A circumbinary debris disk in a polluted white dwarf system

Abstract

Planetary systems commonly survive the evolution of single stars, as evidenced by terrestrial-like planetesimal debris observed orbiting and polluting the surfaces of white dwarfs1,2. Here, we report the identification of a circumbinary dust disk surrounding a white dwarf with a substellar companion in a 2.27 h orbit. The system bears the dual hallmarks of atmospheric metal pollution and infrared excess3,4; however, the standard (flat and opaque) disk configuration is dynamically precluded by the binary. Instead, the detected reservoir of debris must lie well beyond the Roche limit in an optically thin configuration, where erosion by stellar irradiation is relatively rapid. This finding shows that rocky planetesimal formation is robust around close binaries, even those with low mass ratios.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: Phased radial velocity diagrams.
Figure 2: Spectral energy distribution.
Figure 3: Circumbinary system geometry.

References

  1. 1

    Jura, M. & Young, E. D. Extrasolar cosmochemistry. Annu. Rev. Earth Planet. Sci. 42, 45–67 (2014).

    Article  ADS  Google Scholar 

  2. 2

    Farihi, J. Circumstellar debris and pollution at white dwarf stars. New Astron. Rev. 71, 9–34 (2016).

    Article  ADS  Google Scholar 

  3. 3

    Girven, J., Gänsicke, B. T., Steeghs, D. & Koester, D. DA white dwarfs in Sloan Digital Sky Survey Data Release 7 and a search for infrared excess emission. Mon. Not. R. Astron. Soc. 417, 1210–1235 (2011).

    Article  ADS  Google Scholar 

  4. 4

    Farihi, J. et al. A trio of metal-rich dust and gas discs found orbiting candidate white dwarfs with K-band excess. Mon. Not. R. Astron. Soc. 421, 1635–1643 (2012).

    Article  ADS  Google Scholar 

  5. 5

    Doyle, L. R. et al. Kepler-16: a transiting circumbinary planet. Sci. 333, 1602–1606 (2011).

    Article  ADS  Google Scholar 

  6. 6

    Welsh, W. F. et al. Transiting circumbinary planets Kepler-34b and Kepler-35b. Nature 481, 475–479 (2012).

    Article  ADS  Google Scholar 

  7. 7

    Paardekooper, S., Leinhardt, Z. M., Thébault, P. & Baruteau, C. How not to build Tatooine: the difficulty of in situ formation of circumbinary planets Kepler 16b, Kepler 34b, and Kepler 35b. Astrophys. J. 754, L16–L20 (2012).

    Article  ADS  Google Scholar 

  8. 8

    Pelupessy, F. I. & Portegies Zwart, S. The formation of planets in circumbinary discs. Mon. Not. R. Astron. Soc. 429, 895–902 (2013).

    Article  ADS  Google Scholar 

  9. 9

    Lines, S., Leinhardt, Z. M., Paardekooper, S., Baruteau, C. & Thebault, P. Forming circumbinary planets: N-body simulations of Kepler-34. Astrophys. J. 782, L11–L16 (2014).

    Article  ADS  Google Scholar 

  10. 10

    Rafikov, R. R. Building Tatooine: suppression of the direct secular excitation in Kepler circumbinary planet formation. Astrophys. J. 764, L16–L21 (2013).

    Article  ADS  Google Scholar 

  11. 11

    Martin, R. G., Armitage, P. J. & Alexander, R. D. Formation of circumbinary planets in a dead zone. Astrophys. J. 773, 74–80 (2013).

    Article  ADS  Google Scholar 

  12. 12

    Bromley, B. C. & Kenyon, S. J., Planet formation around binary stars: Tatooine made easy. Astrophys. J. 806, 98–118 (2015).

    Article  ADS  Google Scholar 

  13. 13

    Koester, D., Gänsicke, B. T. & Farihi, J. The frequency of planetary debris around young white dwarfs. Astron. Astrophys. 566, A34–A53 (2014).

    Article  ADS  Google Scholar 

  14. 14

    Vanderburg, A. et al. A disintegrating minor planet transiting a white dwarf. Nature 526, 546–549 (2015).

    Article  ADS  Google Scholar 

  15. 15

    Xu, S., Jura, M., Dufour, P. & Zuckerman, B. Evidence for gas from a disintegrating extrasolar asteroid. Astrophys. J. 816, L22–L27 (2016).

    Article  ADS  Google Scholar 

  16. 16

    Gänsicke, B. T. et al. High-speed photometry of the disintegrating planetesimals at WD 1145+017. Astrophys. J. 818, L7–L12 (2016).

    Article  ADS  Google Scholar 

  17. 17

    Gänsicke, B. T. et al. The chemical diversity of exo-terrestrial planetary debris around white dwarfs. Mon. Not. R. Astron. Soc. 424, 333–347 (2012).

    Article  ADS  Google Scholar 

  18. 18

    Farihi, J., Gänsicke, B. T. & Koester, D. Evidence for water in the rocky debris of a disrupted extrasolar minor planet. Science 342, 218–220 (2013).

    Article  ADS  Google Scholar 

  19. 19

    Fontaine, G., Brassard, P. & Bergeron, P. The potential of white dwarf cosmochronology. Publ. Astron. Soc. Pacific 113, 409–435 (2001).

    Article  ADS  Google Scholar 

  20. 20

    Sweigart, A. V. The determination of the core mass at the helium flash in globular cluster stars. Astrophys. J. 426, 612–620 (1994).

    Article  ADS  Google Scholar 

  21. 21

    Marsh, T. R., Dhillon, V. S. & Duck, S. R. Low-mass white dwarfs need friends: five new double-degenerate close binary stars. Mon. Not. R. Astron. Soc. 275, 828–840 (1995).

    Article  ADS  Google Scholar 

  22. 22

    Patten, B. M. et al. Spitzer IRAC photometry of M, L, and T dwarfs. Astrophys. J. 651, 502–516 (2006).

    Article  ADS  Google Scholar 

  23. 23

    Casewell, S. L. et al. Multiwaveband photometry of the irradiated brown dwarf WD 0137-349B. Mon. Not. R. Astron. Soc. 447, 3218–3226 (2015).

    Article  ADS  Google Scholar 

  24. 24

    Holman, M. J. & Wiegert, P. A. Long-term stability of planets in binary systems. Astrophys. J. 117, 621–628 (1999).

    ADS  Google Scholar 

  25. 25

    Koester, D. Accretion and diffusion in white dwarfs. Astron. Astrophys. 498, 517–525 (2009).

    Article  ADS  Google Scholar 

  26. 26

    Debes, J. H. Measuring M dwarf winds with DAZ white dwarfs. Astrophys. J. 652, 636–642 (2006).

    Article  ADS  Google Scholar 

  27. 27

    Maxted, P. F. L., Napiwotzki, R., Dobbie, P. D. & Burleigh, M. R. Survival of a brown dwarf after engulfment by a red giant star. Nature 442, 543–545 (2006).

    Article  ADS  Google Scholar 

  28. 28

    Jura, M., Farihi, J. & Zuckerman, B. Externally polluted white dwarfs with dust disks. Astrophys. J. 663, 1285–1290 (2007).

    Article  ADS  Google Scholar 

  29. 29

    Farihi, J., Jura, M. & Zuckerman, B. Infrared signatures of disrupted minor planets at white dwarfs. Astrophys. J. 694, 805–819 (2009).

    Article  ADS  Google Scholar 

  30. 30

    Artymowicz, P. & Lubow, S. H. Mass flow through gaps in circumbinary disks. Astrophys. J. 467, L77–L80 (1996).

    Article  ADS  Google Scholar 

  31. 31

    Terquem, C., Sørensen-Clark, P. M. & Bouvier, J. A circumbinary disc model for the variability of the eclipsing binary CoRoT 223992193. Mon. Not. R. Astron. Soc. 454, 3472–3479 (2015).

    Article  ADS  Google Scholar 

  32. 32

    Bochkarev, K. V. & Rafikov, R. R. Global modeling of radiatively driven accretion of metals from compact debris disks onto white dwarfs. Astrophys. J. 741, 36–44 (2011).

    Article  ADS  Google Scholar 

  33. 33

    Kirk, B. et al. Kepler eclipsing binary stars. VII. The catalog of eclipsing binaries found in the entire Kepler data set. Astron. J. 151, 68–88 (2016).

    Article  ADS  Google Scholar 

  34. 34

    Vartanyan, D., Garmilla, J. A. & Rafikov, R. R. Tatooine nurseries: structure and evolution of circumbinary protoplanetary disks. Astrophys. J. 816, 94–112 (2016).

    Article  ADS  Google Scholar 

  35. 35

    Hook, I. et al. The Gemini-North Multi-Object Spectrograph: performance in imaging, long-slit, and multi-object spectroscopic modes. Publ. Astron. Soc. Pacific 116, 425–440 (2004).

    Article  ADS  Google Scholar 

  36. 36

    Vernet, J. et al. X-shooter, the new wide band intermediate resolution spectrograph at the ESO Very Large Telescope. Astron. Astrophys 536, A105–A119 (2011).

    Article  Google Scholar 

  37. 37

    Parsons, S. G. et al. A precision study of two eclipsing white dwarf plus M dwarf binaries. Mon. Not. R. Astron. Soc. 420, 3281–3297 (2012).

    ADS  Google Scholar 

  38. 38

    Jura, M. A tidally disrupted asteroid around the white dwarf G29-38. Astrophys. J. 584, L91–L94 (2003).

    Article  ADS  Google Scholar 

  39. 39

    Dahn, C. C. et al. Astrometry and photometry for cool dwarfs and brown dwarfs. Astron. J. 124, 1170–1189 (2002).

    Article  ADS  Google Scholar 

  40. 40

    Wyatt, M. C. Evolution of debris disks. Annu. Rev. Astron. Astrophys. 46, 339–383 (2008).

    Article  ADS  Google Scholar 

  41. 41

    Allègre, C., Manhès, G. & Lewin, É. Chemical composition of the Earth and the volatility control on planetary genetics. Earth Planet. Sci. Lett. 185, 49–69 (2001).

    Article  ADS  Google Scholar 

  42. 42

    Lodders, K. Solar system abundances and condensation temperatures of the elements. Astrophys. J. 591, 1220–1247 (2003).

    Article  ADS  Google Scholar 

  43. 43

    Eggleton, P. P. Approximations to the radii of Roche lobes. Astrophys. J. 268, 368–369 (1983).

    Article  ADS  Google Scholar 

  44. 44

    Baraffe, I., Chabrier, G., Barman, T. S., Allard, F. & Hauschildt, P. H. Evolutionary models for cool brown dwarfs and extrasolar giant planets. Astron. Astrophys. 402, 701–712 (2003).

    Article  ADS  Google Scholar 

  45. 45

    Fortney, J. J. et al. Discovery and atmospheric characterization of giant planet Kepler-12b: an inflated radius outlier. Astrophys. J. Supp. 197, 9–20 (2011).

    Article  ADS  Google Scholar 

  46. 46

    Parsons, S. G. et al. Precise mass and radius values for the white dwarf and low mass M dwarf in the pre-cataclysmic binary NN Serpentis. Mon. Not. R. Astron. Soc. 402, 2591–2608 (2010).

    Article  ADS  Google Scholar 

  47. 47

    Farihi, J., Barstow, M. A., Redfield, S., Dufour, P. & Hambly, N. C. Rocky planetesimals as the origin of metals in DZ stars. Mon. Not. R. Astron. Soc. 404, 2123–2135 (2010).

    ADS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the Gemini Observatory for the award of Director’s Discretionary Time for the programme, GS-2012A-DD-3. The X-shooter observations were obtained under the European Southern Observatory programmes, 093.D-0030 and 097.C-0386. J.F. thanks R. Rafikov and D. Veras for useful discussions, and acknowledges support from the United Kingdom Science and Technology Facilities Council in the form of an Ernest Rutherford Fellowship (ST/J003344/1). S.G.P. and B.T.G. received financial support from the European Research Council under the European Union’s 7th Framework Programmes, n. 340040 (HiPERCAM) and n. 320964 (WDTracer), respectively.

Author information

Affiliations

Authors

Contributions

J.F. was the primary author, organized the observations, analysed multi-wavelength data, implemented infrared models, and interpreted the overall data. S.G.P. reduced optical spectra, performed radial velocity and time-series analysis, and calculated all binary parameters. B.T.G. analysed optical spectra and performed model atmosphere fitting to determine the primary stellar parameters. All authors contributed to and commented on the manuscript.

Corresponding author

Correspondence to J. Farihi.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Figure 1, Supplementary Tables 1–2 (PDF 188 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Farihi, J., Parsons, S. & Gänsicke, B. A circumbinary debris disk in a polluted white dwarf system. Nat Astron 1, 0032 (2017). https://doi.org/10.1038/s41550-016-0032

Download citation

Further reading

Search

Quick links

Sign up for the Nature Briefing newsletter for a daily update on COVID-19 science.
Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing