  44. 44

    Burrows, D. N. et al. The Swift X-ray telescope. Space Sci. Rev. 120, 165–195 (2005).

    Article  ADS  Google Scholar 

  45. 45

    Roming, P. W. A. et al. The Swift ultra-violet/optical telescope. Space Sci. Rev. 120, 95–142 (2005).

    Article  ADS  Google Scholar 

  46. 46

    Gwyn, S. D. J. MegaPipe: the MegaCam image stacking pipeline at the Canadian Astronomical Data Centre. Publ. Astron. Soc. Pacif. 120, 212–223 (2008).

    Article  ADS  Google Scholar 

  47. 47

    Abazajian, K. N. et al. The seventh data release of the Sloan Digital Sky Survey. Astrophys. J. Suppl. Ser. 182, 543–558 (2009).

    Article  ADS  Google Scholar 

  48. 48

    Peng, C. Y., Ho, L. C., Impey, C. D. & Rix, H.-W. Detailed decomposition of galaxy images. II. Beyond axisymmetric models. Astron. J. 139, 2097–2129 (2010).

    Article  ADS  Google Scholar 

  49. 49

    Arnaud, K. A. in Astronomical Data Analysis Software and Systems V (eds Jacoby, G. H. & Barnes, J.) 17 (Astronomical Society of the Pacific Conference Series, Vol. 101, 1996).

  50. 50

    Kalberla, P. M. W. et al. The Leiden/Argentine/Bonn (LAB) Survey of Galactic HI. Final data release of the combined LDS and IAR surveys with improved stray-radiation corrections. Astron. Astrophys. 440, 775–782 (2005).

    Article  ADS  Google Scholar 

  51. 51

    Wilms, J., Allen, A. & McCray, R. On the absorption of X-rays in the interstellar medium. Astrophys. J. 542, 914–924 (2000).

    Article  ADS  Google Scholar 

Download references


D.L. is supported by the National Aeronautics and Space Administration through Chandra Award Number GO5-16087X issued by the Chandra X-ray Observatory Center, which is operated by the Smithsonian Astrophysical Observatory for and on behalf of the National Aeronautics Space Administration under contract NAS8-03060. We thank the Swift principal investigator N. Gehrels for approving our ToO request to make several observations of XJ1500+0154.

Author information




D.L. wrote the main manuscript and led the data analysis. J.G. helped with the modelling of the long-term X-ray light curve and wrote the text on the modelling in the Supplementary Information. S.G. stacked the CFHT images. All authors discussed the results and commented on the manuscript.

Corresponding author

Correspondence to Dacheng Lin.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Notes 1–13, Supplementary Tables 1–2, Supplementary Figures 1–8, Supplementary References. (PDF 646 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Lin, D., Guillochon, J., Komossa, S. et al. A likely decade-long sustained tidal disruption event. Nat Astron 1, 0033 (2017).

Download citation

Further reading


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing