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The recalcitrant nature of the industrial dyes poses a significant challenge to existing treatment
technologies due to the stringent environmental regulations. This combined with the inefficiency of a
single treatment method has led to the implementation of the combination of primary, secondary, and
tertiary treatment processes,which fails during complex secondary aeration processesdue to variable
pH loads of industrial effluent wastewater. This article presents a modified design methodology of a
pilot-scale micro-pre-treatment unit using a solar-triggered advanced oxidation process reactor that
both effectively controls the influent variability at the source and mitigates textile effluents for making
the discharge reusable for different industrial purposes. The proposed modified combination
technique of controlled serial processes inclusive of primary, secondary, and tertiary treatment steps
with ZnO/ZnO-GONanoMat-based advancedoxidationprocessdemonstrates complete remediation
of industrial grade effluent with effective reuse of the discharge. Further, a reliable predictionmodel for
estimating water quality parameter using machine learning models are proposed. Multi-linear
regression and Artificial Neural network modeling provide simple, accurate, and robust prediction
capabilities, which are evaluated for the efficiency of the processes. The generated predictionmodels
capture the output parameters within an acceptable level of accuracy ðR2

adj > 0:90Þ and allow
compliance with the discharge Inland Water Discharge Standards (IWDS).

Industrial nationswith an ever-increasing demand for products from textile
and steel industries have placed a high focus on scientific endeavours to
mitigate the increased pollution levels causedby effluent discharge1,2. Textile
industries use large amounts of water for the process of coloring, cleaning,
heat treatment, cooling etc3. Textile effluent discharged directly into the
natural water bodies or through land composting, contaminates the natural
resources by the addition of color, chemicals, polymers, etc. which are
extremely deleterious due to their carcinogenic properties4. The limited
availability of water resources has made it essential to develop technologies
that promote reusability and sustainability using various remediation
techniques5.

The implementation of existing conventional treatment methodolo-
gies of physical, chemical, hybrid, or biological domains depends on their
applications and relative efficacy in removing organic matter, suspended
solids, dye-based inorganics, etc. from wastewater with limited success for
industrial-scale treatment processes6. Single-stage treatment methods are
unable to provide a high degree of remediation requirements due to the
recalcitrant dye nature. The application of treatment techniques classified as
primary, secondary, and tertiary treatment processes, find usefulness by
overcoming these disadvantages but suffer from serious limitations during
complex secondary aeration processes due to variable pH loads7. Recent
applications of Advanced Oxidation Processes (AOPs) remove complex
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chemicals, heavy metals, color etc. which allow reuse under certain condi-
tions for scaled applications8,9. Sunlight-induced AOPs using metal-oxide
semiconductors (MOS) in combination with filtration, coagulation/floc-
culation, and carbon-based adsorption processes result in a more efficient
scalable industrial wastewater treatment through literature10–12. Mcyotto
et al. have discussed the dye characteristics along with their structure and
correlated the color removal efficiency with a single-stage coagulation
process13. Liang et al. have studied coagulation/flocculation (CF) and
nanofiltration (NF) and their combination for the effective treatment of
highly concentrated multiple-dye wastewater with increased overall
performance14.

AOPs work on the principle of radiation-induced generation of
hydroxyl and oxide radicals (·OH, HO2·, O2

−·), which initiates dye degra-
dation into simpler and degradable compounds with minimal solid sec-
ondary pollutants15. The photocatalytic process initiated through band gap
modification enhances the catalytic behavior through radical-induced sec-
ondary redox reactions degrading complex dye molecules into less harmful
fragmented degradation products8,16. Liu et al. detailed an overview of the
AOPs for the treatment of refractory industrial wastewater and listedmajor
barriers to large-scale industrial applications including procedure sustain-
ability, economic benefits, and by-product analysis along with safety
evaluations17. Zinc oxide (ZnO) catalyst, earlier used in laboratory scale
applications18, has a modified band gap (3.3 eV)19 which makes it an ideal
inexpensive nanomaterial (NM) for photocatalytic applications20,21. To
alleviate the problem of charge carrier recombination during the redox
processes for ZnONM, the graphene oxide (GO) nanosheet layer is utilized
as conductive and electrons-attracting oxygen groups which scavenge ZnO
conduction band electron groups22. Rodrigues et al. outline the synthesis of
impregnated ZnO for photocatalytic degradation of reactive dye-based
textile effluent and detail the effect of catalyst size, dye concentration, and
length/diameter ratio on photocatalytic degradation23. Roy et al. presented a
hybrid AOP system using composite ZnO/ZnFe2O4 for radical-induced
degradation through ionization of CBZ before hydroxylation and
oxidation24. An et al. reviewed membrane separation technologies using
emerging cost-effective graphene oxide (GO) with excellent resistance,
hydrophilicity, separation performance, and lower fouling for realizing
sustainable wastewater recycling and a “zero discharge” water treatment
process25.

The quality of the effluent is dependent on various parameters
having different physio-chemical effects for the inter-relationships26.
Disruptive Machine learning (ML) techniques present a viable
approach for determining the efficiency of the treatment approaches
through data-driven modeling for different industrial remediation
applications. Regression-based Statistical and Neural Networks (NN)
models are efficient methodologies to predict the degradation process
parameters and identify the degradation processes27 of a Dye-
wastewater treatment plant (DWWTP) process28. ML models include
multi-linear regression (MLR)29, multi-layer perceptron (MLP),
Artificial Neural Networks (ANN)30,31, and Deep Learning (DL)32 are
commonly used for generating predictive models33. MLR modeling
provides a simple, efficient, and optimum method for determining
the relationship between input and output parameters for each
treatment process. NN accurately predicts the process performance
parameters34 using the Levenberg–Marquardt algorithm (LMA)35 to
obtain the optimal solution through faster convergence of the mean
squared error36. Sharma et al. have employed MLR modeling for
analyzing BOD removal efficiency using time series plots which are
evaluated through standard criterion37. Guo et al., have developed
machine learning models to predict effluent concentration for
WWTP using model parameters optimization for decision-making
modeling and process control38. Lin et al. detail BPANN modeling for
the correlation of multiple parameters for the design of a control
strategy for a disinfection process of effluents39.

In this article, a detailed discussion on the modified combined AOP-
based effluent DWWTP is proposed with detailed design, process

operations, and modeling through different ML strategies. This pre-
treatment system is designed through a controlled coagulation and floc-
culation process which removes the precipitate and flocs. The effluent is
then passed through chemicallymodified sand filters acting as an adsorbent
for the removal of color. This pre-filtration stage is followed by a batch
photocatalysis reactor designed to be amenable to visible light penetration
for effective photocatalytic remediation. A detailed discussion on the
influence of parameters on the overall decolouration efficiency utilizing
solar irradiation through ZnO NanoMat photocatalytic filters is presented.
The breakdown of the remaining color and other complex organic com-
pounds is performed when passed through PAN (polyacrylonitrile) fiber
filtration and activated carbon filtration (ACF) steps. The twin objectives of
modeling and prediction of the discharge (outlet) parameters for a set of
influents (inlet) for performance evaluation are achieved through nonlinear
functionalmodeling usingMLR andNNregression techniques. A statistical
study between the initial and final parameters is presented for the deco-
louration process with an adequate graphical representation of process
parameters. Modeling studies are quantified with an adjusted coefficient of
correlation (R2

adj > 0.9) between the measured and predicted output vari-
ables for major treatment processes. The installed pilot treatment plant
efficiently remediates textile effluents resulting in a zero liquid discharge
(ZLD) system.

Results
The combined effluent treatment pilot plant developed through this study,
has been commissioned at a medium-scale textile production unit in the
western part of India, as shown schematically in Fig. 1. For the initial part of
the study, a case of textile/steel wastewater mixing to form the influent for
the pilot is evaluated at a combined effluent treatment facility. The same
pilot plant is later commissioned at the source of effluent coming out of a
textile production unit.

Combination treatment processes components
The treatment of the industrial textile effluent follows a combined reme-
diation procedure outlined in the schematic in Fig. 1. The stored influent is
transferred for the pre-treatment process by passing through a coagulation
and flocculation (C&F) unit, forming precipitates and flocs. This is followed
by activated sand-basedfiltration (SF) unit for adsorption of the dyes, which
requires regular backwash cycles to resolve the issue of pore-clogging,
thereby maintaining the overall effectiveness of the filtration process. The
treated water is stored in a buffer tank, from where it is transferred to a
photocatalytic reactor fitted with ZnO-type nanomaterial coated over per-
foratedmetallic filter plates. Two separateNanoMat (NM) tanks (NM1 and
NM2) with 5 KL (Kiloliter) capacity each are used serially for solar-induced
photocatalytic degradation for a total cycle time of 2 h for each reactors. The
transfer of effluent between NM1 and NM2 is necessary for meeting the
agitation requirements of the system and for effective effluent contact with
the photo-catalyst which leads to the generation of interaction sites between
the catalyst and the dyemolecules for higherdye degradation efficiency. The
photo-catalytic treatment stage is responsible for degrading dye molecules
into smaller fragments by changing the absorption spectra of the effluent.
The effluent is then passed through a polyacrylonitrile (PAN) fiber and
activated carbon filtration (ACF) steps to remove residual suspended solids
and broken-down compounds through the adsorption process. Evaluation
of the water parameters is performed on samples collected offline for
each stage.

Pre-filtration (coagulation & flocculation) unit
The pre-filtration unit comprises a coagulation and flocculation (C&F)
chamber that removes the colloidal suspensions by precipitation using the
generated floc creation mechanism, as outlined earlier14. For effective
operation of the coagulation process, the effluent should have a neutral pH
range (6.5 ~ 6.8). It may be worthmentioning that the range of pH is found
tobehighly acidic for steel effluent (pHsteel < 1) andbasic in the case of textile
effluents (pHtextile > 9). A mixture at 1:35 of the steel and textile effluent is
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considered while textile effluent is taken in its original state, detailed in
Supplementary Methods (1.1.1).

Activated sand filtration (SF) unit
Acid activation of sand is used for the dye sorption process for both types of
wastewaters (Steel-textilemixture andpure textile) and iswidely applieddue
to its simplicity and low-cost nature. The filtration process is based on the
principle that anoverall increase in the surface area andpore volume leads to
greater adsorption sites40, detailed in Supplementary Methods (1.1.2).

Fabrication of ZnO/ZnOGO coated SS sheets (NanoMat)
A detailed discussion on the fabrication of ZnO/ZnOGO nanocomposite
(NanoMat) over a substrate has been carried out in earlier studies18,22 and
other pieces of work available in the prior art19,41,42. The nanocomposite
grownover a perforated stainless steel (SS304) sheet substrate canwithstand
highly corrosive working conditions. A detailed procedure for the synthesis
ofZnO/ZnOGOloadedSS sheets is furtherdetailed inSupplementaryNotes
(1.10). The AOP-based photocatalytic reactor functions in the presence of
solar irradiation to produce hydroxyl radicals which degrade the dye
molecules through oxidation of complex pollutants and dyes into simpler
by-products. This process step reducesCOD level43 to achieve the regulatory
standards (IWDS limits).

Photocatalytic nano-mat (NM) reactor
The photocatalytic reactor is designed to accommodate serially placed
perforated ZnO/ZnOGO coated SS sheet panels with a replacement option,
shown in Fig. 2. The schematic of the photocatalytic unit is detailed in Fig. 3
and consists of 2 sequential photocatalytic chambers/reactors each with a
serpentine flow path for carrying out the degradation of the industrial
effluent. The photocatalytic unit is placed on a platform at an elevation of
5m and 3m respectively, designed for maximum daily solar exposure
(Fig. 3e). Each chamber is divided into4 parallel sectionswithwallsmadeup
of a 38mm thick acrylic sheet that is transparent to the incident light. The
effluent enters these reactors through a water inlet (10 cm dia.) and passes
through35 serially placed perforated coated stainless-steel sheets (Fig. 3d) in

each section of the flow reactor. The flow of effluent stream through the
serpentine path via each section of the reactor is designed to maximize the
effluent contact time with the catalyst-coated SS plates. Each photocatalytic
chamber/reactor has a volume of ~5.6 m3 with an effective capacity of 5 KL
(Kiloliters). Each sectionhas 35 sheets arranged serially and separatedwith a
gap of 9 cm between them and inclined at an angle of 65° for maximizing
solar exposure duration (Fig. 3b). The galvanized SS sheets are custom-
made for the reactor with equidistant holes (detailed design analysis pro-
vided in Supplementary Methods (1.1.4) over the whole surface area of the
sheet with 64 holes each of diameter of 2mm drilled in an XY-matrix
(Fig. 3a).Grooves (3 × 4mm)havebeenmadeon the sidewalls such that the
SS sheets may be inserted and removed periodically (Fig. 3c). The grooves
are made in a way so that alternate sheets are docked slightly above the
reactor bottom with a clearance passage for effluent. The other set of filters
are docked with negligible clearance from the reactor bottom inducing a
flow geometry along a zigzag path and holes present in the plate surface. A
combination of serpentine flow in separated sections with a zigzag type of
flow between the perforated sheets facilitates maximum contact with the
catalyst and efficeint mixing of effluent during the reactor loading.

Nano-filtration (NF) units
To satisfy the ZLD standards, the treated dye wastewater is further passed
through a combination of Poly(acrylonitrile) (PAN) fiber filter and Acti-
vationCarbonfilter (ACF) for performing theNano-Filtration (NF)process
step. The carbon nano-fiber filters are obtained from E-spin Technologies
Pvt. Ltd. and the characterization performed is recorded in Supplementary
Figs. 6–744. The NF process works on the principle of adsorption of the
organic compounds in nano-pores of the carbon fibers, resulting in a sig-
nificant decrease (~42%) of total organic carbon (TOC) parameters, which
regular backwash cycle.

Structural characterization of photocatalytic nano-mat filter
The characterization of ZnO and ZnOGO NanoMat using Field Emission
Scanning Electron Microscopy (FESEM)is shown in Fig. 4 where 4a, b
shows the ZnO nanostructures are densely grown over the requisite

Fig. 1 | Schematic of advanced oxidation process based on combined treatment plant. Illustration of the various filtration stages and process components setup and
working of the dye-wastewater treatment plant.
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substrate with a uniform size distribution, and 4c, d shows a decent joining
and homogeneity of the nanocomposite of ZnO and GO.

TheX-ray diffraction (XRD) analysis in Fig. 5a shows the characteristic
peaks of the wurtzite-type crystal structure of ZnO and the characteristic

(001) peak of graphene oxide (GO)45,46. In the nanocomposite of ZnO/
ZnOGO, the (001) peak of GO shifts was created due to the heterojunction
formation between ZnO and GO47 and exfoliation of the GO sheets along
with decrease in intensity. FTIR spectra of the ZnO/ZnOGO

Fig. 2 | Schematic of photocatalytic unit using advanced oxidation process. Illustration of the construction details of the photocatalytic reactor via different views and the
orientation of the sheets and array of holes deposited on the sheet deposition of the nanomaterial photocatalyst.

Fig. 3 | Schematic of components of the Photocatalytic unit. a SS Sheet panel
design consisting of micro-hole arrays in an equidistant pattern, b Groove sche-
matics for SS sheet plates for vertical placements, c Top view of grooves for fitting in
the SS sheets for operational efficiency, d Top view of flow Reactor/Chamber

through the serpentine path via each section designed to maximize the effluent
contact time with the catalyst-coated SS plates, and e Schematic of 2 sequential
photocatalytic chambers/reactors to maximize the operational efficiency of the
Photocatalysis unit.
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nanocomposite in Fig. 5b show the peaks at 1625 cm−1 corresponding to the
C =Ostretching bond,which is shifted to 1617 cm−1 for pureGO indicating
a composite formation in ZnOGO48,49. The other peaks observed in the
range of 1000–1500 cm−1 belong to functional oxide groups obtained from
oxidation reactions during the synthesis of GO. RAMAN analysis of ZnO/
ZnOGOphotocatalyst in Fig. 5c shows 2 characteristic spectra peaks at 1350
and 1580 cm−1, corresponding to the D band and G band of GO50. The D
band which represents out-of-plane sp3 hybridized carbon atoms created
due to the defects during acid exfoliation of the graphite and the G band
represents the in-plane vibration of sp2 hybridized carbon atoms51. The
decrease in intensity and broadening of peaks in the nanocomposite can be
attributed to the change in the defect states of the material and the peak
observed at 490 and 780 cm−1 represents characteristic phonon vibrations
of ZnO52.

Pilot unit operational details
A prototype pilot combined AOP-based dye wastewater treatment
plant unit is shown in Fig. 6. The C&F unit removes the suspended
organic solids through the coagulation and flocculation process,
followed by the Activated sand filter (ASF) which adsorbs the
remaining compound and color from the effluent stream. The pho-
tocatalysis (NM1 and NM2) reactor degrades the remaining complex
organic compounds through the oxidation route using highly reactive
hydroxyl radical (·OH) generated from the photocatalyst, which
further reduces the Chemical oxygen demand (COD) and total
organic carbon (TOC) parameters. This is followed by a capture of
the degraded products and remaining chemical compounds using
hollow PAN fiber and an activated carbon filtration remediation unit.
The treated water obtained at the outlet of the remediation process
has COD, TOC, BOD, and other parameters under dischargeable
limits as detailed in Table 1. For the analysis of the remediation
processes in the pilot plant, a detailed study is performed to extract
correlations between treatment processes to determine the optimum
performance parameters of the treatment processes.

Study of photocatalytic filter performance
The analysis of the photocatalytic efficiency of the ZnO Nano-Mat is per-
formed usingUV-vis absorbance spectra of the effluentmeasured at regular
intervals of time.The industrial effluent is introduced into thephotocatalytic
reactor after the C&F and SF steps. The UV-vis absorbance spectra show a
decrease in absorbance (~95%) indicating a reduction in color concentra-
tion in4 h (Fig. 7).Normalized concentrationvariationw.r.t. reaction time is
obtained through the plot of ln(Co/C) vs t (irradiation time) and results in
first-order reaction kinetics (Kapp ¼ 0:00542 min−1). Figure 7 validates the
ZnONM-based photocatalysis process as it successfully degrades industrial
wastewater. A detailed discussion of the reaction mechanism for the pho-
tocatalysis process is provided in Supplementary Methods (1.5).

Wastewater parameters analysis
The combined treatment processes follows the objective of maintaining the
treatedwater dischargeable into the environment under tolerable parameter
limits. For textile wastewater, COD, BOD, TDS, TOC, turbidity, and pH are
the most important parameters which determine the quality and environ-
mental safety of the effluent. Table 1 illustrates the wastewater parameters
for various treatment stages of the plant53. The value of the wastewater
parameters following the various treatment stages decreases through serial
interventions by degradation, adsorption, oxidation, and filtration pro-
cesses. The color of the wastewater changes and becomes clearer, as shown
in Fig. 8 indicating the degradation of complex organic dyes and other
chemicals. Figure 9 depicts the time series plots of COD and TOCvariation
after each treatment stage for an experimental period of 8 days, showing
effective degradation by reduction of the parameter values. The treatment
pilot plant was tested at CETP, Jodhpur (mixture of steel and textile was-
tewater) and Laxmi Textiles, Jaipur (only textile wastewater).

Data-driven predictive performance modeling
Data-driven modeling (DDM) techniques are used to obtain accurate
predictionmodels using inlet parametersmeasured through the inexpensive
implementation of online sensors. DDM is useful for processes where the

Fig. 4 | Photo-catalyst morphology characterization using Field emission scanning electron microscope (FESEM). The FESEM images of (a, b) ZnO and (c, d) ZnOGO
NanoMat. The scale bars in (a–d) represent 2 μm, 100 nm, 1 μm, and 2 μm, respectively.
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existingmechanisticmodels are too complex to be implemented and sensor
data acquisition can easily be deployed.Machine Learning (ML) algorithms
can be effectively utilized for highly probable predictions and for obtaining
desired responses bymodeling the response characteristics using a given set
of inputs andoutputs54 and establishing theparametric relationshipbetween
state variables measured through the data acquisition system55. Due to the
dynamic nature of the effluent variability and process dynamics, parsimo-
nious linear models present a reasonable choice for their interpretable
nature over powerful non-linear modeling techniques56,57. The modeling
process comprises partitioning the dataset into the training set and valida-
tion set which is used to fit the model and calculate the residual error. A
correlation factor between the response variable and parametric variable is
used for the performance evaluation of the process. All process steps of the
treatment plant are denoted by (A) Coagulation and Flocculation (C&F),
(B) Activated Sand Filter (SF), (C) NanoMat (NM) filter, (D) PAN fiber
(PAN) filters, and (F) Activation Carbon filtration (ACF).

In this study, Multi-Linear Regression (MLR) and Neural Networks
(NN) based predictive models are generated to determine the parametric
model of the treatment processes. The selection of the input parameters for
predictive modeling is ascertained through Inland wastewater discharge
standards (IWDS) which are then utilized to determine the efficiency of the
treatment processes for the pilot plant. Regression modeling is utilized for
predicting a continuous set of values consisting of independent variables i.e.,
outlet COD, TOC, Turbidity etc. to various dependent sets of variables like
pH, COD, BOD, TDS, TOC, and Turbidity of the influent stream.

Monitoring total organic carbon (TOC) signifies the amount of organic
compound present after each treatment process while chemical oxygen
demand (COD) details the amount of oxygen required to oxidize it com-
pletely. Turbiditymeasures the amount of cloudiness, which in turn shares a
direct correlation with COD and TOC parameters. The process required to
measure the COD and TOC parameters is long and tedious and prediction
modeling of the output parameters allows real-time modeling of the treat-
ment process for various applications.

Statistical analysis
Atime series plot for outletCOD,TOC, andTurbidity removal efficiency for
dynamically changing the influents using different processes is depicted in
Supplementary Figure 13 for each process for 45 days of plant operation.
Theplots depict the breakdownof the dye into simpler by-products through
the combined treatment processes with output removal efficiency varying
from ~70% for C&F and SF, and ~50% for NMandNF processes as shown
in Table 1. To measure the corresponding accuracy of the output sample
distribution, standard errors using standard deviation are analysed to
measure the deviation of the actualmean from sample values. Table 2 shows
the mean and standard deviation for the outlet stream for the treatment
processes.

Further investigation between the inlet and outlet parameters using
correlation coefficient (R) and Covariance is detailed in Supplementary
Tables 7–15. A strong correlation between COD, BOD, and turbidity is
observed while pH, TOC, and TDS show a weak or variable correlation

Fig. 5 | Photo-catalyst structure characterization. a The XRD pattern of ZnO, GO, and ZnO-GO nanocomposites, bThe FTIR of ZnO, GO, and ZnOGO nanocomposites,
c The RAMAN of ZnO, GO, and ZnOGO nanocomposites, and d EDS analysis of ZnO, GO, and ZnOGO nanocomposites.
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factor between the regressor variables, which in conjunction with the cov-
ariance and correlation are used for establishing conditions for the for-
mulation of the predictionmodel. A threshold p < 0.05 is considered for the
estimated coefficients indicating a significant similarity relationship and
level ofmarginal significance of theOutlet parameters, shown in Fig. 10 and
Supplementary Table 6. A smaller p-value signifies strong evidence for an
alternate hypothesis w.r.t. the difference between predicted and actual
process parameters.

Process parameter identification using multi-linear regression
The treatment processes are nonlinear and are subjected to large variations
of the inputs which together with uncertainties requires efficient process
parameterization for consistent outlet and robust process design. The outlet
Process model identified using MLR is used for determining efficient pro-
cess parameters of the DWWTP. Table 3 presents the values of the outlet
COD, TOC, and turbidity, denoting a good fit for the estimated model
through efficient prediction for the process application. Using the goodness
of thefitmodel, Fig. 11 details the degreeoffit of the predictivemodel for the
treatment process steps.A close-fitted line indicates the significance of thefit

model in predicting the parameter values, denoted by themeasure offit. The
designed fit model evaluated using R2 and R2

adj parameters assesses varia-
bility of the inlet regressor for C&F and SF treatment steps indicating
~60–80% and ~50–97%, respectively of the total variations forOutlet COD,
TOC, and Turbidity. For the NM, PAN, and ACF treatment steps, R2 and
R2

adj values ranging from 92-99% for the outlet parameters indicating a
progressively accurate prediction model for the processes due to less
variability and higher degradation efficiency of the remediation process.
Outlet COD, TOC, and Turbidity prediction models are evaluated using
various criteria of standard error, 95% Confidence Interval statistics and
covariance resulting in ap < 0.0001, detailed inSupplementaryTables 13–15
and Fig. 11. A smaller standard error value signifying better fit, and less
overfitting provides better point estimates of themean response around the
confidence region.

Parameter estimation of the process response using artificial
neural networks
ANN-based process predictive modeling is utilized for the treatment pro-
cess steps inDWWTPwhich are inherently complex due to thenature of the

Fig. 6 | Prototype combined dye-remediation filtration unit. The schematic diagram describes the pilot-scale 10 KLD treatment plant using serial intervention of
combination treatment strategies for effective treatment of dye-containing wastewater.

Table 1 | Mean and Percentage degradation of influent parameters

Plant Processes COD (mg/L) BOD3 at 27 °C
(mg/L)

TDS (mg/L) TOC (mg/L) pH Turbidity (mg/L)

COD % BOD % TDS % TOC % pH % Turbidity %

01T (Textile wastewater) 3327 ± 30 182 ± 4 3313 ± 47 592.65 ± 4.3 8.81 171 ± 2.8

02CF (Coagulation & Flocculation) 990 ± 9 70.24 82 ± 2 54.94 3392 ± 48 −2.4 365.17 ± 2.6 38.38 7.31 17.03 18 ± 0.3 89.47

03SF (Sand Filter) 500 ± 5 44.44 45 ± 1 45.12 3382 ± 48 0.29 172.46 ± 1.25 52.77 7.43 −1.6 15 ± 0.25 16.67

04NM (Nano-Mat) 208 ± 2 58.40 28 ± 1 37.78 2754 ± 39 18.57 79.50 ± 0.5 53.9 7.51 −1.08 11 ± 0.18 26.67

05PAN (PAN Fiber) 95 ± 1 54.32 9 ± 0 67.86 2165 ± 30 21.39 37.15 ± 0.3 53.27 7.55 −0.53 8 ± 0.13 27.27

06ACF (Activated Carbon Filter) 52 ± 0 45.26 7 ± 0 22.22 1856 ± 26 14.27 22.44 ± 0.16 39.60 7.61 −0.79 5 ± 0.08 37.5

ISWD 250 30 2100 NA 6-9 NA

Mean Textile Waste-Water quality Parameters analysis for Pilot Plant (Post-Treatment) w.r.t. ISWD Standards and percentage (%) change for individual treatment processes.
ISWD Inland Surface Water Discharge Standard Output.
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degradation process. ANN captures the data patterns through predictive
modeling and optimization of the DWWTP operations. An optimum
number of 10 hidden nodes is chosen based on the performance require-
ments of the predictionmodel. Better generalization capability at the cost of
overfitting basedon theminimummean squared error using theLevenberg-
Marquardt backpropagation algorithm(LMA) is achieved.A total of 45data
samples are considered for each treatment step for training, validation, and
testing steps for optimum performance58.

ANN prediction model shows higher model performance for the
outlet COD, TOC, and Turbidity parameters, showing high R2 ≈ 0.99
with small residual errors, as shown in Fig. 12. The result of the
testing model demonstrates high R2 values for the performance
model. The performance study in Fig. 13 tests the accuracy of the
outlet COD, TOC, and Turbidity prediction models achieved at
different epochs. The lower value of the validation performance
indicates the best fit and high performance of effluent parameters and
captures the optimum parameters for model predictive design with
improved prediction of the removal of influent dye wastewater. MLR
and ANN prediction models for output parameters provide fore-
casting capability for the efficient process operation of the DWWTP.

Due to their robust nature and suitable learning characteristics, NN
models capture the dynamic linear relationship between inputs and
output, providing a good fit and efficient predictive performance.

Residual evaluation of the parametric prediction model
Residual analysis of the prediction models provides information about the
model adequacy using the goodness-of-fit of the generatedmodel, shown in
Fig. 14 for MLR and Fig. 15 for ANNmodels. The scatter plots of residuals
show that the variance around the regressors, which is highest for the initial
treatment steps and incrementally decreases with each treatment process
step correlating with the earlier results. The residual plot obtained from the
generated ANN model denotes a better prediction capability of the output
againstmultiple regressor variables. The incrementally lowerror residual for
each process results in a high correlation among the set of input and output
variables verifing the better degradation through the treatment ptocesses.

Discussion
A unique method for the treatment of textile industrial wastewater using
ZnO/ZnOGO NanoMat successfully grown over large metallic plates and
utilized as a photocatalyst for remediation of dye wastewater using

Fig. 7 | Degradation results and kinetic curve. Photocatalytic degradation results using Time variation of Normalized concentration and logarithmic normalized
concentration for degradation kinetic curve using ZnO NanoMat Photocatalytic reactor.

Fig. 8 | Pictorial depiction of dye degradation processes. Figures representing dye
degradation represented through a change in color of effluent during combination of
treatment processes of Coagulation and Flocculation (C&F), Activated Sand Filter

(SF), Photocatalytic ZnO NanoMat (NM), Poly(acrylonitrile) (PAN), and Activa-
tion Carbon filter (ACF) for (a) textile and steel effluent (right to left), (b) Textile
effluent (left to right).
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combined treatment processes is presented through this study. Each fil-
tration stage reduces the wastewater parameters to a significant degree,
which upon integration provides a complete solution for the remediation of
industrial textile wastewater. Fast reaction kinetics enables 95% dis-
colouration of the industrial wastewater and dye effluents of 20 KL capacity.
This study focuses on predicting organic carbon removal through the
treatmentprocess usingmulti-linear regressionandartificial neural network
models with a simplistic architecture. The wastewater parameters of pH,
COD,BOD,TDS,TOC, andTurbidity aremonitored after each step and the
prediction model provides high accuracy for the given combination of
dependent set of influent variables. Various statistical indices are evaluated

to validate the accuracy of regression models. The learning model exhibits
high accuracy in predicting output variables with a value of R2

adj > 0.9 and
provides a useful practical estimation methodology for modeling organic
carbon removal. The study shows a strong correlation between the mea-
sured and predicted effluent concentrations with a high correlation value
and a very small p-value. The data-based learning approach studied here is
quite suitable to describe the relationship between wastewater quality
parameters and has application potential for performance prediction,
software sensing, and autonomous control operations of dye-based waste-
water treatment plant processes, by integrating with advanced sensing
technologies to result in a decision support framework.

Fig. 9 | Time series Parametric variation of wastewater. Time series model of experimental stage of the combined treatment plant during pilot scale study with each
treatment stage for COD and TOC at (a, c) CETP, Jodhpur (mixture of steel and textile wastewater) and (b, d) Laxmi Textiles, Jaipur (textile wastewater).

Table 2 | Mean and Standard deviation analysis of outlet parameters at each treatment process

Parameters COD Outlet TOC Outlet Turbidity Outlet

Processes Mean Std. Dev. Mean Std. Dev. Mean Std. Dev.

Inlet Influent 3523.9 243.3 590.5 68.7 179.5 19.03

Coagulation & Flocculation Step (A) 1134.8 102.12 350.64 39.99 25.52 20.56

Activated Sand Filtering Step (B) 550.96 38.21 182.54 11.75 20.14 12.32

NanoMat Filter / Photocatalysis Step (C) 248.9 33.18 88.33 10.44 14.97 9.2

PAN Fiber Filtering Step (D) 127.9 28.58 44.36 7.03 10.93 2.97

Activated Carbon Filtering Step (E) 75.31 19.72 27.69 4.09 6.71 1.52

Numerical illustration of the time-series outlet parameter for each treatment process step signifying the consistency of the remediation processes through combined techniques.
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Methods
Activated sand filter (SF)
The minute screened sand particles are well dried and activated with 1N
H2SO4 and 1N NaOH solution through washing and settling until the
desired pH is obtained. A normal sand filter is attached in series to a
chemicallymodified soil filter to remove the total suspended solids from the
influent stream and to extend the life of the designed SF thus improving the
overall throughput. The chemically modified sand is sandwiched between
gravel alongwith a liner to hold the layer intact and follows a backwash cycle
at regular intervals to remove clogging through suspensions. The effluent is
passed and collected in a buffer tank for further processing, further detailed
in Supplementary Notes (1.11.2).

Synthesis of ZnO/ZnOGO Filter coated sheets (NanoMat)
A detailed discussion on the fabrication of ZnO/ZnO-GO nano-
composite over a substrate has been carried out in earlier work18,46

and Supplementary Notes (1.10). To utilize the ZnO/ZnOGO
nanostructures in the 10 KLD scale photocatalytic treatment, the
nanocomposite is grown over a perforated substrate (SS sheet), which
allows easier cyclic movement and better contact of the photocatalyst
element with the effluent. The selection of the substrate is a critical
decision due to the various chemicals which are present in the
effluent stream that not only react with the material but also result in
a high level of corrosion59. Initial studies performed show Stainless
steel (SS304) offers a good substrate choice among the treatment
processes for storing wastewater and other effluents as it can with-
stand overall harsh working conditions. For growing ZnO nanorods
onto the surface, 62.5 mL methanol containing 0.01 M (Zn(Ac)2) is
kept on a beaker under constant stirring at a temperature of 60 °C.
This stirring process is accompanied by a dropwise addition of
0.03 M NaOH mixed in 32.5 mL DI water, under strong stirring
action for around 3 h for uniform growth of ZnO nano-seeds in the
solution. Upon completion of the stirring, the solution is ultra-
sonicated for 30 min. for enhanced adhesion properties and is grown
in situ to form a thin film by drop casting on a substrate placed on a

heated surface maintained at 170 °C. GO is fabricated using the
modified Hummer’s process with slight modifications and discussed
in earlier work56. The first step in the fabrication of the GO is
choosing its derivative with different chemical properties and sizes
best suited for the treatment application, which is detailed in Sup-
plementary Section S160. The growth of ZnO nanorod is achieved
through an 800 mL DI water solution mixture of 0.025 M Zinc
Nitrate hexahydrate ((Zn(NO3))2.6H20) and 0.125 M Hexamethyle-
netetramine (HMTA) obtained by ultrasonication for 60 min61. The
patterned ZnO nanorods in thin film form are obtained by placing
the thin drop cast ZnO nano-seed film on a substrate in an upside-
down manner over the above solution for 2 h. and is equilibrated at
90 °C in an oven to obtain the desired ‘NanoMat’. ZnOGO is
obtained through a process of mixing ZnO nano seeds with GO
solution and grown using a similar procedure as outlined in the
supplementary section. The ZnO/ZnOGO loaded SS sheets are placed
in the photocatalytic reactor and exposed to sunlight directly as
described in Fig. 3. The AOP-based visible light photocatalysis oxi-
dizes the complex pollutants and dyes present in the effluent stream
into simpler by-products, thereby reducing the COD levels43 to
achieve the standard discharge limit.

Structural characterization of filter units
Spectroscopy techniques. Spectrometric analysis of the dye samples is
carried out using Evolution™ 300 UV-Vis Spectrophotometer equipped
with a long-lifetime xenon flash lamp and extended wavelength-range
silicon photodiode detector. VISIONpro, Thermo Scientific™ software, is
utilized as a control and data manipulation package for scanning for
sample identification and method development, quantitative
analysis, etc.

Material characterization. To analyse various properties of the fabri-
cated ZnO/ZnO-GOphotocatalyst, different characterization techniques
were employed namely Field emission scanning electron microscopy

Fig. 10 | Significance testing of the influent parameters. p-value outlet plots for different treatment process steps signifying the similarity relationship and level of marginal
significance of the outlet w.r.t. the treatment processes (A) C&F, (B) SF, (C) NM, (D) PAN, and (E) ACF.
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Fig. 11 | Multi-linear regression for prediction performance modeling. Illus-
trative plots between the actual vs predicted values of the outlet parameters for
different treatment process steps depicting the correlation between the experimental

and predicted values w.r.t. the treatment processes (A) C&F, (B) SF, (C) NM, (D)
PAN, and (E) ACF.

Fig. 12 | Performance of the training, validation, and testing neural network
modeling for waste-water treatment processes. Observed vs predicted perfor-
mance modeling through training, validation, and test of the dataset parameters

using artificial neural Networks-based regression modeling w.r.t. the treatment
processes (A) C&F, (B) SF, (C) NM, (D) PAN, and (E) ACF.
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(FESEM) (Zeiss Supra 40 V, Germany), X-ray diffraction (XRD)
(PANalytical, Cu Kα carried out at wavelength = 1.5418 Å), RAMAN
spectroscopy (WITec alpha 300 using Helium-Neon laser, at wavelength
532 nm) etc.

Photocatalytic process. The adsorption capacity of the synthesized FES
is determined using known kinetic and isotherm models62. A kinetic
process based on the Langmuir–Hinshelwood method63 is used for
modeling the generation of electrons and holes in the presence of solar

Fig. 14 | Outlet residual analysis using multi-linear regression. Residual vs Predicted parameter plots for Outlet COD, TOC, and Turbidity parameters for treatment
process steps showing independent observations without any non-random patterns w.r.t. the treatment processes (A) C&F, (B) SF, (C) NM, (D) PAN, and (E) ACF.

Fig. 13 | Validation performance of the training, validation, and testing neural
network model for waste-water treatment processes. Mean squared error
response observed vs the number of iterations of the training dataset through the

Neural Networks-based learning algorithm for Outlet COD, TOC, and Turbidity
w.r.t. the treatment processes (A) C&F, (B) SF, (C) NM, (D) PAN, and (E) ACF.
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irradiation. Photocatalytic dye degradation reactions follow the Lang-
muir mechanism, dCdt ¼ kapp � C, which upon integration yields the first-
order equations C ¼ C0: expð�kapptÞ where dC

dt is the rate of dye deco-
lourization with light irradiation, ‘t’ denotes treatment process time
(min), kapp represents pseudo-first-order discolouration reaction rate
constant (min−1), which equals the slope of the fitting line. The reaction
rate of discolouration follows the first-order kinetics, and the pseudo-
first-order reaction rate constant is determined using the semi-
logarithmic relation lnðC0

C Þ vs t. The normalized concentration variation
through photocatalytic reaction time can be observed as a straight line
resulting in constant kapp value. For determining the dye degradation
efficiency, percentage dye discolouration is obtained using the relation of
Dye decolourization %ð Þ ¼ C � C0

� �
=C0

� �
× 100 where, ‘C0’ and ‘C’ are

initial and instantaneous dye concentrations respectively.

Data-driven modeling (DDM). Data-driven modeling is useful for pro-
cesses where the existing mechanistic models are too complex to be
implemented and data acquisition through measurements is readily
available. Machine learning techniques can be effectively utilized for
highly probable predictions and obtaining desired responses bymodeling
the processes and response characteristics through a given set of inputs
and outputs54. Due to the dynamic nature of the effluent treatment
process, parsimonious linear models are a reasonable choice for their
interpretable nature over powerful non-linear modeling techniques.
Machine learning-based soft sensing can automatically adapt to changes
in the processes during plant operation64. Signal selection is based on the
desired properties of the application andmode of analysis which includes
either online or offline analysis, the accuracy of the sensor, and
sampling rate.

Data pre-processing and mining
The dataset consists of various parameters validated and detailed in Sup-
plementary Table 5.

Multi-linear regression. MLR models are preferred due to their simple
formulation and for providing suitable learning characteristics by cap-
turing the dynamic linear relationship and interaction effects between
input regressors and variable output. The regression modeling technique
is used for hypothesis or equation generation of a target output based on a
set of ‘n’ independent variables and is given by,

y ¼ f X; θð Þ þ ε ¼ θ0X0 þ θ1X1 þ θ2X2 þ . . . . . . . . . :þ θnXn þ ε ð1Þ

ŷ ¼ θTXi ¼ θ0 þ θ1X1 þ θ2X2 þ θ3X3 þ θ4X4 þ θ5X5 þ θ6X6 þ ε ð2Þ

ŷOutlet ¼ θ0 þ θ1:xCOD þ θ2:xBOD þ θ3:xTOC þ θ4:xTDS þ θ5:xpH þ θ6:xTurbidity þ ε

ð3Þ

θT ¼ θ0 θ1 θ2 θ3 θ4 θ5 θ6
� �

;X ¼

1

X1

X2

X3

X4

X5

X6

2
666666666664

3
777777777775

ð4Þ

Where yn is the output-dependent variable, ŷ (outlet COD, TOC, and
Turbidity) is the output forX (COD,BOD,TOC,TDS, pH,Turbidity) as the
independent process variables for corresponding θ of the estimated
regression coefficients, and ε is the random error for i ¼ 1; 2; . . . . . . :; n
sample observations. To estimate the value of θ, either Ordinary least
squares (OLS) or Gradient descent (GD) algorithms are utilized, given as:

θ̂ ¼ ðX0XÞ�1X0y ð5Þ

ŷ ¼ Xθ̂ ð6Þ
Neural networks. Muti-Layer Perceptron (MLP) feed-forward network
finds wide application for the modeling process using the back-
propagation algorithm to map the relationship between numeric inputs
and a set of targets, also termed as backpropagation neural network
(NN)65. NN is developed through a three-layer feed-forward network
relating the complex nonlinear processes using input-output data,
detailed in Supplementary Fig. 15. Input values are fed to the summing
junction after weighing along with the bias and passed with sigmoid
hidden neurons and linear output neurons connected with separate
weighing and bias values using the relation:

yj ¼ f
Xn
i¼0

Wijαi þ bi

 !
ð7Þ

whereWij are the weights, αi and bi are the corresponding inputs of COD,
BOD, TOC,TDS, pH, andTurbidity with biases and y corresponds to outlet
COD, TOC, and Turbidity. The sigmoid transfer function is used as the
nonlinear transformation function, given as

σ xð Þ ¼ 1
1þ e�x

; f 0 xð Þ ¼ f ðxÞð1� f ðxÞÞ; 0 < f ðxÞ < 1 ð8Þ

OLS algorithm is used to calculate the parameter for the independent
process variables byminimizing the sum of squares (MSE) of the difference
between the predicted and actual variables of the dataset66. Gradient descent
Optimization algorithms can be used which iteratively minimizes the error
for obtaining an optimum value of θ and provides better and faster results
for large data sets.

Fig. 15 | Outlet residual analysis using neural network modeling. Residual vs Predicted parameter plots for Outlet COD, TOC, and Turbidity parameters for treatment
process steps showing independent observations without any autocorrelated model errors w.r.t. the treatment processes (A) C&F, (B) SF, (C) NM, (D) PAN, and (E) ACF.
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Model performance evaluation approach. The performance model
evaluation is based on the minimization of the mean squared error for
making the correct predictions of output COD, TOC, and turbidity using
variousmodeling techniques. Thewellness of the prediction performance
is measured using mean squared error (MSE), root mean squared error
(RMSE), coefficient of determination (R2) and Adjusted coefficient of
determination (R2

adj)
67.

Mean Squared Error;MSE ¼ 1
n

Xn
i¼1

yi � ŷi
� �2 ð9Þ

Root Mean Squared Error;RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
n

Xn
i¼1

yi � ŷi
� �2s

ð10Þ

R2score ¼ 1-

Pn
i¼1ðyi � ŷÞ2Pn
i¼1ðyi � �yÞ2 ð11Þ

Data availability
All data generated or analyzed during this study are included in this pub-
lished article (and its supplementary information files) and plant parameter
data that support the findings of this study are available from the corre-
sponding author upon reasonable request.

Code availability
The code used to develop individual figures is available upon request to the
corresponding author.
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