The superluminous transient ASASSN-15lh as a tidal disruption event from a Kerr black hole

A Corrigendum to this article was published on 22 December 2016

Abstract

When a star passes within the tidal radius of a supermassive black hole, it will be torn apart1. For a star with the mass of the Sun (M) and a non-spinning black hole with a mass <108M, the tidal radius lies outside the black hole event horizon2 and the disruption results in a luminous flare3–6. Here we report observations over a period of ten months of a transient, hitherto interpreted7 as a superluminous supernova8. Our data show that the transient rebrightened substantially in the ultraviolet and that the spectrum went through three different spectroscopic phases without ever becoming nebular. Our observations are more consistent with a tidal disruption event than a superluminous supernova because of the temperature evolution6, the presence of highly ionized CNO gas in the line of sight9 and our improved localization of the transient in the nucleus of a passive galaxy, where the presence of massive stars is highly unlikely10,11. While the supermassive black hole has a mass >108M12,13, a star with the same mass as the Sun could be disrupted outside the event horizon if the black hole were spinning rapidly14. The rapid spin and high black hole mass can explain the high luminosity of this event.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: Spectral sequence of ASASSN-15lh showing three spectroscopic phases.
Figure 2: The light curve evolution of ASASSN-15lh in the rest frame.
Figure 3: The evolution of the temperature, radius and luminosity of ASASSN-15lh compared with TDEs6 and SLSNe17,2224.
Figure 4: M Hills as a function of a for main sequence stars of different masses.

References

  1. 1

    Rees, M. J. Tidal disruption of stars by black holes of 106–108 solar masses in nearby galaxies. Nature 333, 523–528 (1988).

    Article  ADS  Google Scholar 

  2. 2

    Hills, J. G. Possible power source of Seyfert galaxies and QSOs. Nature 254, 295–298 (1975).

    Article  ADS  Google Scholar 

  3. 3

    van Velzen, S. et al. Optical discovery of probable stellar tidal disruption flares. Astrophys. J. 741, 73 (2011).

    Article  ADS  Google Scholar 

  4. 4

    Gezari, S. et al. An ultraviolet-optical flare from the tidal disruption of a helium-rich stellar core. Nature 485, 217–220 (2012).

    Article  ADS  Google Scholar 

  5. 5

    Arcavi, I. et al. A continuum of H- to He-rich tidal disruption candidates with a preference for E+A galaxies. Astrophys. J. 793, 38 (2014).

    Article  ADS  Google Scholar 

  6. 6

    Holoien, T. W.-S. et al. ASASSN-14ae: a tidal disruption event at 200 Mpc. Mon. Not. R. Astron. Soc. 445, 3263–3277 (2014).

    Article  ADS  Google Scholar 

  7. 7

    Dong, S. et al. ASASSN-15lh: a highly super-luminous supernova. Science 351, 257–260 (2016).

    Article  ADS  Google Scholar 

  8. 8

    Quimby, R. M. et al. Hydrogen-poor superluminous stellar explosions. Nature 474, 487–489 (2011).

    Article  ADS  Google Scholar 

  9. 9

    Cenko, S. B. et al. An ultraviolet spectrum of the tidal disruption flare ASASSN-14li. Astrophys. J. Lett. 818, L32 (2016).

    Article  ADS  Google Scholar 

  10. 10

    Lunnan, R. et al. Hydrogen-poor superluminous supernovae and long-duration gamma-ray bursts have similar host galaxies. Astrophys. J. 787, 138 (2014).

    Article  ADS  Google Scholar 

  11. 11

    Leloudas, G. et al. Spectroscopy of superluminous supernova host galaxies. A preference of hydrogen-poor events for extreme emission line galaxies. Mon. Not. R. Astron. Soc. 449, 917–932 (2015).

    Article  ADS  Google Scholar 

  12. 12

    Reines, A. E. & Volonteri, M. Relations between central black hole mass and total galaxy stellar mass in the local universe. Astrophys. J. 813, 82 (2015).

    Article  ADS  Google Scholar 

  13. 13

    McConnell, N. J. & Ma, C.-P. Revisiting the scaling relations of black hole masses and host galaxy properties. Astrophys. J. 764, 184 (2013).

    Article  ADS  Google Scholar 

  14. 14

    Kesden, M. Tidal-disruption rate of stars by spinning supermassive black holes. Phys. Rev. D 85, 024037 (2012).

    Article  ADS  Google Scholar 

  15. 15

    Mazzali, P. A., Sullivan, M., Pian, E., Greiner, J. & Kann, D. A. Spectrum formation in superluminous supernovae (type I). Mon. Not. R. Astron. Soc. 458, 3455–3465 (2016).

    Article  ADS  Google Scholar 

  16. 16

    Strubbe, L. E. & Quataert, E. Spectroscopic signatures of the tidal disruption of stars by massive black holes. Mon. Not. R. Astron. Soc. 415, 168–180 (2011).

    Article  ADS  Google Scholar 

  17. 17

    Pastorello, A. et al. Ultra-bright optical transients are linked with type Ic supernovae. Astrophys. J. 724, L16–L21 (2010).

    Article  ADS  Google Scholar 

  18. 18

    Brown, P. J. et al. ASASSN-15lh: a superluminous ultraviolet rebrightening observed by Swift and Hubble. Astrophys. J. 828, 3 (2016).

    Article  ADS  Google Scholar 

  19. 19

    de Ugarte Postigo, A. et al. The distribution of equivalent widths in long GRB afterglow spectra. Astron. Astrophys. 548, A11 (2012).

    Article  Google Scholar 

  20. 20

    Brown, P. J. Ultraviolet rebrightening of superluminous supernova ASASSN-15lh. Astron. Telegr. 8086 (2015).

  21. 21

    Godoy-Rivera, D. et al. The unexpected, long-lasting, UV rebrightening of the super-luminous supernova ASASSN-15lh. Preprint at https://arxiv.org/abs/1605.00645 (2016).

  22. 22

    Inserra, C. et al. Super-luminous type Ic supernovae: catching a magnetar by the tail. Astrophys. J. 770, 128 (2013).

    Article  ADS  Google Scholar 

  23. 23

    Nicholl, M. et al. Superluminous supernovae from PESSTO. Mon. Not. R. Astron. Soc. 444, 2096–2113 (2014).

    Article  ADS  Google Scholar 

  24. 24

    Chen, T.-W. et al. The host galaxy and late-time evolution of the superluminous supernova PTF12dam. Mon. Not. R. Astron. Soc. 452, 1567–1586 (2015).

    Article  ADS  Google Scholar 

  25. 25

    Howell, D. A. et al. Two superluminous supernovae from the early universe discovered by the supernova legacy survey. Astrophys. J. 779, 98 (2013).

    Article  ADS  Google Scholar 

  26. 26

    Metzger, B. D., Margalit, B., Kasen, D. & Quataert, E. The diversity of transients from magnetar birth in core collapse supernovae. Mon. Not. R. Astron. Soc. 454, 3311–3316 (2015).

    Article  ADS  Google Scholar 

  27. 27

    Sukhbold, T. & Woosley, S. E. The most luminous supernovae. Astrophys. J. Lett. 820, L38 (2016).

    Article  ADS  Google Scholar 

  28. 28

    Yan, L. et al. Detection of broad Hα emission lines in the late-time spectra of a hydrogen-poor superluminous supernova. Astrophys. J. 814, 108 (2015).

    Article  ADS  Google Scholar 

  29. 29

    Leloudas, G. et al. Polarimetry of the superluminous supernova LSQ14mo: no evidence for significant deviations from spherical symmetry. Astrophys. J. Lett. 815, L10 (2015).

    Article  ADS  Google Scholar 

  30. 30

    Stone, N. C. & Metzger, B. D. Rates of stellar tidal disruption as probes of the supermassive black hole mass function. Mon. Not. R. Astron. Soc. 455, 859–883 (2016).

    Article  ADS  Google Scholar 

  31. 31

    Kochanek, C. S. Tidal disruption event demographics. Mon. Not. R. Astron. Soc. 461, 371–384 (2016).

    Article  ADS  Google Scholar 

  32. 32

    Reynolds, C. S. Measuring black hole spin using X-ray reflection spectroscopy. Space Sci. Rev. 183, 277–294 (2014).

    Article  ADS  Google Scholar 

  33. 33

    Piran, T., Svirski, G., Krolik, J., Cheng, R. M. & Shiokawa, H. Disk formation versus disk accretion – what powers tidal disruption events? Astrophys. J. 806, 164 (2015).

    Article  ADS  Google Scholar 

  34. 34

    Dai, L., McKinney, J. C. & Miller, M. C. Soft X-Ray Temperature Tidal Disruption Events from Stars on Deep Plunging Orbits. Astrophys. J. Lett. 812, L39 (2015).

    Article  ADS  Google Scholar 

  35. 35

    Guillochon, J., Manukian, H. & Ramirez-Ruiz, E. PS1-10jh: the disruption of a main-sequence star of near-solar composition. Astrophys. J. 783, 23 (2014).

    Article  ADS  Google Scholar 

  36. 36

    Planck Collaboration XVI. Planck 2013 results. XVI. Cosmological parameters. Astron. Astrophys. 571, A16 (2014).

    Article  Google Scholar 

  37. 37

    Melchior, P. et al. Optical broad-band photometry and reference image for APMUKS(BJ) B215839.70-615403.9 / ASASSN-15lh from the Dark Energy Survey. Astron. Telegr. 7843 (2015).

  38. 38

    Prieto, J. L. et al. APMUKS(BJ) B215839.70-615403.9: The massive host galaxy candidate of ASASSN-15lh. Astron. Telegr. 7776 (2015).

  39. 39

    Schlafly, E. F. & Finkbeiner, D. P. Measuring reddening with sloan digital sky survey stellar spectra and recalibrating SFD. Astrophys. J. 737, 103 (2011).

    Article  ADS  Google Scholar 

  40. 40

    Bruzual, G. & Charlot, S. Stellar population synthesis at the resolution of 2003. Mon. Not. R. Astron. Soc. 344, 1000–1028 (2003).

    Article  ADS  Google Scholar 

  41. 41

    Arnouts, S. et al. Measuring and modelling the redshift evolution of clustering: the Hubble Deep Field North. Mon. Not. R. Astron. Soc. 310, 540–556 (1999).

    Article  ADS  Google Scholar 

  42. 42

    Ilbert, O. et al. Accurate photometric redshifts for the CFHT legacy survey calibrated using the VIMOS VLT deep survey. Astron. Astrophys. 457, 841–856 (2006).

    Article  ADS  Google Scholar 

  43. 43

    Chabrier, G. Galactic stellar and substellar initial mass function. Publ. Astron. Soc. Pacif. 115, 763–795 (2003).

    Article  ADS  Google Scholar 

  44. 44

    Calzetti, D. et al. The dust content and opacity of actively star-forming galaxies. Astrophys. J. 533, 682–695 (2000).

    ADS  Google Scholar 

  45. 45

    Kennicutt, R. C. Jr Star formation in galaxies along the Hubble sequence. Annu. Rev. Astron. Astrophys. 36, 189–232 (1998).

    Article  ADS  Google Scholar 

  46. 46

    Vreeswijk, P. M. et al. The hydrogen-poor superluminous supernova iPTF 13ajg and its host galaxy in absorption and emission. Astrophys. J. 797, 24 (2014).

    Article  ADS  Google Scholar 

  47. 47

    Christensen, L. et al. A high signal-to-noise ratio composite spectrum of gamma-ray burst afterglows. Astrophys. J. 727, 73 (2011).

    Article  ADS  Google Scholar 

  48. 48

    Fox, A. J., Petitjean, P., Ledoux, C. & Srianand, R. Hot halos around high redshift protogalaxies. Observations of OVI and NV absorption in damped Lyman-α systems. Astron. Astrophys. 465, 171–184 (2007).

    Article  ADS  Google Scholar 

  49. 49

    Fox, A. J., Ledoux, C., Vreeswijk, P. M., Smette, A. & Jaunsen, A. O. High-ion absorption in seven GRB host galaxies at z = 2-4. Evidence for both circumburst plasma and outflowing interstellar gas. Astron. Astrophys. 491, 189–207 (2008).

    Article  ADS  Google Scholar 

  50. 50

    Kochanek, C. S. Abundance anomalies in tidal disruption events. Mon. Not. R. Astron. Soc. 458, 127–134 (2016).

    Article  ADS  Google Scholar 

  51. 51

    Miller, J. M. et al. Flows of X-ray gas reveal the disruption of a star by a massive black hole. Nature 526, 542–545 (2015).

    Article  ADS  Google Scholar 

  52. 52

    Dopita, M. et al. The Wide Field Spectrograph (WiFeS). Astrophys Space Sci. 310, 255–268 (2007).

    Article  ADS  Google Scholar 

  53. 53

    Dopita, M. et al. The Wide Field Spectrograph (WiFeS): performance and data reduction. Astrophys Space Sci. 327, 245–257 (2010).

    Article  ADS  Google Scholar 

  54. 54

    Smartt, S. J. et al. PESSTO: survey description and products from the first data release by the Public ESO Spectroscopic Survey of Transient Objects. Astron. Astrophys. 579, A40 (2015).

    Article  Google Scholar 

  55. 55

    Jenness, T. & Economou, F. ORAC-DR: a generic data reduction pipeline infrastructure. Astron. Comput. 9, 40–48 (2015).

    Article  ADS  Google Scholar 

  56. 56

    Brown, P. J. et al. The absolute magnitudes of type Ia supernovae in the ultraviolet. Astrophys. J. 721, 1608–1626 (2010).

    Article  ADS  Google Scholar 

  57. 57

    Sault, R. J., Teuben, P. J. & Wright, M. C. H. A retrospective view of MIRIAD. In Astronomical Data Analysis Software and Systems IV Vol. 77 (eds Shaw, R. A., Payne, H. E. & Hayes, J. J. E. ) 433 (Astronomical Society of the Pacific Conference Series, 1995).

    Google Scholar 

  58. 58

    McMullin, J. P., Waters, B., Schiebel, D., Young, W. & Golap, K. CASA architecture and applications. In Astronomical Data Analysis Software and Systems XVI Vol. 376 (eds Shaw, R. A., Hill, F. & Bell, D. J. ) 127 (Astronomical Society of the Pacific Conference Series, 2007).

    Google Scholar 

  59. 59

    Kool, E. C. et al. Radio non-detection of ASASSN-15lh = SN2015L. Astron. Telegr. 8388 (2015).

  60. 60

    Kraft, R. P., Burrows, D. N. & Nousek, J. A. Determination of confidence limits for experiments with low numbers of counts. Astrophys. J. 374, 344–355 (1991).

    Article  ADS  Google Scholar 

  61. 61

    Helene, O. Errors in experiments with small numbers of events. Nucl. Instrum. Methods Phys. Res. A 228, 120–128 (1984).

    Article  ADS  Google Scholar 

  62. 62

    van Velzen, S. et al. A radio jet from the optical and x-ray bright stellar tidal disruption flare ASASSN-14li. Science 351, 62–65 (2016).

    Article  ADS  Google Scholar 

  63. 63

    Levan, A. J. et al. An extremely luminous panchromatic outburst from the nucleus of a distant galaxy. Science 333, 199–202 (2011).

    Article  ADS  Google Scholar 

  64. 64

    Tchekhovskoy, A., Metzger, B. D., Giannios, D. & Kelley, L. Z. Swift J1644+57 gone MAD: the case for dynamically important magnetic flux threading the black hole in a jetted tidal disruption event. Mon. Not. R. Astron. Soc. 437, 2744–2760 (2014).

    Article  ADS  Google Scholar 

  65. 65

    Guillochon, J. & Ramirez-Ruiz, E. Hydrodynamical simulations to determine the feeding rate of black holes by the tidal disruption of stars: the importance of the impact parameter and stellar structure. Astrophys. J. 767, 25 (2013).

    Article  ADS  Google Scholar 

  66. 66

    Stone, N., Sari, R. & Loeb, A. Consequences of strong compression in tidal disruption events. Mon. Not. R. Astron. Soc. 435, 1809–1824 (2013).

    Article  ADS  Google Scholar 

  67. 67

    Bersten, M. C., Benvenuto, O. G., Orellana, M. & Nomoto, K. The unusual super-luminous supernovae SN 2011kl and ASASSN-15lh. Astrophys. J. Lett. 817, L8 (2016).

    Article  ADS  Google Scholar 

  68. 68

    Kozyreva, A., Hirschi, R., Blinnikov, S. & den Hartogh, J. How much radioactive nickel does ASASSN-15lh require? Mon. Not. R. Astron. Soc. 459, L21–L25 (2016).

    Article  ADS  Google Scholar 

  69. 69

    Chatzopoulos, E. et al. Extreme supernova models for the super-luminous transient ASASSN-15lh. Astrophys. J. 828, 94 (2016).

    Article  ADS  Google Scholar 

  70. 70

    Metzger, B. D. & Stone, N. C. A bright year for tidal disruptions. Mon. Not. R. Astron. Soc. 461, 948–966 (2016).

    Article  ADS  Google Scholar 

  71. 71

    Coughlin, E. R. & Begelman, M. C. Hyperaccretion during tidal disruption events: weakly bound debris envelopes and jets. Astrophys. J. 781, 82 (2014).

    Article  ADS  Google Scholar 

  72. 72

    Roth, N., Kasen, D., Guillochon, J. & Ramirez-Ruiz, E. The X-Ray through optical fluxes and line strengths of tidal disruption events. Astrophys. J. 827, 3 (2016).

    Article  ADS  Google Scholar 

  73. 73

    Hayasaki, K., Stone, N. & Loeb, A. Finite, intense accretion bursts from tidal disruption of stars on bound orbits. Mon. Not. R. Astron. Soc. 434, 909–924 (2013).

    Article  ADS  Google Scholar 

  74. 74

    Shiokawa, H., Krolik, J. H., Cheng, R. M., Piran, T. & Noble, S. C. General relativistic hydrodynamic simulation of accretion flow from a stellar tidal disruption. Astrophys. J. 804, 85 (2015).

    Article  ADS  Google Scholar 

  75. 75

    Hayasaki, K., Stone, N. & Loeb, A. Circularization of tidally disrupted stars around spinning supermassive black holes. Mon. Not. R. Astron. Soc. 461, 3760–3780 (2016).

    Article  ADS  Google Scholar 

  76. 76

    Guillochon, J. & Ramirez-Ruiz, E. A dark year for tidal disruption events. Astrophys. J. 809, 166 (2015).

    Article  ADS  Google Scholar 

  77. 77

    Ulmer, A. Flares from the tidal disruption of stars by massive black holes. Astrophys. J. 514, 180–187 (1999).

    Article  ADS  Google Scholar 

  78. 78

    Strubbe, L. E. & Quataert, E. Optical flares from the tidal disruption of stars by massive black holes. Mon. Not. R. Astron. Soc. 400, 2070–2084 (2009).

    Article  ADS  Google Scholar 

  79. 79

    Kesden, M. Black-hole spin dependence in the light curves of tidal disruption events. Phys. Rev. D 86, 064026 (2012).

    Article  ADS  Google Scholar 

  80. 80

    Carter, B. & Luminet, J.-P. Tidal compression of a star by a large black hole. I: mechanical evolution and nuclear energy release by proton capture. Astron. Astrophys. 121, 97–113 (1983).

    MATH  ADS  Google Scholar 

  81. 81

    Merritt, D., Alexander, T., Mikkola, S. & Will, C. M. Testing properties of the galactic center black hole using stellar orbits. Phys. Rev. D 81, 062002 (2010).

    Article  ADS  Google Scholar 

  82. 82

    Beloborodov, A. M., Illarionov, A. F., Ivanov, P. B. & Polnarev, A. G. Angular momentum of a supermassive black hole in a dense star cluster. Mon. Not. R. Astron. Soc. 259, 209–217 (1992).

    Article  ADS  Google Scholar 

  83. 83

    Marck, J.-A. Solution to the equations of parallel transport in Kerr geometry; tidal tensor. Proc. R. Soc. Lond. A 385, 431–438 (1983).

    MathSciNet  Article  ADS  Google Scholar 

  84. 84

    Yaron, O. & Gal-Yam, A. WISeREP: an interactive supernova data repository. Publ. Astron. Soc. Pacif. 124, 668–681 (2012).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We acknowledge support from the European Union FP7 programme through the following European Research Council grants: 320360 (M.F., H.C.), 647208 (P.G.J.), 291222 (S.J.S.), 615929 (M.S.). We also acknowledge: Einstein Postdoctoral Fellowship PF5-160145 (N.C.S.), Hubble Postdoctoral Fellowship HST-HF2-51350 (S.v.V.), STFC grants ST/I001123/1 ST/L000709/1 (S.J.S.) and ST/L000679/1 (M.S.), Australian Research Council Future Fellowship FT140101082 (J.C.A.M.-J.), a Royal Society University Research Fellowship (J.R.M.), a Sofja Kovalevskaja Award to P. Schady (T.Kr., T.-W.C.), a Ramón y Cajal fellowship and the Spanish research project AYA 2014-58381 (A.de U.P.), CONICYT-Chile FONDECYT grants 3130488 (S.K.), 3140534 (S.S.), 3140563 (H.K.), 3150238 (C.R.-C.), a PRIN-INAF 2014 project (N.E.-R.), support from IDA (D.M.), an Ernest Rutherford Fellowship (K.M.), CAASTRO project number CE110001020 (B.E.T.), National Science Foundation grant AST 11-09881 and NASA grant HST-AR-13726.02 (J.C.W.). This work used observations from the Las Cumbres Observatory Global Telescope Network (LCOGT) and was based upon work supported by National Science Foundation grant 1313484. The Australia Telescope Compact Array is part of the Australia Telescope National Facility which is funded by the Australian Government for operation as a National Facility managed by Commonwealth Scientific and Industrial Research Organisation. This work was based partially on observations collected as part of the Public European Southern Observatory Spectroscopic Survey for Transient Objects Survey (PESSTO) under European Southern Observatory (ESO) programmes 188.D-3003 and 191.D-0935, and on observations made with ESO Telescopes at the La Silla Paranal Observatory under programme ID 095.D-0633. We thank M. Della Valle for comments.

Author information

Affiliations

Authors

Contributions

G.L. coordinated the PESSTO observations, was principal investigator (PI) of the FORS2 program, analysed the data and wrote the paper. M.F. provided the astrometric localization and reduced the PESSTO spectra. N.C.S. calculated the relationship between the black hole spin and the Hills mass and edited the manuscript. S.v.V. performed the Swift photometry. P.G.J. analysed the X-Ray Multi-Mirror Mission data and helped coordinate the project. I.A. is the PESSTO PI for TDEs and provided LCOGT data. C.F. made the LCOGT photometry. J.R.M. reduced the FORS2 spectra. S.J.S. is the PI of PESSTO and helped coordinate the project. T.Kr. provided the spectral energy distribution fit of the host galaxy. J.C.A.M.-J. provided the radio observations. P.M.V. helped with the analysis of the spectra. G.L., M.F., N.C.S., S.v.V., P.G.J., I.A., S.J.S., J.C.A.M.-J., A.G.-Y. and P.A.M. contributed to the discussions. A.d.U.P. and A.De C. worked on the UV spectrum. D.A.H. is the PI of the LCOGT observations. C.I. and O.Y. are PESSTO builders and helped with the analysis. F.P., D.M., J.S. and J.C.W. provided FORS2 data and analysis. M.C. and B.E.T. provided the WIFES spectra. S.S. and S.K. provided the Magellan spectrum. G.H., C.V.McC. and S.V. obtained and reduced LCOGT data. E.K., K.M., K.W.S., M.S., and D.R.Y. are PESSTO builders and C.A., J.H., S.M., T.-W.C., T.Ka., S.P., C.R.-C., H.K., M.N., J.L., N.E.-R., H.C., I.B., J.J., M.R.M. contributed PESSTO observations or data reductions. Many authors provided comments on the manuscript.

Corresponding author

Correspondence to G. Leloudas.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Figures 1–8, Supplementary Tables 1–2 (PDF 1050 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Leloudas, G., Fraser, M., Stone, N. et al. The superluminous transient ASASSN-15lh as a tidal disruption event from a Kerr black hole. Nat Astron 1, 0002 (2017). https://doi.org/10.1038/s41550-016-0002

Download citation

Further reading

Search

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing