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drinking water treatment plants using the
efficiency analysis tree approach
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Water treatment processes are known to consume substantial amounts of energy, making it crucial to
understand their efficiency, drivers, and potential energy savings. In this study, we apply Efficiency
Analysis Tree (EAT), which combines machine learning and linear programming techniques to assess
the energyperformanceof 146Chileandrinkingwater treatment plants (DWTPs) for 2020.Additionally,
we utilize bootstrap regression techniques to examine the influence of operating characteristics on
energy efficiency. The results indicate that the evaluated DWTPs exhibited poor energy performance,
with an average energy efficiency score of 0.197. The estimated potential energy savings were found
to be 0.005 kWh/m3. Several factors, such as the age of the facility, source of rawwater, and treatment
technology, were identified as significant drivers of energy efficiency in DWTPs. The insights gained
from our study can be valuable for policymakers in making informed decisions regarding the adoption
of practices that promote efficient and sustainable energy use within the water cycle.

Energy plays a crucial role in various aspects ofmanagingwater resources in
urban settings, including abstraction, treatment, and distribution1. In par-
ticular, the production of drinking water is an energy intensive activity
because rawwaterneeds tobe cleanedby removinghigh levels of pollutants2.
The Sustainable Development Goals established by the United Nations,
specifically Goals 6 and 7, impose an obligation on governments to ensure
universal access to clean water and enhance energy efficiency3. Conse-
quently, it is crucial for water resources to meet rigorous quality standards
before being deemed suitable for drinking purposes. Simultaneously, the
challenges posed by climate change and population growth necessitate the
sustainable and efficient utilizationofwater resources4,5.Moreover, drinking
water needs to be provided to people at an affordable price6.

To address the aforementioned challenges, it is crucial to gain a deeper
understanding of the energy efficiency of the water treatment process,
including the factors that influence energy performance and the potential
for energy savings. By examining the energy efficiency of the water treat-
ment process and exploring opportunities for energy conservation, we can
work towards achieving sustainable and efficient use of energy in the water
sector. Previous studies, such as those conducted by Loubet et al.7, Chini
et al.8, and Lam et al.9, have examined the relationship between energy
intensity and the water treatment process. These studies have highlighted
the growing energy demands in water treatment resulting from factors like

climate change, population growth, and urbanization. However, it is worth
noting that these studies did not specifically explore the link between energy
efficiency and the water treatment process.

Energy intensity and energy efficiency are different concepts10. Energy
intensity is the energy consumed [kWh] per unit volume [m3] of drinking
water produced and therefore, it does not consider how the quality of raw
water and drinking water affected the energy consumed by drinking water
treatment plants11,12. On the other hand, energy efficiency is a synthetic
indicator which in addition to the volume of drinking water produce inte-
grates the quantity of pollutants removed from raw water13.

Only a limited number of previous studies have specifically focused on
evaluating the energy efficiency of drinking water treatment plants
(DWTPs). These studies, conducted by Molinos-Senante and Guzman14,
Molinos-Senante and Sala-Garrido10,15, Ananda16, Sala-Garrido and
Molinos-Senante17, and Maziotis et al.13, utilized the data envelopment
analysis (DEA) method. DEA is a non-parametric technique that employs
linear programming to measure energy efficiency, enabling the integration
of multiple inputs and outputs for each DWTP18. One advantage of DEA is
that it does not require a priori definition of the functional form of the
production frontier, which represents the relationship between inputs and
outputs19. While DEA has its positive characteristics in evaluating energy
efficiency of DWTPs, it is important to acknowledge its limitations. One
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such limitation is its deterministic nature, which makes it sensitive to out-
liers in the data20. Consequently, the presence of extreme values can sig-
nificantly impact the efficiency scores derived from DEA analysis.

DEA method needs implicitly to determine the boundary of the
underlying technology, which constitutes the reference benchmark21. Its
estimation allows the calculation of the corresponding inefficiency score for
each unit (DWTP in our case study) as the deviation of each activity or
production plan from the frontier of the production possibility set. For this
reason, by definition, DEA approach suffers from an overfitting
problem21–23. Overfitting occurs when the model becomes too closely tai-
lored to the specific dataset used for analysis, potentially resulting in less
robust efficiency scores. Therefore, caution should be exercised when
interpreting and relying solely on efficiency scores derived from DEA
analysis.

In order to address the limitations of DEA and enhance the accuracy
and robustness of efficiency scores, Esteve et al.21 introduced a novelmethod
called Efficiency Analysis Trees (EAT). The EAT method combines
machine learning and linear programming techniques to measure effi-
ciency. Specifically, it utilizes regression (or decision) trees to estimate the
valueof the response variable basedon thresholds of predictor variables.The
EAT approach assumes free disposability to estimate a step function pro-
duction frontier and calculate efficiency scores. Esteve et al.21 demonstrated
from a mathematical point of view how the EAT method overcomes
overfitting improving the accuracy of the efficiency results. In particular,
they demonstrated that the EAT method outperforms other non-
parametric techniques such as DEA because the estimated values are not
overfitted, ensuring more reliable efficiency measurements24.

In light of the aforementioned context, themain objective of this study
is to assess the energy efficiency of the drinking water treatment process
using the newly developed method EAT. By employing the EAT approach,
this study aims to quantify the optimal level of energy consumption at
various thresholds of volume pollutants removed. Additionally, the EAT
method allows for the estimation of potential energy savings that could be
achievedwith efficientwater treatment practices.Moreover, in order to gain
a deeper understanding of the factors influencing energy efficiency in the
water treatment process, this study utilizes bootstrap regression techniques.
Specifically, it examines the impact of operational characteristics such as the
age of the facility and the type of treatment technology on energy perfor-
mance. Through these analyses, this study seeks to provide valuable insights
into improving energy efficiency in drinking water treatment operations.

Our study makes several significant contributions to the existing lit-
erature. Firstly, it stands as the pioneering research that applies machine
learning and linear programming techniques to assess the energy

performance of the drinking water treatment process. By employing the
EAT approach, we are able to generate robust efficiency scores that are not
overfitted, in contrast to other non-parametric methods like DEA. Fur-
thermore, our study estimates the potential energy savings achievable in the
drinking water treatment process. This allows us to gain insights into the
optimal energy utilization required for different pollutant removal volumes.
This information is invaluable formanagers anddecision-makers as it sheds
light on the factors influencing energy intensity and aids in the decision-
making process. Importantly, our innovative research was implemented
and applied to multiple DWTPs in Chile, enhancing its applicability and
relevance to real-world scenarios. This empirical application further
strengthens the validity and reliability of our findings.

Results and discussion
Optimal energy use in drinking water treatment
By applying the EAT algorithm, we can determine the optimal level of
energy utilization in DWTPs based on the volume of drinking water pro-
duced and efficiency in pollutants removal. The findings from our analysis,
as depicted in Fig. 1, highlight the significant impact that removing arsenic
and sulfates from raw water has on the energy consumption of DWTPs. By
contrast, the removal of the other pollutants considered in this study, i.e.,
turbidity and total dissolved solids, does not significantly explain energy use
in DWTPs. This finding aligns with Molinos-Senante and Sala-Garrido25

conclusions, which assessed how various pollutants and the volume of
treated water affect the energy intensity in a range of water treatment
facilities. They evidenced that total dissolved solids only affect the energy
usage inDWTPsemploying coagulation-flocculation andpressurefiltration
techniques. Conversely, the reduction of turbidity was found to influence
energy consumption only in DWTPs that utilize pressure filtration. How-
ever, for facilities relying on rapid gravity filtration, the energy usage is not
affected by the removal of turbidity and total dissolved solids.For those
facilities producing more than 2,111,834m^−3 per year of drinking water
adjusted by arsenic removal efficiency the maximum energy use is
1,054,754 kWh per year, i.e., 0.499 kWhm^−3. In the case of DWTPs that
produce less than 2,111,834m^−3 per year of drinking water adjusted by
arsenic removal and of more than 428,440m^−3 per year adjusted by
sulfates removal, the maximum use of energy utilization could reach the
level of 539,412 kWhper year.Hence, the optimal energy usage ranges from
0.255 kWhm^−3 to 1.259 kWhm^−3 depending on whether the assess-
ment takes into account the efficiency of arsenic or sulfates removal,
respectively. Finally, DWTPs producing less than 428,440m^−3 per year
adjusted by sulfates efficiency removal, the maximum energy use required
could be lower than 136,201 kWh/year, i.e., 0.318 kWhm^−3. It is

Volume of water * arsenic 
removal m3/year

Volume of water * arsenic 
removal < 2111834 m3/year

Volume of water * sulphates 
removal < 428440 m3/year

Fig. 1 | Efficiency Analysis Tree (EAT) for estimating optimal energy consumption in DWTPs. The volume of drinking water produced and the quantities of arsenic and
sulphates removed from raw water influences of the energy use of DWTPs.
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illustrated the large range of optimal energy use depending on the volumeof
drinking water produced and the quantity of arsenic and sulfates removed.
Considering that the average volume of water produced adjusted by arsenic
removal is 1,998,544m^−3 per year, results on Fig. 1, illustrate that smaller
facilities can have an energy intensity as low (or lower) than larger ones as
even the quantity of sulfates to be removed is large (>428,440m^−3
per year).

Indeed, the results of our study indicate that optimal energy utilization
inDWTPs can vary basedondifferent thresholds ofwater treated to remove
specific pollutants such as sulfates and arsenic. This finding underscores the
importance of tailoring energy consumption to the specific requirements of
pollutant removal in order to achieve optimal energy efficiency. By con-
sidering different thresholds or levels of pollutant removal, DWTPs can
determine the appropriate energy usage for their particular circumstances.
The results suggest that the energy required to remove pollutants like sul-
fates and arsenic can have a significant impact on overall energy con-
sumption inDWTPs. Therefore, by optimizing energy usage based on these
thresholds,water treatment facilities can enhance their energy efficiency and
reduce unnecessary energy consumption.

Energy efficiency of drinking water treatment plants
The findings of our study indicate that the water treatment processes
examined exhibit high levels of energy inefficiency, with an average energy
efficiency score of 0.197 (Fig. 2). This implies that, on average, there is
significant room for improvement in terms of energy consumption, with a
potential reduction of almost 80% in energy usage. The distribution of
energy efficiency scores among DWTPs is shown in Supplementary Fig. 1.

Moreover, it is observed that a small proportion of the evaluated
facilities demonstrated full energy efficiency. Specifically, out of the 146
DWTPs analyzed, only four facilities, representing ~2.7% of the total,

achieved a full efficiency score of 1.00. This indicates that these particular
facilities have effectively optimized their energy usage and are operating at
the highest level of energy efficiency within the context of our study. The
four energy-efficient facilities utilize pressure filters (PF) for drinking water
production. However, they differ in their primary raw water sources, with
two of them using groundwater and the other two relying on surface water.

Findings from this study slightly differ from those of Molinos-Senante
and Sala-Garrido15, who reported an average energy efficiency score of 0.28
and classified 6 out of 146DWTPsas energy-efficient.Notably, two facilities
deemed efficient in their study were considered inefficient in ours. Fur-
thermore, there are more pronounced discrepancies when compared to
Molinos-Senante andMaziotis26, who reported an average energy efficiency
score of 0.462, with none of the evaluated facilities being fully energy-
efficient. These variations can be attributed to the different methodological
approaches used in assessing energy efficiency. Molinos-Senante and Sala-
Garrido15 utilized a double-bootstrap DEA method, which reduces data
uncertainty but does not address overfitting issues. In contrast, Molinos-
Senante andMaziotis26 used stochastic non-parametric envelopment of data
(StoNED), a technique that incorporates both inefficiency and noise in the
assessment but still has overfitting limitations. Our study, however,
employed the EAT approach, a method that is not prone to overfitting
issues. This methodological improvement strengthens the validity of our
findings and underscores the need for targeted efforts to improve energy
efficiency in water treatment plants.

Figure 3 provides valuable insights into the distribution of energy
efficiency scores across the evaluated DWTPs. The majority of the facilities
reported energy efficiency scores below 0.21, indicating a significant level of
energy inefficiency. On average, these plants would need to reduce their
energy consumption by nearly 80% to achieve optimal energy efficiency.On
the other hand, there are 18 treatment plants that reported relatively higher
energy efficiency scores. However, their scores still fall within the range of
0.21 and 0.61, indicating room for improvement. These facilities have the
potential to achieve substantial energy savings, ranging from40% to 80%on
average, and bridge the gap with the most energy-efficient plants in the
sector. No common characteristics were observed in terms of source of raw
water, treatment train, and ownership for this group of DWTPs. The
treatment trains employed are coagulation-flocculation with rapid gravity
filters (CF-RGF) by 8 facilities, coagulation-flocculationwith pressure filters
(CF-PF) by 5, and PF alone by another 5. Similarly, the distribution of the
main source of rawwater varies, with 8DWTPs treatingmixed rawwater, 5
treating groundwater, and 5 treating surface water. Ownership-wise, 14 of
the 18DWTPs are fully privately owned,while the remaining 4 are operated
by concessioned companies.

Furthermore, the analysis reveals a group of 11 DWTPs that can be
considered as best performers. These facilities attained energy efficiency
scores ranging between 0.81 and 1.00, indicating a high level of energy
efficiency. These best performers serve as examples of successful energy
management practices and provide insights into the potential for achieving
optimal energy efficiency in the water treatment sector. The shared char-
acteristic among this group of DWTPs is their use of PF as the primary
treatmentmethod for producing drinking water. Additional information of
the influence of treatment train on the energy efficiency ofDWTPs is shown
in Fig. 5. As with the previous group, diverse features are observed in terms
of ownership and themain source of rawwater.Of theseDWTPs, 8 out of 11
are owned by full private water companies, while the remaining three are
operated by concessioned water companies. Regarding the source of water,
the distribution is as follows: 5 out of 11 DWTPs treat mixedwater, 4 out of
11 treat groundwater, and 2 out of 11 treat surface water.

In our study, we investigated the energy-saving potential of the energy-
inefficient DWTPs. By applying Eq. (5) and considering the current energy
use of the 146 assessed DWTPs, we estimated the potential energy savings
for these facilities, as depicted in Fig. (4). The results revealed that the
assessed DWTPs have a combined potential energy-saving of
13,344,093 kWh/year. This indicates the substantial opportunity for redu-
cing energy consumption in these facilities while maintaining the same

Fig. 2 | Energy efficiency scores of drinking water treatment plants evaluated.
Relevant differences on the energy efficiency among drinking water treatment plants
are reported.

Fig. 3 | Energy efficiency scores across DWTPs. Most of the facilities evaluated
present a very poor energy efficiency with a score lower than 0.21.
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volume of drinking water production and pollutant removal from raw
water. Themean potential energy savings for the 146 assessedDWTPswere
estimated to be 0.005 kWhm^−3. Additionally, we analyzed the distribu-
tion of potential energy savings across the assessed DWTPs. The 25th
percentile indicates that 25% of the facilities could achieve energy savings of
0.008 kWh per cubic meter water, while the 75th percentile suggests that
25% of the facilities could achieve energy savings of 0.146 kWhm^−3.
Current energy intensity of DWTPs ranges between 0.002 kWhm^−3 and
0.215 kWhm^−3 with an average value of 0.007 kWhm^−3. The dis-
tribution of potential energy savings among DWTPs is shown in Supple-
mentary Fig. 2.

Factors influencing energy efficiency of DWTPs
To gain a deeper understanding of the factors impacting the energy per-
formance DWTPs, it is essential to assess how their operational char-
acteristics influence the previously estimated energy efficiency scores. The
findings of this analysis are presented in Table 1. We check the existence of
multicollinearity among the explanatory variables in the regression using
the variance inflation factor (VIF) test. The estimated value of VIF was 2.31
indicating that there is no multicollinearity in the regression model. The
results indicate that the age of the treatment plant, the source of raw water,
and the type of treatment technology have a negative effect on energy
efficiency. By contrast, the ownership of the facility does not statistically
influence on its energy performance which is consistent with past
research15,26,27.

Specifically, the study reveals that older DWTPs tend to have lower
energy performance. This can be attributed to the lack of updates and
improvements in energy-efficient equipment within these aging plants.
Molinos-Senante and Sala-Garrido15 found that newer facilities tend to
exhibit better energy performance, suggesting a positive correlation between
a facility’s age and its energy efficiency. Conversely, the study by Molinos-
Senante and Maziotis26 did not provide a definitive conclusion on how the
age of a facility influences its energy efficiency, indicating that the rela-
tionship between these factors remains unclear and further research is
needed. Furthermore, the analysis demonstrates that DWTPs relying on
mixed water resources, such as both surface and groundwater, experience a
decrease in energy efficiency. This implies that treating water frommultiple
sources necessitates extensive treatment processes, potentially leading to
higher energy consumption. Consequently, this combination of surface and
groundwater treatment may have a detrimental impact on overall energy
performance. This finding is consistent with those reported by Molinos-
Senante and Maziotis26 whereas Molinos-Senante and Sala-Garrido15 did
not identify the source of raw water as an explanatory factor of energy
efficiency of DWTPs.

When focusing on the primary technology used for treating rawwater,
there are statistically significant differences in energy efficiency scores.
Figure 5 provides an illustration of these differences, highlighting that the
most energy-efficient technology is PF. On the other hand, treatment plants
utilize rapid gravity filters (RGF) technology to remove pollutants from raw
water are the least energy-efficient. Treatment plants that utilize a combi-
nation of coagulation and flocculation (CF) and PF or RGF to purify water
demonstrated slightly higher energy efficiency scores. However, there is still
considerable room for improvement in their energy performance to catch
up with plants utilizing more energy-efficient technologies. These findings
present a partial divergence from the conclusions of Molinos-Senante and
Sala-Garrido10, who conducted ametafrontierDEA assessment onDWTPs.
Their study concluded thatDWTPsutilizing a combination ofCF and rapid
gravity filtering (CF+ RGF) were the most energy-efficient. They also
found evidence that facilities employing RGF as their treatment process
were the least energy-efficient. It is important to note that differences in
methodologies, data sources, and specific contexts may contribute to var-
iations in the results between studies.

Results from this study provide evidence that the evaluated DWTPs
exhibit inadequate energy performance, highlighting significant opportu-
nities to reduce energy consumption. Such reductions can lead to cost
savings and help mitigate greenhouse gas emissions, particularly if the
energy sources are non-renewable. Water managers and regulators can
implement various actions and policies to enhance energy efficiency in
water treatment processes (Fig. 6). Potential strategies could be categorized
as follows:

DWTPs can improve energy efficiency by both reducing energy use
and by removing more pollutants from raw water. Focusing on the first
alternative, as it has reported by Sowby et al.28, some practices formanaging
energy in DWTPs are: (i) Implementing optimized operational procedures
can helpminimize energywaste. This includes strategies such as optimizing
flow rates, ensuring appropriate maintenance of equipment, and adopting
efficient operating schedules; (ii) Energy recovery systems, such as energy-

Table 1 | Influence of operational characteristics on energy
efficiency. Estimates of the bootstrap truncated regres-
sion model

Variables Coeff. St. Err. Z-stat p-value

Constant −1.131 0.0631 −17.924 0.000

Age of plant −0.140 0.013 −10.769 0.000

Source of water −0.231 0.050 −4.620 0.000

Type of ownership 0.103 0.100 1.030 0.300

Type of technology −0.312 0.043 −7.256 0.000

Sigma 0.175 0.042 4.167 0.000

X2(5) 64.120

p-value 0.000

Energy efficiency score is the dependent variable
Bold indicates that coefficients are statistically significant at 5% significance level

Fig. 5 | Energy efficiency scores across water treatment technologies (PF: pressure
filters; RGF: rapid gravity filters; CF-PF: coagulation-flocculation and pressure
filters; CF-RGF: coagulation-flocculation and rapid gravityfilters).DWTPs using
PF are those with the best energetic performance.

Fig. 4 | Potential energy savings whether DWTPs are energy efficient. DWTPs
with the lowest energy performance can save up to 2.45 kWh per cubic meter
of water.
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efficient pumps or turbines, can be installed to capture and utilize energy
that would otherwise be wasted during the treatment process and (iii)
Deploying advanced monitoring and control systems can enable real-time
monitoring of energy consumption and process optimization. This allows
operators to identify areas of energy inefficiency promptly and take cor-
rective actions. Results from this study evidenced that olderDWTPs tend to
have lower energy performance. Thus, water managers can invest in
modernizing treatment plant equipment to utilize more energy-efficient
technologies. This may involve replacing outdated machinery with newer
models that offer improved energy performance. Generation and transfer of
specific knowledge is also a valuable tool for improving energy efficiency.
Thus, trainingprograms and awareness campaigns can educateDWTPstaff
about the importance of energy efficiency and provide them with the
necessary knowledge and skills to identify energy-saving opportunities in
their daily operations. Moreover, establishing platforms for collaboration
and knowledge sharing among water managers, researchers, and industry
experts can facilitate the exchange of best practices and innovative
approaches to energy efficiency in water treatment processes. Finally, given
the large roomofChileanDWTPs to improve energy efficiency, theChilean
water regulators can introduce incentives and policies to encourage water
companies to prioritize energy efficiency. These can include offering
financial incentives for adopting energy-efficient technologies or setting
energy efficiency targets that must be met to ensure tariff adjustments or
other benefits.

The policy implications of your study’s findings are indeed significant
and can provide valuable guidance to stakeholders involved in water
treatment processes. By employing a novel approach that combines
machine learning and linear programming techniques, this study offers a
visually intuitive way for water regulators to understand the maximum
energy requirements for different pollutant removal scenarios. This can aid
decision-making processes by providing clear insights into the energy
implications of water treatment operations. The new method used over-
comesoverfitting issues often encountered inother efficiency techniques.As
a result, the energy efficiency scores derived from this approach are more
robust and reliable. This increased reliability can contribute to more
informed decision-making, as water regulators can have greater confidence
in the efficiency assessments provided.The analysis conducted identifies key
factors influencing energy performance in water treatment processes. This
knowledge enables water regulators to gain insights into the specific aspects
that impact efficiency. For example, recognizing that newer treatment plants
tend to be more energy-efficient can inform decisions regarding facility

upgrades or replacements. Similarly, understanding the energy intensity
associated with different water sources and treatment technologies can
guide choices in resource allocation and process optimization. In this
context, Sowby29 empirically proved that those water utilities with energy
management policies or plans use less energy. This correlation was attrib-
uted to the organization´s culture and operation and also to the identifi-
cation of energy use as a relevant topic within the organization.

Methods
Energy performance assessment based on efficiency
analysis tree
According toEsteve et al.21, let’smake the assumption that there is a vector of
predictors variables, i.e., factors influencing energy use in DWTPs, defined
as x1; . . . ; xm with xi2Rm. Let’s also assume that this set of variables are
employed to predict a vector of response variables, i.e., energy used, defined
as y; . . . ; yn withyi2Rn. TheEATapproach selects a predictor variable j and
a threshold sj2Sj where Sj consists of the vector of potential thresholds for
the variable j to split the dataset into the right and left node, tR and tL,
respectively22. Themean squared error (MSE) is used todefine the threshold
and consequently, the right and left node. This is shown mathematically as
follows:

R tL
� �þ R tR

� � ¼ 1
n

X
xi;yið Þ2tL

yi � y tL
� �� �2 þ 1

n

X
xi;yið Þ2tR

yi � y tR
� �� �2

ð1Þ

where t shows the node of the regression tree,RðtÞ presents theMSE of each
node t, n is the size of the sample, and y tL

� �
and y tR

� �
are the estimated

values of the response variable y. Note that the nodes tL and tR present the
left and right nodes of the tree, respectively. The value of the response
variable is calculated using the data that goes to nodes, tL and tR.

The estimated values of the response variable for each node of the
regression tree are calculated as follows23:

y tL
� � ¼ max max yi : xi; yi

� � 2 tL
� �

; y IT kjt�!tL ;tRð Þ tL
� �� �n o

y tR
� � ¼ max max yi : xi; yi

� � 2 tR
� �

; y IT kjt�!tL ;tRð Þ tR
� �� �n o

ð2Þ

Fig. 6 | Some strategic actions to promote energy efficiency in drinking water treatment plants. Energy efficiency improvement can be achieved by applying a diverse
range of approaches.
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where T is the sub-tree that is derived using the EAT method, k is the
number of splits, yðIT kjt�!tL ;tRð Þ tL

� �Þ and yðIT kjt�!tL ;tRð Þ tR
� �Þ is the set of

leaf nodes of the regression tree generated after performing the k-th break
that Pareto dominates node tL and tR

21,23.
To avoid any overfitting problems, the EAT approach employs cross

validation techniques to select the best regression tree21. Therefore, the
production technology that is estimated takes the following form:

dPTTk
¼ x; y

� � 2 Rmþ1
þ : y ≤ dTk

xð Þ
n o

ð3Þ

where dTk
xð Þ is the predictor estimator regarding the sub-tree Tk:

The energy efficiency score, which is a synthetic index embracing
energy use and pollutants removed from raw water, for each analyzed
DWTP is derived after solving the following linear programming model:

θ xk; yk
� � ¼ min θ ð4Þ

s:t:X
t2eT�

λta
t
j ≤ θxjk; j ¼ 1; . . . ;m

X
t2eT�

λtd
t
rT� ðatÞ≥ yjk; r ¼ 1; . . . ; p

X
t2eT�

λt ¼ 1

λt 2 0; 1f g; i ¼ 1; . . . ; n

where θ is the energy efficiency score which is ranged between 0 and 1. We
note that when energy efficiency score equals to one, then the unit is energy-
efficient.Avalue lower thanone indicates energy inefficiency.at ; dT� ðat) are
locations in the input-output space for all t 2 T� where * presents the final
sub-tree, andλ are intensity variables that are part of theprocess to construct
the efficient frontier30.

Based on the energy efficiency scores estimated by using Eq. (4),
potential energy savings if a DWTPwas efficient can be estimated using the
following equation:

Energys ¼ Energyc � 1� θð Þ ð5Þ

whereEnergys is the potential saving in energy andEnergyc is the actual level
of energy consumption of the evaluated DWTP.

Factors influencing energy efficiency of DWTPs
In the second step of our analysis, we examine the relationship between
energy efficiency scores of DWTPs and their operating characteristics. To
accomplish this, we utilize bootstrap truncated regression techniques, as
proposed by Simar and Wilson31. The choice of employing a truncated
regression approach ismotivated by the fact that energy efficiency scores are
bounded between zero and one. This approach allows us to account for this
bounded nature and ensure that the estimated relationship is valid within
this range.

Byusingbootstrap regression techniques,we canmitigate anypotential
issues related to serial correlation among efficiency scores, error terms, and
the operating characteristics. This is an improvement over the standard
Tobit regression approach, which may encounter difficulties when dealing
with such correlations31. The bootstrap method provides a robust frame-
work for analyzing the relationship between energy efficiency scores and the
various operating characteristics of DWTPs in our study.

Mathematically, the regression model takes the following form:

θi ¼ μ0 þ μiξ
0
i þ timeþ vi ð6Þ

where θi is the EAT energy efficiency score, μ0 is the constant term, ξ0i is the
set of operating characteristics of any DWTP i, and μi are parameters that
are estimated. Finally, vi is the error term which is distributed following the
standard normal distribution24.

Case study and variables used
The case study conducted in Chile focuses on assessing the energy
performance of 146 DWTPs in the country. The study focused on
assessing the energetic performance of water treatment facilities
excluding energy use for raw water abstraction. It is important to note
that the water industry in Chile operates under a system of private
ownership, which was established during the privatization process
between 1998 and 2004. Two types of water companies emerged from
this process: full private water companies, responsible for the long-
term operation and maintenance of the water network, and conces-
sionary water companies, tasked with supplying water for a specific
period, typically around 30 years32. Due to the monopolistic nature of
the water sector, a national regulator called the Superintendencia de
Servicios Sanitarios (SISS) was established. This regulatory body is
responsible for setting water tariffs for customers, using an efficient
company standard as a benchmark33. Additionally, the national reg-
ulator, SISS, monitors the environmental performance of the water
sector. The Ministry of Health establishes quality standards that must
be met by treated water before it is distributed to end-users for con-
sumption. These quality standards are based on guidelines set by the
World Health Organization10.

The selection of predictor and response variables is based on past
literature on this topic and data availability34–39. The response variable is
captured by the energy consumption and is measured in kWh per year. In
order to account for the removal of pollutants during the water treatment
process and consider its impact on energy efficiency, our study incorporates
four quality adjusted predictor variables. Following past practice10,40,41, they
are estimated as follows:

Quality adjusted ys ¼ Volumew � Pollutantsin � Pollutantsef
Pollutantsin

� 	
ð7Þ

where Volumew denotes the volume of drinking water produced and is
measured in m3 per year; Pollutantsin is the concentration of the pollutant s
in the influent and Pollutantsef is the concentration of the pollutant s in the
effluent. Pollutant concentrations aremeasured in g/m3. This study employs
four quality adjusted predictors because four pollutants are removed during
the water treatment process. The four pollutants considered are sulfates,
turbidity, arsenic and total dissolved solids. The four pollutants considered
are sulfates, turbidity, arsenic and total dissolved solids. This selection is
based on their significant impact on the energy consumption of Chilean
DWTPs10,25.

Regarding operational characteristics influencing the energetic per-
formance of DWTPs, the following variables are considered: (i) age of the
DWTPmeasured in years; (ii) source of the rawwater treated (surfacewater;
groundwater or mixed water resources, which involves groundwater and
surface water blending before its treatment); (iii) ownership of the DWTP
which is captured through the use of a dummy variable, i.e., whether the
treatment plant owned by a full private or concessionary water company
and; (iv) the type of treatment technology used in the DWTPs, i.e., PF
(n = 66), RGF (n = 36), CF-PF (n = 18) and CF-RGF (n = 26). The pre-
treatment of all facilities assessed is a simple screening process and all use
chlorine forwaterdisinfection.Thedescriptive statistics of the variables used
in our analysis are reported in Table 2. Data of the variables (predictor,
response variables, andoperational characteristics ofDWTPs)wasprovided
by the Chilean Urban Water Regulator (SISS) requested under the right to
public information in Chile and correspond to 2020.
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