Abstract
Multiwavelength flares from tidal disruption and accretion of stars can be used to find and study otherwise dormant massive black holes in galactic nuclei1. Previous well-monitored candidate flares were short-lived, with most emission confined to within ∼1 year2–5. Here we report the discovery of a well-observed super-long (>11 years) luminous X-ray flare from the nuclear region of a dwarf starburst galaxy. After an apparently fast rise within ∼4 months a decade ago, the X-ray luminosity, though showing a weak trend of decay, has been persistently high at around the Eddington limit (when the radiation pressure balances the gravitational force). The X-ray spectra are soft — steeply declining towards higher energies — and can be described with Comptonized emission from an optically thick low-temperature corona, a super-Eddington accretion signature often observed in accreting stellar-mass black holes6. Dramatic spectral softening was also caught in one recent observation, implying either a temporary transition from the super-Eddington accretion state to the standard thermal state, or the presence of a transient highly blueshifted (∼0.36c) warm absorber. All these properties in concert suggest a tidal disruption event with an unusually long super-Eddington accretion phase that has never before been observed.
This is a preview of subscription content, access via your institution
Access options
Access Nature and 54 other Nature Portfolio journals
Get Nature+, our best-value online-access subscription
$29.99 / 30 days
cancel any time
Subscribe to this journal
Receive 12 digital issues and online access to articles
$119.00 per year
only $9.92 per issue
Buy this article
- Purchase on SpringerLink
- Instant access to full article PDF
Prices may be subject to local taxes which are calculated during checkout
Similar content being viewed by others
References
Rees, M. J. Tidal disruption of stars by black holes of 10 to the 6th-10 to the 8th solar masses in nearby galaxies. Nature 333, 523–528 (1988).
Gezari, S. et al. An ultraviolet-optical flare from the tidal disruption of a helium-rich stellar core. Nature 485, 217–220 (2012).
Zauderer, B. A. et al. Radio monitoring of the tidal disruption event Swift J164449.3+573451. II. The relativistic jet shuts off and a transition to forward shock X-ray/radio emission. Astrophys. J. 767, 152 (2013).
Miller, J. M. et al. Flows of X-ray gas reveal the disruption of a star by a massive black hole. Nature 526, 542–545 (2015).
van Velzen, S. et al. A radio jet from the optical and X-ray bright stellar tidal disruption flare ASASSN-14li. Science 351, 62–65 (2016).
Middleton, M. J. et al. Bright radio emission from an ultraluminous stellar-mass microquasar in M 31. Nature 493, 187–190 (2013).
Randall, S. W. et al. A very deep Chandra observation of the galaxy group NGC 5813: AGN shocks, feedback, and outburst history. Astrophys. J. 805, 112 (2015).
Reines, A. E. & Volonteri, M. Relations between central black hole mass and total galaxy stellar mass in the local universe. Astrophys. J. 813, 82 (2015).
Gierliński, M. & Done, C. Is the soft excess in active galactic nuclei real? Mon. Not. R. Astron. Soc. 349, L7–L11 (2004).
Titarchuk, L. Generalized Comptonization models and application to the recent high-energy observations. Astrophys. J. 434, 570–586 (1994).
Gladstone, J. C., Roberts, T. P. & Done, C. The ultraluminous state. Mon. Not. R. Astron. Soc. 397, 1836–1851 (2009).
Lin, D., Irwin, J. A., Webb, N. A., Barret, D. & Remillard, R. A. Discovery of a highly variable dipping ultraluminous X-ray source in M94. Astrophys. J. 779, 149 (2013).
King, A. & Muldrew, S. I. Black hole winds II: hyper-Eddington winds and feedback. Mon. Not. R. Astron. Soc. 455, 1211–1217 (2016).
Pinto, C., Middleton, M. J. & Fabian, A. C. Resolved atomic lines reveal outflows in two ultraluminous X-ray sources. Nature 553, 64–67 (2016).
Ulmer, A. Flares from the tidal disruption of stars by massive black holes. Astrophys. J. 514, 180–187 (1999).
Ohsuga, K. & Mineshige, S. Why is supercritical disk accretion feasible? Astrophys. J. 670, 1283–1290 (2007).
Krolik, J. H. & Piran, T. Jets from tidal disruptions of stars by black holes. Astrophys. J. 749, 92 (2012).
Kochanek, C. S. The aftermath of tidal disruption: the dynamics of thin gas streams. Astrophys. J. 422, 508–520 (1994).
Guillochon, J. & Ramirez-Ruiz, E. A dark year for tidal disruption events. Astrophys. J. 809, 166 (2015).
Piran, T., Svirski, G., Krolik, J., Cheng, R. M. & Shiokawa, H. Disk formation versus disk accretion: what powers tidal disruption events? Astrophys. J. 806, 164 (2015).
Shiokawa, H., Krolik, J. H., Cheng, R. M., Piran, T. & Noble, S. C. General relativistic hydrodynamic simulation of accretion flow from a stellar tidal disruption. Astrophys. J. 804, 85 (2015).
Hayasaki, K., Stone, N. & Loeb, A. Circularization of tidally disrupted stars around spinning supermassive black holes. Mon. Not. R. Astron. Soc. 461, 3760–3780 (2016).
Li, L.-X., Narayan, R. & Menou, K. The giant X-ray flare of NGC 5905: tidal disruption of a star, a brown dwarf, or a planet? Astrophys. J. 576, 753–761 (2002).
Komossa, S. et al. A huge drop in the X-ray luminosity of the nonactive galaxy RX J1242.6-1119A, and the first postflare spectrum: testing the tidal disruption scenario. Astrophys. J. 603, L17–L20 (2004).
Donley, J. L., Brandt, W. N., Eracleous, M. & Boller, T. Large-amplitude X-ray outbursts from galactic nuclei: a systematic survey using ROSAT archival data. Astron. J. 124, 1308–1321 (2002).
Kochanek, C. S. Tidal disruption event demographics. Mon. Not. R. Astron. Soc. 461, 371–384 (2016).
Mortlock, D. J. et al. A luminous quasar at a redshift of z = 7.085. Nature 474, 616–619 (2011).
Volonteri, M. & Rees, M. J. Rapid growth of high-redshift black holes. Astrophys. J. 633, 624–629 (2005).
Martínez-Sansigre, A. et al. The obscuration by dust of most of the growth of supermassive black holes. Nature 436, 666–669 (2005).
Maksym, W. P., Ulmer, M. P., Eracleous, M. C., Guennou, L. & Ho, L. C. A tidal flare candidate in Abell 1795. Mon. Not. R. Astron. Soc. 435, 1904–1927 (2013).
Jansen, F. et al. XMM-Newton observatory. I. The spacecraft and operations. Astron. Astrophys. 365, L1–L6 (2001).
Strüder, L. et al. The European Photon Imaging Camera on XMM-Newton: the pn-CCD camera. Astron. Astrophys. 365, L18–L26 (2001).
Turner, M. J. L. et al. The European Photon Imaging Camera on XMM-Newton: the MOS cameras. Astron. Astrophys. 365, L27–L35 (2001).
Watson, M. G. et al. The XMM-Newton serendipitous survey. V. The Second XMM-Newton serendipitous source catalogue. Astron. Astrophys. 493, 339–373 (2009).
Bautz, M. W. et al. in Society of Photo-Optical Instrumentation Engineers Conference Series Vol. 3444 (eds Hoover, R. B. & Walker, A. B.) 210–224 (SPIE, 1998).
Gregory, P. C. & Loredo, T. J. A new method for the detection of a periodic signal of unknown shape and period. Astrophys. J. 398, 146–168 (1992).
Evans, I. N. et al. The Chandra source catalog. Astrophys. J. Suppl. Ser. 189, 37–82 (2010).
Freeman, P. E., Kashyap, V., Rosner, R. & Lamb, D. Q. A wavelet-based algorithm for the spatial analysis of Poisson data. Astrophys. J. Suppl. Ser. 138, 185–218 (2002).
Boulade, O. et al. in Instrument Design and Performance for Optical/Infrared Ground-based Telescopes (eds Iye, M. & Moorwood, A. F. M.) 72–81 (Society of Photo-Optical Instrumentation Engineers Conference Series Vol. 4841, 2003).
Randall, S. W. et al. Shocks and cavities from multiple outbursts in the galaxy group NGC 5813: a window to active galactic nucleus feedback. Astrophys. J. 726, 86 (2011).
Kim, M. et al. Chandra multiwavelength project X-ray point source catalog. Astrophys. J. Suppl. Ser. 169, 401–429 (2007).
Lin, D. et al. Discovery of the candidate off-nuclear ultrasoft hyper-luminous X-ray source 3XMM J141711.1+522541. Astrophys. J. 821, 25 (2016).
Gehrels, N. et al. The Swift gamma-ray burst mission. Astrophys. J. 611, 1005–1020 (2004).
Burrows, D. N. et al. The Swift X-ray telescope. Space Sci. Rev. 120, 165–195 (2005).
Roming, P. W. A. et al. The Swift ultra-violet/optical telescope. Space Sci. Rev. 120, 95–142 (2005).
Gwyn, S. D. J. MegaPipe: the MegaCam image stacking pipeline at the Canadian Astronomical Data Centre. Publ. Astron. Soc. Pacif. 120, 212–223 (2008).
Abazajian, K. N. et al. The seventh data release of the Sloan Digital Sky Survey. Astrophys. J. Suppl. Ser. 182, 543–558 (2009).
Peng, C. Y., Ho, L. C., Impey, C. D. & Rix, H.-W. Detailed decomposition of galaxy images. II. Beyond axisymmetric models. Astron. J. 139, 2097–2129 (2010).
Arnaud, K. A. in Astronomical Data Analysis Software and Systems V (eds Jacoby, G. H. & Barnes, J.) 17 (Astronomical Society of the Pacific Conference Series, Vol. 101, 1996).
Kalberla, P. M. W. et al. The Leiden/Argentine/Bonn (LAB) Survey of Galactic HI. Final data release of the combined LDS and IAR surveys with improved stray-radiation corrections. Astron. Astrophys. 440, 775–782 (2005).
Wilms, J., Allen, A. & McCray, R. On the absorption of X-rays in the interstellar medium. Astrophys. J. 542, 914–924 (2000).
Acknowledgements
D.L. is supported by the National Aeronautics and Space Administration through Chandra Award Number GO5-16087X issued by the Chandra X-ray Observatory Center, which is operated by the Smithsonian Astrophysical Observatory for and on behalf of the National Aeronautics Space Administration under contract NAS8-03060. We thank the Swift principal investigator N. Gehrels for approving our ToO request to make several observations of XJ1500+0154.
Author information
Authors and Affiliations
Contributions
D.L. wrote the main manuscript and led the data analysis. J.G. helped with the modelling of the long-term X-ray light curve and wrote the text on the modelling in the Supplementary Information. S.G. stacked the CFHT images. All authors discussed the results and commented on the manuscript.
Corresponding author
Ethics declarations
Competing interests
The authors declare no competing financial interests.
Supplementary information
Supplementary Information
Supplementary Notes 1–13, Supplementary Tables 1–2, Supplementary Figures 1–8, Supplementary References. (PDF 646 kb)
Rights and permissions
About this article
Cite this article
Lin, D., Guillochon, J., Komossa, S. et al. A likely decade-long sustained tidal disruption event. Nat Astron 1, 0033 (2017). https://doi.org/10.1038/s41550-016-0033
Received:
Accepted:
Published:
DOI: https://doi.org/10.1038/s41550-016-0033
This article is cited by
-
Scientific objectives of the Hot Universe Baryon Surveyor (HUBS) mission
Science China Physics, Mechanics & Astronomy (2023)
-
Correction to: X-Ray Properties of TDEs
Space Science Reviews (2021)
-
The Physics of Accretion Discs, Winds and Jets in Tidal Disruption Events
Space Science Reviews (2021)
-
Distinguishing Tidal Disruption Events from Impostors
Space Science Reviews (2021)
-
Time domain astronomy with the THESEUS satellite
Experimental Astronomy (2021)