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Machine learning assisted dual-functional nanophotonic
sensor for organic pollutant detection and degradation in water
Junhu Zhou 1, Ziqian Wu1, Congran Jin1 and John X. J. Zhang 1✉

This study presents a dual-functional thin film, known as Ag nanoparticles decorated, ZnO nanorods coated silica nanofibers (AgNP-
ZnONR-SNF), which demonstrates remarkable capabilities in both water purification and organic pollutants sensing. The 3D fibrous
structure of ZnONR-SNF provides a large surface-area-to-volume ratio for piezo- and photo-catalytic degradation of organic
pollutants under UV irradiation, achieving over 98% efficiency. Ag nanoparticles decorated on ZnONR-SNF form “hot-spot” that
significantly enhance the surface-enhanced Raman spectroscopy (SERS) signal, resulting in an enhancement factor of 1056 and an
experimental detection limit of 1 pgmL−1. Furthermore, a machine learning algorithm is developed for the qualitative and
quantitative detection of multiple contaminants, achieving high accuracy (92.3%) and specificity (89.3%) without the need for
preliminary processing of Raman spectra. This work provides a promising nanoengineering solution for water purification and
sensing with improved detection accuracy, purification efficiency, and cost-effectiveness.
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INTRODUCTION
Water is an essential resource for all living organisms, and access
to clean water is crucial for maintaining good health. Regrettably,
recent data from the World Health Organization (WHO) reveals
that 2 billion people lack access to safely managed water service
as of 2020, including 282 million people with limited services and
122 million drinking surface water1. Water pollution has become a
serious threat to water safety due to economic development,
global population increase, and climate changes. Organic
pollutants, including pharmaceuticals, pesticides, organic dyes,
detergents, and industrial waste, are of particular concern because
they consume oxygen in water, generate toxic residues, and can
persist in the water body for a long time due to their chemical
stability2.
Traditional water purification approaches encompass chemical

precipitation, filtration, adsorption, ion exchange, chlorination,
adsorption, and distillation3–6. Although these techniques are
widely used in industrial settings, they have limitations such as
lengthy processing times, limited removal efficiencies, chemical
resistance issues, and risks of re-contamination.
Zinc oxide (ZnO), with its exceptional photo- and piezo-catalytic

properties, presents an eco-friendly material for processing
contaminated water7,8. One major advantage of using ZnO in
water treatment is its ability to react with persistent organic
contaminants under natural sunlight, which contains UV light.
Hence, it offers a more sustainable and eco-friendly approach for
removing organic pollutants than traditional methods9–11. How-
ever, to fully leverage ZnO’s properties for wastewater treatment,
a well-designed material and system must be in place. ZnO can be
fabricated into various nanostructures, such as nanospheres12,
nanorods13, and nanoflowers14, but there is still potential for
improvement in degradation efficiency, secondary contamination
prevention, and repeatability. To tackle these issues, ZnO
nanoparticles can be anchored on silica substrates which have
robust mechanical strength and chemical stability15. Growing ZnO
on silica nanofibers (SNFs) can increase the contact area, prevent
nano pollution, and enable reusability.

Monitoring water quality is crucial for environmental and
human health on both large and small scales. However, detecting
organic pollutants in water is challenging due to molecular
variability and complexity16. Additionally, the necessity for
achieving low limits of detection further complicates the
monitoring process. Technologies such as photo-luminescence
spectroscopy17, high-resolution mass spectrometry18, high-
performance liquid chromatography19, and surface-enhanced
Raman spectroscopy (SERS)20 have been used to detect water
contaminants. SERS is extensively researched due to its label-free,
ultrasensitive, fast, and versatile characteristics. Nevertheless,
identifying complex Raman spectra presents challenges, including
mixed features, complex datasets, instrument noise interference,
and sample property effects. To extract meaningful information
from the Raman spectrum, various machine learning (ML)
algorithms have been developed, including partial least square
(PLS) regression21,22, support vector machine23, convolutional
neural network24, recurrent neural network25 and Deep learning
(DL)26,27. DL is a type of ML algorithm that employs multiple
hidden layers of neural networks to extract complex features from
large and diverse datasets. These deep neural networks can
efficiently learn and represent nonlinear relationships between
input and output data without domain-specific knowledge,
allowing accurate classification of Raman spectra for correspond-
ing chemical compositions. However, detecting “out-of-distribu-
tion” (OOD) samples (i.e., class of unseen data points), which are
significantly different from the training data, remains a common
challenge in DL. Despite this challenge, OOD detection is vital for
ensuring the reliability of ML algorithms for SERS detection,
particularly when training data is limited, and diverse chemicals
may be present in the test samples. Current ML-assisted Raman
detection techniques also struggle to discern mixtures of
molecules and accurately characterize complex mixtures.
This study aims to develop a water purification and detection

material by incorporating SNF thin film with ZnO nanorods
(ZnONRs) and silver nanoparticles (AgNPs). This innovative
material system can efficiently degrade organic pollutants while
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enabling rapid, quantitative, and label-free detection of these
contaminants through SERS (Fig. 1a, b). A DL algorithm is
developed to facilitate the qualitative, quantitative, and OOD
detection of mixed contaminants without the need of preliminary
processing. A Laplacian operation is implemented to effectively
extract the Raman peak information from the original Raman
spectra. The neural network’s output can encompass both
regression model, indicating the concentration of multiple
analytes, and classification model for identifying analyte compo-
nents and concentration levels, with an added K-nearest neighbor
(KNN) model for detecting unknown classes (Fig. 1c).

RESULTS AND DISCUSSION
Characterization
The electrospun SNF thin film was collected from the aluminum
foil and had a diameter of ~12 cm (Supplementary Fig. 1). The
Scanning electron microscopy (SEM) analysis was conducted using
an FEI Helios 5CX DualBeam scanning electron microscope
operating at 5 kV. The energy-dispersive X-ray spectroscopic

(EDS) measurements and the chemical mapping were performed
with the Oxford Instruments Ultim Max detector attached to the
FEI Helios 5CX scanning electron microscope operating at 30 kV.
Figure 2a depicts the sequential process of synthesizing electro-
spun SNF, growing ZnONR, and decorating with AgNP. Figure
2b–e are SEM images demonstrating the structure of SNF, ZnONR-
SNF and AgNP-ZnONR-SNF. The AgNPs were distributed three-
dimensionally, with some on the top of the ZnONRs and others on
their side walls, while pure ZnONRs had a smooth surface
(Supplementary Fig. 2). In Fig. 2f-i, the EDS chemical mapping
confirms the uniform distribution of Zn, O, and Ag elements in the
sample. The average diameter of the SNF, AgNP, and ZnO-SNF are
868 nm, 40 nm, and 3 μm, respectively (Fig. 2j). The characteristic
X-ray energy of the key elements, including Zn, Si, O, and Ag, are
plotted and labeled in the energy spectrum Fig. 2k. The Ag
element has its characteristic energies at 2.98 keV and 3.15 keV,
the Zn element at 1.01 keV, the O element at 0.52 keV, and the Si
element at 1.74 keV. Additionally, Optical images taken by
Keyence 3D Microscope with high magnification reveal the fibrous
and 3D structure of the AgNP-ZnONR-SNF thin film (Supplemen-
tary Fig. 3). Figure 2l exhibits the normalized UV–Visible optical

Fig. 1 The schematic diagram of the pollutant degradation, detection, and ML algorithm-assisted data interpretation process of the dual
functional device. a Components of the AgNP-ZnONR-SNF system for organic pollutant detection and degradation. b The diagrammatic
sketch of the photo- and piezo-catalytic degradation process. c The schematic demonstration of the ML models.
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absorption spectrum of the ZnONR-SNF and AgNP-ZnO-SNF thin
films.

Piezo- and photo-catalytic degradation
The photocatalytic activities of ZnONR-SNF thin film in degrading
organic dyes, including Methylene Blue (MB), Trypan Blue (TB) and
Methyl Orange (MO), at an initial concentration of 10 μg/mL are

investigated. The experimental setups are shown in Supplementary
Fig. 4. Experimental groups involve ZnONR-SNF material and organic
dye solutions, whereas control groups solely contain organic dye
solutions, all subjected to UV irradiation and shaking treatment.
Control experiments demonstrate that solar UV irradiation and
shaking without any photocatalyst is negligible, and the concentra-
tion of the dyes remains almost unchanged. When ZnONR-SNF thin
films are present, a degradation efficiency greater than 98% is

Fig. 2 Fabrication and characterization of the AgNP-ZnONR-SNF thin film. a Schematic diagram describes the synthesis procedure of the
ZnONR and AgNP on electrospun SNF thin film. b SEM image of the SNF. c–d SEM images of the ZnONR-SNF. e SEM image of the AgNPs on
the top of the ZnONR. Scale bars are 20 μm, 10 μm, 2 μm, and 100 nm, respectively. EDS mapping of the AgNP-ZnO-SNF, including f SEM
image, g Zn element), h O element, and i Ag element. Scale bars are 3 μm. j Diameter distribution of the SNF, AgNP, and ZnONR-SNF in semi-
logarithmic plot. Within each box, horizontal line denotes median value; boxes extend from the 25th to the 75th percentile of each group’s
distribution of values; vertical extending lines denote the most extreme values within 1.5 interquartile range of the 25th and 75th percentile
of each group; dots denote observations. k EDS spectrum of the AgNP-ZnO-SNF. l Normalized UV–Visible optical absorption spectrum of the
ZnONR-SNF and AgNP-ZnO-SNF.
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achieved against the three organic dyes after 8 h exposure to UV
light. Figure 3a–c displays the change in concentration of these
organic pollutants over time under different conditions. Notably, the
decline of the light absorbance intensity of the organic dyes at their
characteristic peak wavelength is due to the cleavage of chromo-
phore groups responsible for dye decoloration. Supplementary Fig.
5 shows the separate decomposition of these organic molecules
under UV lamp and sunlight. Photocatalytic degradation efficiency
for samples after 2-h sunlight exposure is even higher than under
the UV lamp. Figure 3d, e displays the rate constants (k) for
photocatalytic degradation, confirming the excellent photocatalytic
property of ZnONR-SNF thin films. The degradation outcomes of the
control groups lacking the ZnONR-SNF thin films are illustrated in
Fig. 3f. In these groups, only a marginal decrease in dye
concentrations is observed. In addition to organic dyes, the
photocatalysis degradation against antibiotic Ciprofloxacin (Cip) is
also studied under both UV light and sunlight (Supplementary Fig.
6). The cost efficiency of the ZnONR-SNF thin film in photocatalytic
degradation is closely tied to its reusability. In the process of
degrading MB, TB, and MO under UV lamp, the identical ZnONR-SNF
samples were employed and subsequently dried in an oven at 50°C
for a total of six cycles. The photocatalytic efficiency of ZnONR-SNF
thin films remain high for five cycles (Supplementary Fig. 7). The
photocatalytic degradation against organic molecules can be
explained by the physical and optical properties of ZnO (Fig. 3g-h)

as follows9,28,29: first organic pollutants diffuse from the liquid phase
and are absorbed onto the surface of ZnONR. Then ZnO is irradiated
by the UV light with energy larger than its bandgap energy,
promoting electrons (e�) from valence band (VB) to conduction
band (CB) and leave holes (hþ) in the VB. Next, the photogenerated
electron-hole (e�=hþ) pairs can migrate to the ZnONR surface,
reacting with hydroxide ions (by hþ) and oxygen (by e�) in water to
generate reactive oxygen species (ROS) including hydroxyl radical (
�OH) and superoxide anion (O2

��). Finally, the ROS can directly
oxidize organic pollutant molecules.
The piezo-catalytic activity of ZnONR-SNF thin film on degrad-

ing organic dyes is shown in Fig. 3b. The catalyst is stimulated
through orbiting shaking using a shaker motor with a rating
output of 13.5 W. After 8 h of reaction, the piezo-catalytic
efficiency against MB, TB, and MO reaches 15.5%, 38.4%, and
34.1%, respectively. The mechanical force exerted by the flowing
water induces deformation in ZnONR, resulting in the formation of
a strain field. As a consequence, the outer side of ZnONR
experiences stretching, while the inner side of ZnONR undergoes
compression. (Fig. 3h). This deformation leads to the generation of
an electric field along the ZnONR, which induces a piezoelectric
potential and surface charge accumulation on the opposite
surface30. It allows e�=hþ to migrate to the ZnONR surface,
triggering subsequent reactions similarly to the photocatalytic

Fig. 3 Degradation results and schematic illustration of the degradation mechanism. a Photocatalytic degradation results. b Piezo-catalytic
degradation results. c Hybrid degradation results. d Photo- and piezo-catalytic degradation kinetic curves of dye solutions catalyzed by the
ZnONR-SNF. e Hybrid degradation kinetic curves of dye solutions catalyzed by the ZnONR-SNF. f Degradation results of control groups
without the ZnONR-SNF. Error bars represent the standard deviation. g Schematic illustration of the degradation process. h Schematic graphic
showing the piezo- and photo-catalytic properties of the ZnONR. i Schematic diagram of the piezoelectric property of ZnO.
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degradation process. Additionally, the piezoelectric potential also
contributes to the adsorption of charged organic molecules.
In hybrid experiments, the combination of a UV lamp and a

shaker results in the degradation of 96.3% of MB, 66.4% of TB, and
34.8% of MO after 2 h of irradiation. This degradation rate
surpasses the individual catalytic activities of the two components.
The improved degradation efficiency can be explained by the
flowing water and semiconducting nature of ZnONR. The
circulating water flow created by the orbiting shaker not only
deflects ZnONR to create piezoelectric potential between the
opposite surface but also promotes the adsorption of organic
molecules. Moreover, the relative displacement of the Zn2+

cations regarding the O2– anions in the wurtzite crystal structure
(Fig. 3i) generates a piezoelectric potential along the nanorod
direction when the ZnONR is bent. This potential difference
maintains as long as the strain exists and creates a potential
difference between the compressed and the stretched side
surface30. Correspondingly, the recombination of photo-induced
e�=hþ pairs inside the ZnONR will be impeded, leading to more
efficient carrier separation. Eventually, more redox reaction occurs
on the surface of ZnONR, improving the photocatalytic
degradation.

SERS detection
Raman spectroscopy provides a label-free and rapid tool for
sensing organic molecules. A SERS approach is used in this study
to quantitatively measure the concentration of an organic dye and
an antibiotic. Before conducting the Raman experiments, the
enhancement of localized surface plasmonic resonance was
simulated using the finite element method (FEM) by COMSOL.
Three scenarios of AgNP placement were observed in the SEM
images: on the top side, on the side wall, and at the edge of
ZnONR (Supplementary Fig. 8). When AgNPs are in close proximity
and interact with incident light, they create a plasmonic “hot-spot”
region characterized by a significant enhancement of the localized
electromagnetic field31. This enhanced electromagnetic field can
amplify SERS enhancement factor to the fourth power of the field,
and the “hot-spot” sites created by AgNP dimers generate more
than 50% of the total SERS signal with only 1% of total surface
area32,33. Prior research has demonstrated the efficacy of utilizing
AgNPs-decorated ZnO mesoporous materials as substrates for
SERS-based detection34. Nevertheless, achieving precise control
over “hot-spot” regions on mesoporous substrates is challenging,
potentially leading to less consistent performance in SERS sensing.
In our proposed approach, we leverage ZnONR. This multi-
functional material functions as a photo- and piezo-catalyst while
also providing a stable platform for AgNP decoration and
enhancing uniformity in SERS sensing. Additionally, AgNP trimer
structure on the top of ZnONR was found to even better enhance
the field (Supplementary Fig. 9), which aligns with the experiment
observation35. According to the simulation results, the diameter
and the gap between the AgNPs affect the enhancement, while
the locations have limited effect (Supplementary Fig. 10). As most
of the peaks of the extinction cross-section area for all AgNP
arrangements lay in the range from 475 nm to 550 nm, 532 nm
laser is chosen as the excitation source.
In the Raman experiments, MB and Cip, whose chemical

structures are shown in Fig. 4a, are used as demonstrations. In the
test, 10 µL of the sample solution are dropped on the AgNP-
ZnONR-SNF chip which has a size about 5 mm ´ 5mm. Figure 4b
and Fig. 4c show the raw Raman spectra of the Cip and MB
samples, respectively, at concentrations ranging from
100 µgmL−1 to 1 pgmL−1. The most distinguishable characteristic
peaks of the Cip are at 1382 cm−1, 1465 cm−1, 1605 cm−1, and
1548 cm−1, and MB at 1437 cm−1 and 1614 cm−1. It is shown that
there is a general trend of concentration of the samples being
proportional to the intensity of the Raman signal. Therefore, the

intensity of the highest peaks of the MB (1437 cm−1) and Cip
(1382 cm−1) dyes are plotted against their concentrations as
shown in Fig. 4d and e, on a log10 scale. MB and Cip calibration
curves show high linearity of R2= 0.992 and R2= 0.946, respec-
tively, demonstrating the device’s functionality as a sensor that
can quantitatively monitor the concentration of organic dye and
antibiotic. To demonstrate the superb signal enhancement from
the AgNP-ZnONR-SNF chip, Raman signals on various substrates
are measured, including a pristine glass substrate with no
specimen, a glass substrate with a drop (10 µL) of MB, ZnONR-
SNF with a drop of MB, and AgNP-ZnONR-SNF with a drop of MB
solution (Fig. 4f). The intensity at the 1437 cm−1 peaks of MB on
the AgNP-ZnONR-SNF, ZnONR-SNF, and the glass substrate are
19861.9, 62.1, and 18.8, respectively. The results demonstrate a
significant increase in intensity when using the AgNP-ZnONR-SNF
substrate compared to the glass substrate. Specifically, the
intensity from the ZnONR-SNF substrate is 3.3 times higher than
that from the glass substrate, and the intensity from the AgNP-
ZnONR-SNF sensor is 1056 times higher than that from the glass
substrate. The inset of Fig. 4f shows the spectrum in the
1600–1800 cm−1 range, which contains two other characteristic
peaks of MB at 1700 cm−1 and 1732 cm−1. The intensities of these
peaks from the AgNP-ZnONR-SNF are 645.3 and 778.2, respec-
tively, which are about 1.8 times greater than those from the glass
substrate. These results indicate that the SERS enhancement
mainly occurs in the range of 1050–1650 cm−1, where the
enhancement is up to 1056-fold. Enhancement outside this range
is less than 2-fold. Several factors contribute to the significant
enhancement range of nanosensor, including particle composition
(e.g., Ag, Au, or other noble metals) and nanomaterial geometry
(e.g., particle size). To achieve a substantial enhancement across a
broader spectrum, it is advisable to employ multiple types of
nanoparticles and various sizes in decorating the ZnONR. More-
over, the AgNP-ZnONR-SNF chip exhibits relatively consistent and
uniform sensing performance on its surface. A color map of the
signal intensity of the highest peak (1614 cm−1) of MB dye is
plotted (15 ´ 15 data points on an area of 400 ´ 400 µm2) to
represent the magnitude of the intensity, as shown in Fig. 4g.
Microscale Raman mapping analysis reveals that the magnitude of
the signal intensity is generally consistent across this testing area,
indicating a uniform sensing ability across the chip. The box chart
of Fig. 4h shows the distribution of the Raman signal intensity for
the characteristic peak at 1614 cm−1 of MB.

ML-assisted detection
Raman spectra obtained by AgNP-ZnONR-SNF chip contain
inherent molecular fingerprints for analyte identification (Supple-
mentary Fig. 11a). However, accurately characterizing and
explaining the molecular structure of mixtures with overlapping
characteristic peaks can be challenging (Supplementary Fig. 11b).
To address this issue, a combination of deep neural network is
employed. The deep neural network consists of a prior treatment
stage, a fully connected neural network structure and KNN to
provide qualitative and quantitative detection results. While pre-
processing is a standard practice in Raman detection models, the
intrinsic complexity of Raman spectra and the presence of
background noise frequently lead to the generation of weak
signals36,37. To enhance the informative content, a prior treatment
is implemented leveraging the knowledge of Raman spectrum
characteristics. The removal of marginal data points is undertaken,
and a Laplacian operation is applied to the raw Raman spectrum
data, intensifying the signal gradient and unveiling pertinent
Raman peak information. The strengthened data is then fed into a
four-layer fully connected neural network structure with sigmoid/
ReLU activation between each linear layer, where the size of each
layer is 128, 64, 32, and 16. The neural network structure and
training parameters are shown in Supplementary Table 1.
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Neural network classification
The classification is assessed using Raman spectra obtained from a
mixture of two types of dyes (MB, TB, MB&TB at different ratios,
and water only) across different concentrations, as detected by
the AgNP-ZnONR-SNF chip. The output of the neural network is a
five-digit tensor. The first four digits of the output tensor
correspond to the dye type, providing information about the
potential affiliation of the sample component with one of four
classes: water, MB only, TB only, and the mixture of TB and MB.
The last digit of the output tensor indicates whether the
concentration of a specific analyte surpasses a typical cutoff
threshold: [1] above the threshold and [0] indicates a smaller
concentration. In this study, the concentration threshold was set
as 5 μgmL−1. The qualitative detection results are illustrated in
Supplementary Fig. 12a, where the positions of the points indicate
the predicted sample components, and the color of the points
indicates their true components. The statistical results are shown

in Supplementary Fig. 12b, with an accuracy of 92.3% in
qualitative detection and 90.8% in quantitative detection. A
comprehensive summary containing 100 tests is listed in
Supplementary Table 2.

Neural network regression
The regression model undergoes additional testing with Raman
spectra obtained from mixtures of three components, MB, TB, and
Cip, mixed at various concentration ratios. The concentration
ratios of the detected analytes are displayed in Fig. 5a,
demonstrating a notable concordance with the ground truth
curves. The average absolute error, computed within a concentra-
tion ratio range of 0 to 10, is 0.327, indicating a high level of
agreement. The presence of the particular analyte in the sample
can also be determined from the regression output. A notably low
concentration ratio in the output suggests the absence of the
specific analyte in the sample. For each analyte of the three, we

Fig. 4 SERS detection of organic molecules using the AgNP-ZnONR-SNF thin film. a Chemical structure of antibiotic Cip and dye MB.
b Raman spectra of Cip solution of various concentrations. c Raman spectra of MB solution of various concentrations. d The Raman intensity
vs. concentration curve of Cip (in log10 scale). e The Raman intensity vs. concentration curve of MB (in log10 scale). Error bars represent the
standard deviation. f The SERS enhancement of MB dye (1 μgmL−1) on different substrates. The inserted figure shows the zoomed area
between 1600 cm−1 and 1800 cm−1. g Raman signal mapping (15 ´ 15 data points on an area of 400 ´ 400 µm2) of MB dye’s 1614 cm-1

characteristic peak showing uniform intensity across the AgNP-ZnONR-SNF chip. Color bar represents Raman signal intensity. h The
distribution of Raman intensity. Within the box, horizontal line denotes median value; box extend from the 25th to the 75th percentile of the
group’s distribution of values; vertical extending lines denote the most extreme values within 1.5 interquartile range of the 25th and 75th
percentile of the group; dots denote observations.
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have existence (1) or non-existence (0) to create eight different
combinations in total. Figure 5b illustrates the qualitative
detection of neural network regression. Testing points are
positioned within the corresponding background area based on
the predictions made by the NN regressor. The color of each point
represents the actual components, while their positions reflect the
corresponding predictions. The results demonstrate a qualitative
detection accuracy of 92%. Compared with neural network
classification, the neural network regression can directly output
the concentration ratio but has a slightly lower accuracy in
qualitative detection, making these two models suitable for
different scenarios. The statistical detection accuracy of each type
of sample is shown in Fig. 5c, from mono-component samples to
mixed opponent samples.

Neural network classifier combined with KNN
The KNN model is incorporated with the neural network classifier
for detecting unseen dataset. The neural network classifier and the
KNN are trained with the same dataset as the neural network
regressor, which is the mixtures of three components, MB, TB, and
Cip, mixed at different concentration ratios. The output of the
neural network classifier is an 8-digit tensor to show the possibility
of each class, and 8 clusters are established with the KNN
clustering method through supervised training. In the testing
scenarios, seen classes points (mixture of MB, TB, and Cip) are
used. Additionally, data points from unseen classes, specifically
Raman spectra of three bacteria (E. coli, S. epidermidis and E.
aerogenes) are incorporated into the evaluation. The minimum
distance of each test point to the established clusters is calculated,
where seen class points tend to have an extremely small distance

to the cluster (in most cases the distance is 0) and the unseen class
points typically are far from each established cluster. Therefore, a
threshold can be employed to decide if the test point is an unseen
class sample. The calculated minimum distances to the estab-
lished clusters are shown in Fig. 6a, b with thresholds to determine
whether the test data points belong to seen classes or unseen
classes. A comparison is made between the outcomes of the
neural network classifier combined with KNN (Fig. 6a) and that of
KNN alone (Fig. 6b). The results show that when employing the
neural network classifier and KNN, a significant portion of
observed data points is situated within the proximity (threshold)
of the clusters, characterized by a small distance. In contrast, only
a minimal number of data points from the unseen class exhibit
such a proximity. However, outcome of using KNN alone does not
provide the apparent dividing line for the two types of samples.
The detection results are shown in Fig. 6c, where neural network
classifier together with KNN reaches 80% sensitivity (the true seen
classes samples are correctly detected as seen) and 89.3%
specificity (the true unseen classes samples are correctly detected
as unseen). However, applying KNN method alone only yields 22%
sensitivity and 46.7% specificity. The detection results together
with data distribution are displayed in Fig. 6d.
In comparison, standard analysis technique hierarchical cluster

analysis is used for classifying Cip, MB, and TB from 15 different
mixtures. As shown in Supplementary Fig. 13, many mixed
analytes from different mixtures were inaccurately grouped into
one cluster. This suggests that SERS signal combined with DL is a
reliable method to identify different organic pollutants in mixtures
with high accuracy.

Fig. 5 Neural network regressor for the SERS detection of mixing samples. a Quantitative detection results of three component mixture
from neural network regression. b Qualitative detection results of neural network regression, where the point colors show the true
components, and the point positions show the predicted results. c The statistical detection accuracy of each type of sample. The vertical axis
denotes the ground truth analytes, while the horizontal axis represents the predicted analytes. The color bar on the right illustrates a
colormap ranging from 0% to 100% of predictions.
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Laplacian operation
The detection of different analytes is critically based on the Raman
peaks. The model implements the Laplacian operation to
strengthen the useful information before the deep neural network
without additional processing of Raman spectra. To validate the
improvement from the Laplacian operator, the learning curves of
neural network regression are compared with and without
Laplacian operation are shown in Supplementary Fig. 14, which
confirms that incorporating the Laplacian operation leads to a
significant decrease in loss over the training.

CONCLUSIONS
The presented research has developed a dual-functional AgNP-
ZnONR-SNF nanophotonic sensor by combining electrospinning,
hydrothermal, and wet-chemical synthesis techniques. The
ZnONR-SNF thin films exhibit remarkable efficacy in decomposing
organic dyes (MB, TB, and MO) when exposed to low-intensity UV
and mechanical radiation, and they can be reused. Even after
undergoing five cycles, the film maintains its impressive degrada-
tion efficiency. The results demonstrate the potential of this low-
cost, eco-friendly technology for water decontamination against
organic pollutants. Additionally, the vertically aligned ZnONR
provide suitable geometry for the incorporation of Ag nanopar-
ticles. This configuration creates high-density “hot-spots” for SERS
enhancement. Consequently, the AgNP-ZnONR-SNF thin films
serve as an effective SERS substrate, facilitating the detection of
exceptionally low concentrations of both organic dye (MB) and
antibiotics (Cip). A machine learning algorithm is developed for
both qualitative and quantitative pollutants detection based on

the Raman spectra obtained from AgNP-ZnONR-SNF nanosensor.
It has an accuracy of 92.3% in qualitative detection and 90.8% in
quantitative classification. This label-free dual-functional nano-
photonic sensor, assisted by a machine learning algorithm, is
sensitive, fast, and portable, holding great promise towards
environmental monitoring and sustainability studies.

METHODS
Chemical and reagents
Tetraethyl orthosilicate (TEOS, 98%), formic acid, ethanol, Poly-
vinylpyrrolidone (PVP, Mw= 1,300,000 gmol−1), Zinc acetate
((CH3CO2)2Zn, 99.99%), zinc nitrate hexahydrate (Zn (NO3)2·6H2O,
98.0%), hexamethylenetetramine (C6H12N4, HMTA, ≥99.0%), silver
nitrate powder (AgNO3, ≥99.0%), Methylene blue (MB,
C16H18ClN3S∙xH2O, Mw=319.85 gmol-1), Trypan Blue (TB,
C34H24N6O14S4Na4, Mw= 960.81 gmol−1), Methyl Orange (MO,
C14H14N3NaO3S, Mw= 327.33 gmol−1) and Ciprofloxacin (Cip,
C17H18FN3O3, Mw= 331.34 gmol−1) are purchased from Sigma-
Aldrich Inc. Deionized (DI) water is from a Milli-Q water ultrapure
water purification system.

Silica nanofiber fabrication
The silica nanofiber thin film was prepared through electrospin-
ning according to a reported protocol with modifications38. In a
typical run, 1.9 g of TEOS, 3.15 g of ethanol, 2.0 g of water and
0.04 g of formic acid were mixed with 0.9 g of PVP. The mixture
was stirred for 1 h at room temperature until a transparent
solution was formed. The solution was electrospun at a feed rate

Fig. 6 Unseen class detection results from the neural network classifier combined with KNN clustering. a The calculated minimum
distance toward established clusters using KNN clustering method. b The calculated minimum distance toward established clusters using
neural network classifier and KNN clustering methods. c The accuracy of unseen class points detection from KNN alone, and neural network
classifier together with KNN. d The statistics of unseen class points detection using neural network classifier and KNN.
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of 0.9 mL h−1 through a 22G stainless needle under a high voltage
(16 kV). The ejected silica nanofibers were collected by a flat
aluminum plate collector 10 cm away from the needle tip. The
silica nanofiber thin film was peeled off from the aluminum foil
gently and was then subjected to the calcination for 3 h at 800 °C
to remove PVP and other solvent residues.

ZnO nanorods growth
The ZnO nanorods were created based on a seeding-growth
method we reported previously39. First, the silica nanofiber thin
film was immersed in 5 mM zinc acetate solution (in DI water) and
then vacuumized to remove air bubbles. It was then transferred
into an oven at 180 °C for 20min for thermal decomposition of the
zinc acetate to create ZnO seeds. This process was repeated three
times. Then, zinc nitrate hexahydrate (35 mM) and HMTA (25mM)
were added to 45mL of DI water to provide the hydrothermal
growth solution. Next, the seeded thin film was placed in the
growth solution in a beaker which was covered by aluminum foil
and placed in a water bath for 3 h at a temperature of 90 °C. This
growth cycle was repeated twice to form the ZnO nanorods.
Finally, the thin film was rinsed with DI water to remove excessive
ZnO residuals and dried in an oven at 50 °C.

Silver nanoparticles decoration
Ag nanoparticles were fabricated on top of the ZnO nanorods by
UV irradiation. The fabricated thin film was immersed in a 5mM
AgNO3 solution (in DI water) and irradiated under a UV lamp
(365 nm, 30 W) for 30 min. Then, the film was washed with DI
water and dried in an oven at 50 °C.

SEM and EDS characterization
The morphologies of SNFs, ZnONR-SNF and AgNP-ZnONR-SNF
were studied by SEM performing on a FEI Helios 5CX DualBeam
scanning electron microscope operating at 5 kV. The EDS
measurements and the chemical mapping were performed with
the SDD X-ray detector (Oxford®) attached to the SEM microscope
operating at 30 kV.

Photo- and piezo-catalytic degradation
All organic molecules were dissolved in distilled water at a
concentration of 10 μgmL-1 under sonication at room tempera-
ture. Calibration curves were obtained by considering the
characteristic UV-Vis absorbance values (MB at 664 nm, TB at
590 nm, MO at 463 nm), obtained from a series of diluted solutions
at prefixed concentration values. ZnONR-SNF films were cut into
0.8 ´ 0.8 cm2 pieces and employed in glass vials with 3 mL of
pollutant solutions for each degradation experiment. The control
experiments were carried out in the absence of ZnONR-SNF films.
Photocatalytic degradation experiments were carried out by
applying a 30W UV lamp (irradiated from upper side of the vials)
at a fixed distance of around 5 cm. In piezo-catalytic degradation
experiments, vials were fixed on the MTS 2/4 digital shaker
orbiting at 300 rpm. In hybrid experiments, vials were fixed at the
shaker and irradiated by the UV lamp simultaneously. All
experiments were performed in the dark room at room
temperature.
The degradation efficiency was measured by means of light

absorbance. First, 30 μL solution was withdrawn from the vials at a
2-h time interval (0 h, 2 h, 4 h, 6 h, 8 h) and placed in a 96-well UV-
Star microplate. Then the light absorbance was read by a
microplate reader (TECAN SPARK 10 M) at each characteristic
peak wavelength. According to the light absorbance readout and
recorded calibration curve obtained previously, the concentration
of the organic pollutants after degradation was finalized. The
degradation efficiency can be calculated by the following

equation:

Degradation efficiency ¼ C0 � C
C0

´ 100% (1)

Where C0 is the initial concentration and C is the measured
concentration at different time intervals.

SERS detection
The SERS measurements were processed in a liquid system. The
AgNP-ZnONR-SNF film was first cut into a square piece (0.5 cm ´
0.5 cm). Then the film was focused by a 10 ´ objective lens. Next,
the sample aqueous solution (10 µL) was added onto the film.
Finally, SERS signals were obtained point-by-point from the
mapping grid using a 532 nm laser as the excitation source.

Machine learning algorithm development
The machine learning algorithm consists of a Laplacian operator, a
deep neural network with two output modes to show the
qualitative and quantitative detection results, and a KNN cluster
method which is combined with the classification mode output to
enable detection of unseen classes. Every Raman spectrum
collected displays the Raman signals of chemical structures in
the samples across a 238-point Raman shift axis. The Laplacian
operation was directly implemented on the Raman spectra
without additional need of preliminary processing. After the
Laplacian operation, the treated data was taken into the deep
neural network to output the detection results through the two
modes. In the first mode, the neural network is a classification
(fully connected layers with sigmoid as activation layer) to show
the analyte components and concentration level. The output of
this mode is a tensor with part of the tensor to show the
possibility that the sample belongs to a specific class and part of
the tensor either 0 or 1 to indicate if the specific chemical is above
a typical cutoff concentration. In the second mode, the neural
network is a regression (fully connected with ReLU as activation
layer) to directly show the concentration of multiple chemicals
that are included in the sample. The output of this mode is a
tensor with arbitrary numbers showing the concentration of each
chemical, where an extremely small number indicates that the
specific analyte does not exist. Both two modes can output the
qualitative and quantitative detection of mixed analytes to satisfy
different application requests. The model is implemented with
python. To enhance OOD detection, specifically for identifying
unseen classes, a KNN clustering method is incorporated with the
neural network classifier. Clusters aligned with the known classes
from the neural network classifier’s output can be established
through the KNN clustering model. By calculating the distance of a
test point to the established clusters after clustering, the test point
can be identified as seen class data or unseen class data.
PyTorch, along with its associated toolsets such as Scikit-learn,

NumPy, and Skorch, was employed to implement the machine
learning models. The model was executed on a standard
workstation equipped with an Intel(R) Core(R) i9-9980 XE CPU
running at 3.00 GHz, featuring 18 CPU cores, and an 8GB NVIDIA
GeForce RTX 2080Ti.
During each training process, the training and testing data were

randomly divided. To ensure reliable outcomes, the process was
repeated ten times, with the final error and prediction accuracy
calculated across these ten training iterations. For instance, in the
experiments involving the regressor model, we employed a
tenfold cross-validation approach using a total of 1095 data
samples. This dataset was further divided into 995 training
samples and 100 testing samples. Additional details regarding
the sizes of the training and testing datasets can be found in
Supplementary Table 1. Furthermore, Supplementary Figs. 15 and
16 present the confusion matrices pertaining to both the training
and testing samples.
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