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Enhancing the explanation of household water consumption
through the water-energy nexus concept
Zonghan Li 1, Chunyan Wang 1✉, Yi Liu1 and Jiangshan Wang1

Estimating household water consumption can facilitate infrastructure management and municipal planning. The relatively low
explanatory power of household water consumption, although it has been extensively explored based on various techniques and
assumptions regarding influencing features, has the potential to be enhanced based on the water-energy nexus concept. This study
attempts to explain household water consumption by establishing estimation models, incorporating energy-related features as
inputs and providing strong evidence of the need to consider the water-energy nexus to explain water consumption. Traditional
statistical (OLS) and machine learning techniques (random forest and XGBoost) are employed using a sample of 1320 households in
Beijing, China. The results demonstrate that the inclusion of energy-related features increases the coefficient of determination (R2)
by 34.0% on average. XGBoost performs the best among the three techniques. Energy-related features exhibit higher explanatory
power and importance than water-related features. These findings provide a feasible modelling basis and can help better
understand the household water-energy nexus.
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INTRODUCTION
The rapid increase in residential water consumption has garnered
significant attention1. Due to the rapid growth of urban
settlements, household water consumption is expected to
escalate substantially by 2050, with a potential 300% increase in
Asia and Africa2. Addressing the challenges posed by this surge
necessitates a comprehensive understanding of household water
consumption. Understanding factors that influence household
water consumption can yield profound insights into household
water use patterns and consumption, thereby facilitating improve-
ments in infrastructure, facilities, and municipal planning and thus
guaranteeing a stable supply capacity3,4. Furthermore, differen-
tiated demand management and saving measures for different
households could be implemented to reduce water usage based
on these explanations5. However, the estimation and explanation
of household water consumption remains one of the most
formidable challenges in cities to date3.
To enhance the explanation of household water consumption in

a specific period (e.g., a year or a month), researchers have
experimented with various assumptions regarding the possible
influencing factors6 (defined as features in this study). Commonly
tested features include (i) water use-related features7–9, (ii)
household demographic and economic information, such as
population10,11, income12,13 and education level14,15, and (iii)
housing information, such as housing area13,16 and housing
type9,17. With these assumptions, various techniques, including
traditional statistical techniques such as multiple regression based
on the ordinary least squares (OLS) approach8,14 and the
autoregressive integrated moving average (ARIMA) method18,19,
machine learning techniques such as artificial neural networks
(ANNs)19,20 and tree-based models21,22, etc., have been widely
employed to model and explain household water consumption.
Despite the extensive use of such a wide range of features and
techniques, more than half of the variability in household water
consumption remains unexplained, as indicated by an average
coefficient of determination (R2) of less than 0.50 for most

models16. This unexplained variability is observed as residuals in
the models. Identifying the appropriate features to characterize
the unexplained variability has become a challenge in current
household water consumption models.
Water and energy are frequently consumed simultaneously in

households, particularly for behaviours such as laundry, bathing
and culinary23. For instance, previous studies have revealed that
up to 65.6% of household water consumption in Beijing, China is
associated with energy use24, and 54.5% of total electricity
consumption is associated with water use25. This interdependence
between water and energy consumption could be described as
the water-energy nexus, which is defined as the interconnection
or cause-effect relationship between water and energy26–28 in
previous studies. When explaining household water consumption,
the water-energy nexus concept can be applied by considering
energy-related features in feature assumptions. However, most
studies have either ignored the nexus or limited the concept to a
few household appliances and behaviours (e.g., modelling the use
behaviours of water heaters9,29 and hot water consumption30,31)
rather than considering it as a whole. The unexplored features,
which cover major energy-consuming household appliances (e.g.,
washing machines, cooking devices and water heaters), are also
significant water consumers in households32. Due to the
challenges of data collection at the household level, few studies
have considered these features in the form of energy use or
energy consumption in household water consumption explana-
tion models. Within this context, the feasibility of using energy use
and consumption as suitable features for water consumption
estimation models should be explored, and the results can be
used to determine whether the water-energy nexus concept
should be considered when explaining household water
consumption.
In essence, the water-energy nexus can potentially be used to

explain more variability in household water consumption, as it
may serve as a “proxy” for the residuals in models. Incorporating
such features may be the key to further improving the explanatory
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power of water consumption estimation models, but they have
yet to be explored in detail. Thus, this study aims to assess the
importance of considering the water-energy nexus concept when
explaining household water consumption. The nexus was
considered based on energy use (EU, use patterns such as
duration, frequency and energy-related household appliance
parameters) features and electricity consumption (EC, total
electricity usage, measured in kWh) features in the models.
Following the workflow in Fig. 1, a stepwise-like approach
modelling scheme was utilized to compare models with and
without EU and EC features. Household-level data collected from
1320 surveyed households in Haidian and Tongzhou Districts in
Beijing, China, in 2020 were utilized as a case study. Four annual
water consumption models were established using the stepwise-
like approach. The modelling process involved employing a
traditional statistical technique, OLS, as well as machine learning
techniques including random forest (RF) and extreme gradient
boosting (XGBoost). The key influential features were then
identified and discussed. Improvements in model evaluation
metrics upon incorporating EU and EC features, differences in
performance among different modelling techniques, and varia-
tions in the explanatory power of different features were
anticipated to be observed. Additionally, key features that
influence household water consumption were identified.

RESULTS
Descriptive statistics
To examine the benefits of considering the water-energy nexus for
explaining household water consumption, a questionnaire survey
was conducted in 2020 in Haidian and Tongzhou Districts in
Beijing, China. The questionnaire was distributed to subdistricts in
the study area and had 1320 responses (1257 valid responses
were retained after data cleaning). The questionnaire contained 78
questions regarding household information (HI), EU, water use
(WU) and EC, and the results were integrated into 24 features for
modelling. The questionnaire in this study differed from previous
surveys of household water and/or energy consumption15,17,33–35

by offering a broader perspective that encompassed various
factors, including appliances, behaviours, water consumption and
energy consumption. It also specifically focused on the concurrent

use of water and energy. Details of the questionnaire and the
sampling scheme are provided in the Data section in the Methods
section.
For HI, the average family size of the sample households was 2.9

(SD= 1.1), with over 40% of the households having 3 family
members. All sampled houses and apartments were located
within the 6th Ring Road, with approximately 60% of all samples
located outside the 5th Ring Road (housing location). The average
housing area of the samples was 75.4 m2. Approximately 43% of
the sampled households were located in buildings constructed
after 2000 (housing age). The income of the respondents of the
questionnaire (income) exhibited a pyramidal pattern, and
approximately 94% of respondents were employed or retired
(occupation).
For WU features, the daily mean frequencies of mopping,

bathing and landuaryclothes washing were 0.78, 0.64 and 0.35
(frequency_mopping, frequency_bathing, and frequency_laundry)
for the sample households, respectively. On average, baths lasted
0.23 hours (SD= 0.11, range [0, 0.75], duration_bathing). The
majority of sampled households used impeller washing machines
(approximately 92%, type_WM).
In terms of EU, the average powers of washing machines and

water heaters were 0.54 kW (SD= 0.53 kW) and 7.27 kW
(SD= 9.29 kW), respectively (power_WM and power_WH). The
average durations of cooking and air conditioning (specifically in
summer) were 0.36 hours and 1.71 hours per day, respectively
(duration_culinary and duration_ac). For households with storage
water heaters (approximately 53%), the average temperature
setting for heating was 50.6 °C (temperature_WH).
Household water and electricity exhibited strong heterogeneity.

Water consumption was the label (or explained variable in
traditional statistical techniques) of the models; it averaged
120.1 m3/year, with a standard deviation of 47.0 m3/year. For
comparison, the statistical value of the city-wide average house-
hold water consumption in Beijing was 130.5 m3/year in 202036,37

(based on calculations). Similarly, electricity consumption displayed
relatively high dispersion, as its mean value and standard
deviation were 2351.5 kWh/year and 941.0 kWh/year, respectively.
More comprehensive descriptive statistics of the main contents of
the questionnaire are shown in Supplementary Tables 1, 2 and
Supplementary Fig. 1.
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Fig. 1 The workflow of this study.
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To comprehensively assess the effect of considering the water-
energy nexus concept in terms of explaining household water
consumption, a stepwise-like approach was designed to compare
the contributions of different groups of features, and four models
were established by using different feature combinations. In
addition to HI, which was considered in all four models, Model (1)
used WU, Model (2) contained EU, Model (3) was based on WU
and EU, and Model (4) included WU, EU and EC. The following
evaluations were conducted: (1) performance comparisons of the
four models, (2) comparisons of the explanatory power of each EU,
WU, and EC feature individually, and (3) identification of key
features crucial for modelling household water consumption.

Model performance comparisons
The performance of Models (1) to (4) established based on the
OLS, RF and XGBoost techniques is summarized in Table 1.
The rows in Table 1 compare the performance of different

techniques. Generally, machine learning techniques outperform
the OLS technique. Specifically, the XGBoost technique exhibits a
higher ability to explain variance in household water consumption
than RF, indicating better performance. For instance, in Model (4),
compared with those of the OLS and RF techniques, the average
R2 value of the XGBoost technique is 62.5% (increasing from 0.32
to 0.52) and 4.0% (increasing from 0.50 to 0.52) higher,
respectively; the average RMSE value decreased by 16.4% and
1.6%; and the average MAPE value was reduced by 19.4% and
10.7%.
The columns in Table 1 are different models based on the

stepwise-like approach, and the enhancement achieved by
considering the water-energy nexus concept is assessed. With
the four models established based on the XGBoost technique as
an example, all three metrics for Model (2) are better than those
for Model (1), indicating that the selected EU features provide a
better explanation of household water consumption than does
WU. After the EU features were added to Model (1) to create
Model (3), the average R2 value increased by 12.2% (from 0.41 to
0.46), the average RMSE value decreased by 4.8%, and the average
MAPE was reduced by 7.1%. Building upon Model (3), Model (4)
incorporated the EC feature. In this case, the average R2 value
increased by 13.0% (from 0.46 to 0.52), and the average RMSE and
MAPE values decreased by 5.1% and 3.8%, respectively.
Notably, compared to Model (1), Model (4) exhibited an increase

in R2 from 0.33 to 0.45 (by 30.4%; average of the three techniques),
highlighting the significant explanatory power of energy-related

features in household water consumption. In other words,
incorporating the water-energy nexus concept considerably
enhanced the explanatory power of the models.

Explanatory power of each WU, EU and EC feature
To further assess the contributions of EU and EC features to the
models’ performance, the explanatory power of each WU, EU and
EC feature was examined. The fitting of Model (4) using the
XGBoost technique was repeated with one WU, EU or EC feature
removed in each case. By quantifying the changes in R2, RMSE and
MAPE when each feature was removed, the explanatory power of
EC and EU in the full set of features was compared. The results are
illustrated in Fig. 2.
Removing EC from the model had a negative effect on R2, RMSE

and MAPE (−0.053, 1.786 and 0.015, respectively), with magni-
tudes greater than those observed for other features. Specifically,
R2 value was reduced by 10.2%. This reveals the strong
explanatory power of EC and suggests the indispensability of
including EC in household water consumption modelling.
The average reduction in R2 when removing one EU feature was

0.008, which was higher than the reduction observed when
removing one WU feature (0.006). This indicates that EU features
may possess stronger explanatory power than WU features and
are more crucial in explaining water consumption. This observa-
tion aligns with the finding that the performance metric values of
Model (1) were worse than those of Model (2) across all
techniques.

Key feature identification
For machine learning techniques, the normalized importance of
each feature can be calculated to reflect the level of importance in
explaining household water consumption. The feature impor-
tance, which ranges from 0 to 1, is the node impurity value for t
mean-squared error in the model. In this study, the feature
importance of the best-fitting Model (4) established based on the
XGBoost technique was calculated. The importance of each
feature was compared, and the features with the highest levels
of importance (Fig. 3), which are referred to as the “key features”,
were identified. According to the results, family size was the most
important feature in the model, contributing 0.10 to the total
feature importance (total importance = 1). Housing location was
also a vital HI feature, accounting for 0.08 of the total importance.
Among all 10 WU and EU features, behavioural features

(frequency and duration) displayed slightly greater feature
importance (0.06 on average) in relation to household water
consumption than did household appliance features (power and
sort, 0.05). Consistent with the findings in previous subsections,
the cumulative importance of EU features (0.27) exceeded that of
WU features (0.26). EU features with importance greater than 0.05
included power_WH, duration_culinary and duration_ac, and WU
features with importance exceeding 0.05 included frequency_-
landury, frequency_bathing, and frequency_mopping. In addition to
the conclusion that considering EC in the model significantly
improved the model fit, EC was also an important feature in the
XGBoost Model (4), contributing 0.06 to the total importance.

DISCUSSION
In this study, the water-energy nexus concept was introduced to
household water consumption models. A case study was
conducted using a dataset of 1320 samples (1257 valid) collected
in Beijing, China, in 2020, which included four groups of features:
HI, WU, EU, and EC. Compared to existing models with similar
sample sizes, the XGBoost model improved the explained variance
by at least 23.8%. The explanation of household water consump-
tion was enhanced significantly, as supported by the findings
through various evaluation approaches. In conclusion, the

Table 1. A comparison of model performance using different
techniques.

Model (1)
Inputs: HI &
WU

Model (2)
Inputs: HI &
EU

Model (3)
Inputs: HI &
WU & EU

Model (4)
Inputs: HI &
EU & WU & EC

OLS R2 0.25 0.26 0.29 0.32

RMSE 41.78 41.56 40.87 39.98

MAPE 0.33 0.32 0.32 0.31

RF R2 0.36 (0.34) 0.46 (0.44) 0.47 (0.45) 0.52 (0.50)

RMSE 38.58 (39.00) 35.50 (35.99) 35.08 (35.47) 33.53 (33.97)

MAPE 0.31 (0.31) 0.29 (0.30) 0.29 (0.29) 0.27 (0.28)

XGBoost R2 0.44 (0.41) 0.49 (0.46) 0.50 (0.46) 0.55 (0.52)

RMSE 36.02 (37.01) 34.44 (35.46) 33.90 (35.22) 32.48 (33.44)

MAPE 0.27 (0.28) 0.25 (0.26) 0.25 (0.26) 0.24 (0.25)

Values in the cells indicates the optimized value of each indicator. Values in
the brackets denotes the average value of each indicator over 500
repeated runs of the RF and XGBoost models. The coefficients and their
statistical significance for the OLS technique are reported in Supplemen-
tary Table 4.
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consideration of EU and EC features significantly increased the
explanatory power of household water consumption, i.e., a 34.0%
increase in R2, an 8.8% decrease in RMSE, and an 8.7% decrease in
MAPE. Furthermore, among all WU and energy-related features, EC
feature exhibited the highest explanatory power (0.05 in R2) and
feature importance (0.06). Compared to WU features, EU features
demonstrated larger explanatory power (0.04 vs. 0.03 in R2) and
feature importance (0.27 vs. 0.26). These findings offer a feasible
modelling basis to investigate variance in household water
consumption, thereby improving the modelling accuracy. This
also provides a better understanding of the water-energy nexus at
a household scale and thus facilitate a desired improvement of
sustainable water supply and consumption.

Considering the modelling techniques, the emerging data-
driven techniques significantly improve the performance of the
household water consumption explanation models and display
potential for broad application, as there are less stringent
hypotheses regarding the statistical distributions of features than
those in the OLS approach. Regression is widely applied in
modelling to explain the consumption of various resources, such
as electricity38, natural gas39 and water14,40. To better understand
the contribution of machine learning techniques to explain
household water consumption, in this study, both traditional
statistical (OLS) and machine learning techniques (RF and
XGBoost) were used, and their goodness of fit, model performance
results and explanatory power were compared. XGBoost was
found to be the most suitable technique for modelling and
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explaining household water consumption with the selected
features and the cross-sectional data. A possible reason may be
the nonlinear impacts of HI, WU, EU and EC features on household
water consumption41 and the excellent ability to capture the
nonlinear interactions between features and labels in the XGBoost
technique42.
Despite the limited interpretability to some degree when using

XGBoost, some insights can still be obtained from the feature
importance results. With the two most important HI features as
examples, an increase in family size directly leads to an increase in
household water consumption. Housing location reflects informa-
tion such as the construction age of the housing unit, which can
have a significant impact on household water consumption.
Moreover, household appliance features explain more of the
variance in household water consumption than behavioural
features. This suggests that future research can focus on residents’
water and energy use behaviours and corresponding intervention
measures to control household water consumption.
The explanatory power of household water consumption was

improved by at least 0.10 (23.8%, from 0.42 to 0.52) compared
with the values reported in previous studies that utilized cross-
sectional data and similar sample sizes (1320 ± 660), as shown in
Table 2. The Model (4) established using the XGBoost technique
achieved an optimized R2 value of 0.55, with an average value of
0.52. In previous studies with similar sample sizes8,9,14,16,21, the
highest R2 value only reached 0.4216, with an average value of
0.33. However, in studies with relatively small sample sizes, R2

values may exceed 0.5011,13,15. This study mainly focuses on
studies with similar sample sizes in this comparison because a
larger sample size generally leads to more accurate parameter
estimates and model results that are closer to reality but lower R2

values43. Additionally, various measures were taken to ensure the
robustness of the conclusions. First, as described in the Methods
section, this study used a rigorous systematic sampling method to
ensure the representativeness of the sample. Second, when
designing the models, the core factors influencing household
water consumption in previous studies44 were referred. Third, the
localized characteristics of the study area, such as using the Ring
Road to distinguish household locations, were considered.
The inclusion of EU and EC features increased the R2 value by

0.11 (34.0% from 0.33 to 0.45), providing strong evidence
supporting the necessity of considering the water-energy nexus
when modelling household water consumption. The water-energy
nexus serves as a proxy as model residuals and contributes to
capturing a significant portion of the unexplained variability in
traditional water consumption models (such as Model (1)). The
evidence supporting the importance of the nexus can also be
observed in the models. The EU features display larger explanatory
power and feature importance on average than the WU features.

Based on the relationship between water and energy consump-
tion, EC and EU features have strong explanatory power and can
considerably improve model performance. The models and
research roadmap have strong potential to be widely applied to
other regions and at other temporal scales. Previous research and
statistics have revealed a strong relationship between household
water and energy consumption in various regions and at different
temporal scales25,45–47. However, due to differences in the
household population structure, water use behaviour, water
consumption, and strength of the water-energy relationship, the
explanatory power of EU and EC features and their impacts on
model performance in different regions may vary. It should also be
noted that for studies in other regions, the model needs to be
retrained, and hyperparameters need to be reoptimized.
Some limitations remain in this study. First, the water

consumption data used in this study are based on cross-
sectional data. Future studies may include long time series of
annual-scale water and electricity consumption data to verify the
conclusions of this study based on the trend of water consump-
tion over time. Second, the COVID-19 pandemic has altered the
using behaviours of water and electricity48,49, potentially impact-
ing the water-energy nexus and the explanatory power on
household water consumption. Analysis on this impact is expected
and required in future research. Third, this study aims to predict
household water consumption. Further studies could explore the
causal relationship between various features and water consump-
tion based on different approaches, such as using interventions
(for example, reshaping water consumption behaviours by
providing feedback) and social experiments at the household
scale.

METHODS
In this section, the data collection process and the methodology
used to quantify the impacts of considering the water-energy
nexus concept on explaining household water consumption are
described. Broadly, this study consisted of three main steps. First,
the HI, WU, EU, WC and EC data were collected via a self-designed
questionnaire. The collected data underwent cleaning and cross-
checking (i.e., determined if different responses to the same
question matched, as detailed in the “Data collection and
cleaning” section) processes to ensure data quality. Second, a
stepwise-like approach was introduced to establish four models
and explain household water consumption with different combi-
nations of feature groups. Third, the enhancement associated with
incorporating the water-energy nexus concept into models were
verified. The enhancements were examined for OLS, RF and
XGBoost techniques. The verification steps included model
performance evaluation using cross-validation (i.e., evaluating
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model performance by randomly splitting data into subsets for
training and testing50–52), explanatory power clarification of each
feature by comparing the changes of removing one feature from
the model, and identification of key features by calculating feature
importance.

Data
The data used in this study were obtained from the “household
water-energy consumption” questionnaire survey developed by
the authors in 2020 using a sampling approach similar to that
used by Li et al. 53. The questionnaire consisted of 78 items
covering HI, EU, WU and EC features. These items were
consolidated into 24 features for modelling (Fig. 4). The related
items in the questionnaire are provided in Supplementary Note 4.
The HI part comprised 18 items aimed at collecting data on

both households and individuals. Regarding households, informa-
tion on living features, such as the location, area and age of the
house, was collected. Family size was included as a demographic

feature. The average energy efficiency grade of household
appliances and the attitude towards water and energy savings
were surveyed to assess the water and energy savings level of
each household. For individuals, data on age, occupation, income
level, and education level were collected for all family members
within the households. However, considering the information of
all family members in the models may introduce many features
that provide similar information, thereby increasing multicolli-
nearity in the models. Consequently, only the information of the
respondent of the questionnaire, as a representative of all family
members, was included in the models.
The WC and EC parts were implemented using a form that

captured the monthly water and electricity consumption in
different seasons: summer (June to August), winter (November
to March) and spring and autumn (April, May, September, and
October). Respondents had the option to provide either con-
sumption or cost information based on their bills. In cases in which
cost was provided, the cost was converted to consumption using

Table 2. Existing household water consumption models with different sample sizes.

Authors Temporal scale Technique(s) Features Studied period Studied location Sample size R2

Bennett et al.20 Annually ANN HI, GEO, WU 2010 Queensland, Australia 205 0.30–0.41

Jeandorn et al.11 Daily Logistic regression HI, GEO, INF 2017 Uvira, Democratic Republic
of the Congo

416 0.61

Gregory and Leo66 Annually SEM HI, WU 1996.7–1997.6 New South Wales, Australia 471 0.33

Singha et al.15 (not reported) SEM HI, ATT 2021 Fukuoka Prefecture, Japan 514 0.55

Lee and Derrible13 Daily GBM, OLS, RF, SVM HI, GEO, WB 2016 USA &Canada 531 0.33-0.69

Mostafavi et al.9 Daily Stepwise regression HI, WEA, EU,
WU

2009 USA 771 0.12-0.24

Ito et al.14 Daily OLS HI, WEA 2015.1–2015.4
2015.12–2016.2
2016.8–2016.9

Kathmandu Valley, Nepal 992 0.26-0.35

Duerr et al.21 Monthly ARIMA, BART, GBM,
RF

GEO, WEA 1998–2010 3 counties in Florida, USA 973 –

Jayarathna et al.8 Quarterly OLS HI, WEA, CAL 2009–2011 Queensland, Australia 1214 0.29

THIS STUDY Annually OLS, RF, XGBoost HI, WU, EU,
EC

2019 Beijing, China 1257 0.32-0.52
(Model (4))

Bich-Ngoc et al.16 Annually OLS HI, WU 2014 Wallonia, Belgium ~2000 0.40–0.42

Hoşgör and
Fischbeck10

Annually &
Daily

OLS HI, WEA, CAL 2009–2011 Gainesville, USA 7022 0.08–0.14

HI household information, INF infrastructure, ATT attitude, GEO geographic, WEA weather, CAL calendar feature, WU water use, EU energy use.

Household information Water use features
EU
Energy use features

Household Water-Energy Consumption Questionnaire

HI WU

Family size

Housing location

Housing area

Housing age

Income Occupation

Average energy efficiency grade

Attitude to energy/water saving

For each household member:

Age Education

For the household: Behaviors / features:

Laundry

Culinary

Bathing

F D P T

F D P T

F D P T

C

C

C

Air conditioning F D P T C

Mopping F D P T C

Surveyed & modelled

Surveyed & not modelled

Not surveyed

F – frequency
D – duration
P – power
T – type
C – temperature

Water consumption
Electricity consumption

WC EC

Time:

Water

Electricity

Spring and Autumn (4 months)

Summer (3 months)

Winter (5 months)

Resources:

(Calculate annual consumption by 
weighting seasonal consumption by months)

Fig. 4 The structure of the household water-energy consumption questionnaire.
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local unit prices after the survey. The annual WC and EC were
calculated by weighting the seasonal consumption by month. For
the division of seasons, please refer to Supplementary Note 3.
The WU and EU parts consisted of 59 items that focused on

household behaviours and appliances related to water-energy
consumption. Behaviours such as doing laundry, cooking, bathing
(including showers and baths), air conditioning and mopping
were mainly considered in this part. Data on behaviour frequency,
behaviour duration, appliance power, appliance type and (or)
temperature were collected based on the specific nature of each
behaviour (detailed in Fig. 4). However, not all collected features
were utilized in the models. For instance, only households with
electrical water heaters were used to provide temperature setting
information, and households with gas water heaters did not have
to answer the question (with a zero value). The type of water
heater was inferred from the temperature of the bathing
appliance. To avoid multicollinearity, the “type of water heater”
feature was not included in the models.
Importantly, due to the utilization of cross-sectional data in this

study, certain commonly used features, such as price54,55, calendar
features10,56, temperature and rainfall57,58, were excluded from
both the survey and the models, as they did not exhibit significant
variance or did not change during the study period, following the
practice of Bich-Nogc16.
Prior to the survey, as a pilot study, the questionnaire was first

distributed online to 15 researchers using convenience sam-
pling. Based on their feedback, the wording of the items was
improved, and the option settings for the family information
items were adjusted (e.g., changing from collecting precise
figures of family income to intervals of 50,000). The ques-
tionnaire was distributed in 21 subdistricts in Haidian District
(“Jiedao” in Chinese, 22 in total), 4 subdistricts in Tongzhou
District (4 in total) and 4 towns in Tongzhou District (8 in total) in
2020 (detailed in Supplementary Table 2). A systematic sampling
approach was employed in the chosen subdistricts with a
random starting point. A sample size of 660 was used in each of
the Haidian and Tongzhou districts, resulting in a total sample
size of 1320. To ensure the authenticity of the participants’
responses, interviewers with professional knowledge and
extensive practical experience were invited to collect data
through face-to-face interviews. Participants were informed
about the objectives, purposes and procedures of the survey.
They signed an informed consent form and were assured that
the anonymity and confidentiality of the answers would be
guaranteed. Participants were given the option to skip questions
or discontinue the questionnaire if desired.
After conducting the survey, the collected data were processed

with a 3-step validation process for cleaning, as follows: (i)
verifying the validity of the questionnaire based on the comple-
tion level for each question, (ii) calculating WC based on WU and
comparing the value with the answer to the question “total
household water use”, and (iii) applying the 3-sigma principle to
identify and remove samples with outlier water consumption
values. After data cleaning, a total of 1257 samples out of the
initial 1320 were used for model establishment. To avoid possible
multicollinearity, the least absolute shrinkage and selection
operator (LASSO) regression was employed to exclude repetitive
or unnecessary features in the data cleaning process. Details of the
deployment of LASSO can be found in Supplementary Note 1 and
Supplementary Table 3. The correlations among features are
provided in Supplementary Fig. 2. The Results section mainly
discusses the retained features.
As most of the considered behaviours lead to the simulta-

neous consumption of water and energy, in this study, WU and
EU were classified according to the degree of influence each
feature has on water and energy consumption for different
household behaviours. For laundry, as washing machines are
primarily used for washing clothes, electricity only provides

kinetic energy and is not a primary desired end-use. Therefore,
only the power of washing machines (power_WM) was con-
sidered an EU feature. The type of washing machine (type_WM)
and frequency of using washing machines (frequency_laundry)
were listed as WU features. For bathing, the frequency and
duration of bathing are related to water consumption, and the
features frequency_bathing and duration_bathing were asso-
ciated with WU. The temperature setting when using a water
heater (temperature_WH) has a considerable impact on electricity
consumption and was included as an EU feature. For culinary,
water consumption is mainly determined by frequency, and
duration has a greater influence on energy consumption.
Therefore, the feature “duration_culinary” was categorized as
an EU feature. For air conditioning (and mopping), there may be
little water (and electricity) consumption. Consequently, dur-
ation_ac and frequency_mopping were classified as EU and WU
features, respectively.

Modelling strategy: A stepwise-like approach
To verify whether the explanatory power (i.e., the model
performance) could be improved with the consideration of the
water-energy nexus concept, a stepwise-like approach was
adopted for modelling in this study. Four models were built
using different combinations of features (detailed in Supplemen-
tary Fig. 3). Models (1) and (2) compared the explanatory powers
of WU and EU in relation to household water consumption. These
models utilized the same number of features to control the effect
of the number of features on the results. Models (1), (2) and (3)
were used to assess the improvement in explanatory power by
adding EU to the model. Models (3) and (4) were employed to
observe the improvement in explanatory power with the inclusion
of EC in the model.
Notably, including more features in the models could naturally

improve their goodness of fit. To further validate the explanatory
power of each WU, EU and EC feature, the most effective
technique among OLS, RF, and XGBoost was selected based on
their performance. The selected technique was utilized to fit
model (4) repeatedly, with one WU, EU or EC feature removed in
each fitting case. By quantifying the changes in R2, RMSE and
MAPE when each feature was removed, the explanatory powers of
EC and EU for the full set of features were assessed.

Modelling techniques
(1) OLS multiple regression. In this study, the OLS technique was
firstly used to model and explain household water consumption.
The OLS technique is the most broadly applied regression
technique59 but can only be used to investigate linear relation-
ships60. Here, the most complex Model (4) is described in Eq. (1);
for other models, please refer to Supplementary Note 2.

WaterConsi ¼ α1HIi þ α2WUi þ α3EUi þ α4ECi þ α0 þ ε (1)

Here, HIi , WUi , EUi and ECi are the matrices of features, α1, α2, α3
and α4 are the matrices of estimated coefficients, α0 is the
intercept term, and ε is the residual.

(2) Random forest. The RF technique is a machine learning
algorithm that was proposed by Breiman61 in 2001. It can handle
high-dimensional datasets and displays good reliability and low
time complexity61. As an ensemble learner, it can efficiently
prevent overfitting62. The basic principle of the RF is to introduce
the bagging algorithm to CART decision trees multiple times with
put-back random sampling and then to perform training to obtain
a single decision tree classifier to complete the construction of an
integrated model. That is, when the RF receives an ðxÞ input
vector, made up of the values of the different evidential features
analysed for a given training area, a number K of regression trees
is built, and the results are averaged. RF regression with the K tree
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regressor is shown in Eq. (2):

f̂
K

rf ðxÞ ¼
1
K

XK

k¼1

T xð Þ (2)

(3) XGBoost. Introduced by Chen and Guestrin63, XGBoost is a
novel tree-based machine learning algorithm. Compared with
other tree-based machine learning algorithms, XGBoost can help
reduce overfitting64 and increase computing speed65. Moreover, it
displays excellent ability to capture the nonlinear interactions
between features and labels42. XGBoost can construct new trees
by continuously performing feature splits to fit the residuals of
the last modelled label values and the observed values, and the
results of all trees are summed as the final model results. The
algorithm can be expressed as shown in Eq. (3):

ŷi ¼
Xk

k¼1

f k xið Þ; f k 2 F (3)

Here, f k xið Þ is the penalty function for the k-th independent
decision tree, xi is the feature vector, ŷi is the predicted value of
the label, and F is the space of the regression trees.
As hyperparameters may have a large impact on the modelling

performance, they were optimized by deploying an exhaustive
grid search in the models established based on the RF and
XGBoost techniques to increase explanatory power. The fitting
and training processes of the four models using three techniques
were implemented in Python 3.10.

Performance evaluation methods
In this study, the three most widely used model performance
metrics, namely, R2, RMSE and MAPE, was used to evaluate the
performance of the models. Equation (4) to Eq. (6) give the
formulas for the 3 metrics.

R2 ¼ 1�
Pn

i¼1 Ŷ i � Yi
� �2

Pn
i¼1 Y � Yi

� �2 (4)

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn

i¼1 Ŷ i � Yi
� �2

n

s
(5)

MAPE ¼
Pn

i¼1
Ŷ i�Yið Þ
Yi

����

����
n

(6)

where Yi is the observed value of household water consumption,
Ŷ i is the predicted value of household water consumption, Y is the
mean observed value of water consumption, and n is the number
of samples.
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