Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Direct evidence of hierarchical assembly at low masses from isolated dwarf galaxy groups

Abstract

The demographics of dwarf galaxy populations have long been in tension with predictions from the Λ cold dark matter (ΛCDM) paradigm14. If primordial density fluctuations were scale-free as predicted, dwarf galaxies should themselves host dark-matter subhaloes5, the most massive of which may have undergone star formation resulting in dwarf galaxy groups. Ensembles of dwarf galaxies are observed as sate­llites of more massive galaxies69, and there is observational10 and theoretical11 evidence to suggest that these satellites at redshift z = 0 were captured by the massive host halo as a group. However, the evolution of dwarf galaxies is highly susceptible to environment1214, making these satellite groups imperfect probes of ΛCDM in the low-mass regime. Here we report one of the clearest examples yet of hierarchical structure formation at low masses: using deep multi-wavelength data, we identify seven isolated, spectroscopically confirmed groups of only dwarf galaxies. Each group hosts three to five known members, has a baryonic mass of ~4.4 × 109 to 2 × 1010 solar masses (M), and requires a mass-to-light ratio of <100 to be gravitationally bound. Such groups are predicted to be rare theoretically and found to be rare observationally at the current epoch, and thus provide a unique window into the possible formation mechanism of more massive, isolated galaxies.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: TNT dwarf groups.
Figure 2: Radial and velocity extent of TNT and literature dwarf groups.

Similar content being viewed by others

References

  1. Boylan-Kolchin, M., Bullock, J. S. & Kaplinghat, M. Too big to fail? The puzzling darkness of massive Milky Way subhaloes. Mon. Not. R. Astron. Soc. 415, 40–44 (2011).

    Article  ADS  Google Scholar 

  2. Kauffmann, G. & White, S. D. M. The merging history of dark matter haloes in a hierarchical universe. Mon. Not. R. Astron. Soc. 261, 921–928 (1993).

    Article  ADS  Google Scholar 

  3. Klypin, A., Kravtsov, A. V., Valenzuela, O. & Prada, F. Where are the missing galactic satellites? Astrophys. J. 522, 82–92 (1999).

    Article  ADS  Google Scholar 

  4. Moore, B. et al. Dark matter substructure within galactic halos. Astrophys. J. 524, 19–22 (1999).

    Article  ADS  Google Scholar 

  5. Wheeler, C. et al. Sweating the small stuff: Simulating dwarf galaxies, ultra-faint dwarf galaxies, and their own tiny satellites. Mon. Not. R. Astron. Soc. 453, 1305–1316 (2015).

    Article  ADS  Google Scholar 

  6. Tollerud, E. J., Boylan-Kolchin, M. & Bullock, J. S. M31 satellite masses compared to ΛCDM subahloes. Mon. Not. R. Astron. Soc. 440, 3511–3519 (2014).

    Article  ADS  Google Scholar 

  7. Bechtol, K. et al. Eight new Milky Way companions discovered in first-year Dark Energy Survey data. Astrophys. J. 807, 50–66 (2015).

    Article  ADS  Google Scholar 

  8. Belokurov, V. et al. Leo V: A companion of a companion of the Milky Way galaxy? Astrophys. J. 686, 83–86 (2008).

    Article  ADS  Google Scholar 

  9. Koposov, S. E., Belokurov, V., Torrealba, G. & Evans, N.W. Beasts of the Southern Wild: Discovery of nine ultra faint satellites in the vicinity of the Magellanic Clouds. Astrophys. J. 805, 130–148 (2015).

    Article  ADS  Google Scholar 

  10. Ibata, N. G., Ibata, R. A., Famaey, B. & Lewis, G. F. Velocity anti-correlation of diametrically opposed galaxy satellites in the low-redshift Universe. Nature 511, 563–566 (2014).

    Article  ADS  Google Scholar 

  11. Wetzel, A. R., Deason, A. J. & Garrison-Kimmel, S. Satellite dwarf galaxies in a hierarchical universe: Infall histories, group preprocessing, and reionization. Astrophys. J. 807, 49–61 (2015).

    Article  ADS  Google Scholar 

  12. Geha, M., Blanton, M. R., Yan, R. & Tinker, J. L. A stellar mass threshold for quenching of field galaxies. Astrophys. J. 757, 85–93 (2012).

    Article  ADS  Google Scholar 

  13. Rashkov, V., Madau, P., Kuhlen, M. & Diemand, J. On the assembly of the Milky Way dwarf satellites and their common mass scale. Astrophys. J. 745, 142–155 (2012).

    Article  ADS  Google Scholar 

  14. Diemand, J., Kuhlen, M. & Madau, P. Formation and evolution of galaxy dark matter halos and their substructure. Astrophys. J. 667, 859–877 (2007).

    Article  ADS  Google Scholar 

  15. Annibali, F. et al., DDO 68: A flea with smaller fleas that on him prey. Astrophys. J. 826, 27–33 (2016).

    Article  ADS  Google Scholar 

  16. Martinez-Delgado, D. et al. Dwarfs gobbling dwarfs: A stellar tidal stream around NGC 4449 and hierarchical galaxy formation on small scales. Astrophys. J. 748, 24–30 (2012).

    Article  ADS  Google Scholar 

  17. Clemens, M. S., Alexander, P. & Green, D. A. Possible formation scenarios for the giant Hi envelope around the NGC 4490/4485 system. Mon. Not. R. Astron. Soc. 297, 1015–1020 (1998).

    Article  ADS  Google Scholar 

  18. Stierwalt, S. et al. TiNy Titans: The role of dwarf–dwarf interactions in low-mass galaxy evolution. Astrophys. J. 805, 2–18 (2015).

    Article  ADS  Google Scholar 

  19. Mateo, M., Dwarf galaxies of the Local Group. Ann. Rev. Astron. Astrophys. 36, 435–506 (1998).

    Article  ADS  Google Scholar 

  20. Spekkens, K., Urbancic, N., Mason, B. S., Willman, B. & Aguirre, J. E. The dearth of neutral hydrogen in galactic dwarf spheroidal galaxies. Astrophys. J. 795, 5–10 (2014).

    Article  ADS  Google Scholar 

  21. Sales, L. V., Wang, W., White, S. D. & Navarro, J. F., Satellites and haloes of dwarf galaxies. Mon. Not. R. Astron. Soc. 428, 573–578 (2013).

    Article  ADS  Google Scholar 

  22. McConnachie,A. W., Ellison, S. L. & Patton, D. R. Compact groups in theory and practice. I. The spatial properties of compact groups. Mon. Not. R. Astron. Soc. 387, 1281–1290 (2008).

    Article  ADS  Google Scholar 

  23. Hickson, P., Kindl, E. & Auman, J. R. A photometric catalog of compact groups of galaxies. Astrophys. J. Suppl. 70, 687–698 (1989).

    Article  ADS  Google Scholar 

  24. Tully, R. B. Nearby groups of galaxies. II. An all-sky survey within 3000 kilometers per second. Astrophys. J. 321, 280–304 (1987).

    Article  ADS  Google Scholar 

  25. Tully, R. B., Somerville, R. S., Trentham, N. & Verheijen, M. A. W. Squelched galaxies and dark halos. Astrophys. J. 569, 573–581 (2002).

    Article  ADS  Google Scholar 

  26. Tully, R. B. et al. Associations of dwarf galaxies. Astron. J. 132, 729–748 (2006).

    Article  ADS  Google Scholar 

  27. Verdes-Montenegro, L., Del Olmo, A., Yun, M.S. & Perea, J. The evolution of HCG 31: Optical and high-resolution Hi study. Astron. Astrophys. 430, 443–464 (2005).

    Article  ADS  Google Scholar 

  28. Gallagher, S. C. et al. Hierarchical structure formation and modes of star formation in Hickson Compact Group 31. Astron. J. 139, 545–564 (2010).

    Article  ADS  Google Scholar 

  29. Mendel, J. T., Simard, L., Palmer, M., Ellison, S. L. & Patton, D. R. A catalog of bulge, disk, and total stellar mass estimates for the Sloan Digital Sky Survey. Astrophys. J. Suppl. 210, 3–24 (2014).

    Article  ADS  Google Scholar 

  30. Barnes, J. E. Evolution of compact groups and the formation of elliptical galaxies. Nature 338, 123–126 (1989).

    Article  ADS  Google Scholar 

  31. Veilleux, S. et al. MMTF: The Maryland-Magellan Tunable Filter. Astron. J. 139, 145–157 (2010).

    Article  ADS  Google Scholar 

  32. Oke, J. B. Faint spectrophotometric standard stars. Astron. J. 99, 1621–1631 (1990).

    Article  ADS  Google Scholar 

  33. Hook, I. M. et al. The Gemini-North Multi-Object Spectrograph: Performance in imaging, long-slit, and multi-object spectroscopic modes. Publ. Astron. Soc. Pacif. 116, 425–440 (2004).

    Article  ADS  Google Scholar 

  34. Schlegel, D. J., Finkbeiner, D. P. & Davis, M. Maps of dust infrared emission for use in estimation of reddening and cosmic microwave background radiation foregrounds. Astrophys. J. 500, 525–553 (1998).

    Article  ADS  Google Scholar 

  35. Blanton, M. R. & Roweis, S. K-corrections and filter transformations in the ultraviolet, optical, and near-infrared. Astron. J. 133, 734–754 (2007).

    Article  ADS  Google Scholar 

  36. Chabrier, G. Galactic stellar and substellar initial mass function. Publ. Astron. Soc. Pacif. 115, 763–795 (2003).

    Article  ADS  Google Scholar 

  37. Heisler, J., Tremaine, S. & Bahcall, J.N. Estimating the masses of galaxy groups — alternatives to the virial theorem. Astrophys. J. 298, 8–17 (1985).

    Article  ADS  Google Scholar 

  38. Bellazzini, M., Oosterloo, T., Fraternali, F. & Beccari, G. Dwarfs walking in a row. The filamentary nature of the NGC3109 association. Astron. Astrophys. 559, L11 (2013).

  39. Sand, D. J. et al. Antlia B: A faint dwarf galaxy member of the NGC 3109 association. Astrophys. J. 812, 13–19 (2015).

    Article  ADS  Google Scholar 

  40. Bell, E. F., McIntosh, D. H., Katz, N. & Weinberg, M. D. The optical and near-infrared properties of galaxies. I. Luminosity and stellar mass functions. Astrophys. J. Suppl. 149, 289–312 (2003).

    Article  ADS  Google Scholar 

  41. Abazajian, K. N. et al. The seventh data release of the Sloan Digital Sky Survey. Astrophys. J. Suppl. 182, 543–558 (2009).

    Article  ADS  Google Scholar 

  42. Simard, L., Mendel, J. T., Patton, D. R., Ellison, S. L. & McConnachie, A. W. A catalog of bulge+disk decompositions and updated photometry for 1.12 million galaxies in the Sloan Digital Sky Survey. Astrophys. J. Suppl. 196, 11–31 (2011).

    Article  ADS  Google Scholar 

  43. Patton, D. R. & Atfield, J. E. The luminosity dependence of the galaxy merger rate. Astrophys. J. 685, 235 (2008).

    Article  ADS  Google Scholar 

  44. Patton, D. R. et al. New techniques for relating dynamically close galaxy pairs to merger and accretion rates: Application to the Second Southern Sky Redshift Survey. Astrophys. J. 536, 153–172 (2000).

    Article  ADS  Google Scholar 

  45. Blanton, M. R. et al. An efficient targeting strategy for multiobject spectrograph surveys: the Sloan Digital Sky Survey ‘tiling’ algorithm. Astron. J. 125, 2276–2286 (2003).

    Article  ADS  Google Scholar 

  46. Patton, D. R. et al. Dynamically close galaxy pairs and merger rate evolution in the CNOC2 Redshift Survey. Astrophys. J. 565, 208–222 (2002).

    Article  ADS  Google Scholar 

  47. Patton, D. R. et al. Galaxy pairs in the Sloan Digital Sky Survey — XI. A new method for measuring the influence of the closest companion out to wide separations. Mon. Not. R. Astron. Soc. 461, 2589–2604 (2016).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

S.S., S.E.L. and G.C.P. thank S. Veilleux and M. McDonald for the use of their PI instrument, MMTF, and M. McDonald for sharing his advice and wisdom throughout the MMTF observations and data reduction. S.S. acknowledges the L’Oréal USA For Women in Science programme for their grant to conduct this resesarch. S.E.L. acknowledges support from a National Science Foundation (NSF) Graduate Research Fellowship under Grant No. DDGE-1315231. S.E.L. was also partially funded by a Virginia Space Grant Consortium Graduate STEM Research Fellowship and a Clare Boothe Luce Graduate Fellowship. D.R.P. acknowledges a Discovery Grant from the Natural Sciences and Engineering Research Council (NSERC) of Canada which helped to fund this research. G.C.P. was supported by a FONDECYT Postdoctoral Fellowship (No. 3150361). N.K. is supported by the NSF CAREER award 1455260.

These results are based on observations obtained with the APO 3.5-m telescope, which is owned and operated by the Astrophysical Research Consortium. This work has also used catalogues and imaging from the SDSS. Funding for the SDSS and SDSS-II has been provided by the Alfred P. Sloan Foundation, the Participating Institutions, the NSF, the US Department of Energy, NASA, the Japanese Monbukagakusho, the Max Planck Society, and the Higher Education Funding Council for England. The SDSS website is http://www.sdss.org/. The SDSS is managed by the Astrophysical Research Consortium for the Participating Institutions. The Participating Institutions are the American Museum of Natural History, Astrophysical Institute Potsdam, University of Basel, University of Cambridge, Case Western Reserve University, University of Chicago, Drexel University, Fermilab, the Institute for Advanced Study, the Japan Participation Group, Johns Hopkins University, the Joint Institute for Nuclear Astrophysics, the Kavli Institute for Particle Astrophysics and Cosmology, the Korean Scientist Group, the Chinese Academy of Sciences (LAMOST), Los Alamos National Laboratory, the Max-Planck-Institute for Astronomy (MPIA), the Max-Planck-Institute for Astrophysics (MPA), New Mexico State University, Ohio State University, University of Pittsburgh, University of Portsmouth, Princeton University, the United States Naval Observatory and the University of Washington.

Results are also based on observations obtained at the Gemini Observatory (Program ID: GN-2016A-Q-16) and processed using the Gemini IRAF package, which is operated by the Association of Universities for Research in Astronomy, Inc., under a cooperative agreement with the NSF on behalf of the Gemini partnership: the NSF (United States), the National Research Council (Canada), CONICYT (Chile), Ministerio de Ciencia, Tecnología e Innovación Productiva (Argentina) and Ministério da Ciéncia, Tecnologia e Inovacão (Brazil).

Author information

Authors and Affiliations

Authors

Contributions

S.S. identified the group candidates, led the Magellan proposal and reduced the APO data. S.E.L. led the Gemini and APO proposals and led the Magellan and Gemini data reduction. S.S. and K.E.J. coordinated the analysis, interpretation and writing of the paper. S.S., S.E.L. and G.C.P. conducted the Magellan and APO observations. D.R.P. led the SDSS-based analysis including identifying the original pairs and calculating the isolation fraction. All authors discussed the results, their interpretation and the presentation of the paper.

Corresponding author

Correspondence to S. Stierwalt.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Stierwalt, S., Liss, S., Johnson, K. et al. Direct evidence of hierarchical assembly at low masses from isolated dwarf galaxy groups. Nat Astron 1, 0025 (2017). https://doi.org/10.1038/s41550-016-0025

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41550-016-0025

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing