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Increasing precipitation deteriorates the progress of pesticide
reduction policy in the vulnerable watershed
Zewei Guo1, Wei Ouyang1,2✉, Ming Chen1, Roberto Xavier Supe Tulcan 1, Lei Wang2, Chunye Lin1 and Mengchang He1

Precipitation variation profoundly affects agricultural development and increases the diffuse pollution risk, which may weaken the
positive effects of pesticide reduction policy. This study aimed to analyze the response of pesticide discharge loads in the large
vulnerable watershed to pesticide application intensity and precipitation variance before and after implementing the pesticide
reduction policy. We integrated empirical models, field observation and statistics to explore the sensitive factors of the typical
pesticide atrazine before and after the pesticide reduction policy in the Yellow River Watershed. The results showed that the
implementation of pesticide reduction policy effectively decreased the annual discharge load of atrazine within the watershed. In
addition, the most sensitive factor of atrazine discharge loads shifted from precipitation to the atrazine application intensity after
implementing the pesticide reduction policy. However, the discharge loads of atrazine significantly increased in an unusual high
precipitation year in the context of increasing precipitation variability.
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INTRODUCTION
The global population surge has led to a large increase in food
demand, resulting in the large and widespread use of pesticides
and fertilizers1. Agricultural diffuse pollutants such as nitrogen,
phosphorus, pesticides, and antibiotics, lead to eutrophication,
and damage to aquatic ecosystems2. Owing to climate warming,
two-thirds of the world’s land is exposed to wetter and more
variable precipitation patterns3, leading to increased agricultural
diffuse pollution losses and challenging watershed ecological
security4. A study showed that interannual variability in nutrient
discharge loads within watersheds was up to 2.3 times higher,
with 76% attributed to annual precipitation variability5. In extreme
precipitation years, annual nitrogen loads are 30% higher than the
long-term median6. However, the response of pesticide discharge
levels to precipitation variability within watersheds remains
unclear7, despite two-thirds of the global agricultural land being
at risk of pesticide contamination.
The pesticide transport in watersheds are associated with

rainfall events, pesticide application, soil type, and slope8,9.
Among these factors, soil type and slope have been relatively
stable parameters over a long period, and their changes have a
negligible impact on the annual variance in pesticide loss. By
contrast, precipitation as a meteorological factor is a major factor
driving pesticide transport in watersheds10. Most studies on
pesticide diffuse pollution acknowledge that pesticide discharge is
driven by precipitation and runoff events; however, due to the
random occurrence of precipitation events, trends are often
discussed by simply comparing precipitation and pesticide losses
in parallel, ignoring the multi-year trends in precipitation and the
effects on pesticide discharge loads11. All calculated loads are
estimates because the amount of data necessary to calculate the
actual load is always insufficient. Current estimation methods
include mechanistic models, empirical models, and field observa-
tions. Although long-term trends in pesticide emissions can be
reliably simulated using mechanistic models, these models require
local data homogeneity and complicated parameters, and the

accuracy of the simulations in large watersheds (>500,000 km2) is
questionable1. The limited scale of field observations remains a
challenge for monitoring high spatiotemporal frequencies over
large regions12. Current research is deficient in pesticide discharge
in large watersheds. Empirical models are commonly used for
estimating the agricultural diffuse pollutant losses in large
watersheds such as the modified export coefficient model. The
modified export coefficient model reasonably estimates the
spatiotemporal variances of diffuse pollutants discharge loads by
employing physical processes, such as precipitation, runoff, slope,
canopy interception, and anthropogenic export parameters13.
Although the modified export coefficient model has been widely
used in estimating diffuse pollutants, it is still not involved in
estimating pesticides loads in large watersheds.
Pesticide application is a dominant factor associated with

pesticide discharge loads in watersheds14. Pesticide runoff loss
typically accounts for 5.9% (0.56–14%) of the applied amount11.
The primary factor in assessing watershed vulnerability is pesticide
application intensity15; however, temporal trends between pesti-
cide usage and discharge loads remain unclear. Pesticide
application is mainly regulated by the demand even if it is always
excessive, and the trends fluctuate; thus, the temporal impact on
pesticide discharge loads has largely been overlooked. Because of
the increasing concern about diffuse pesticide pollution, pesticide
reduction policy under policy intervention are mandatory to
reduce the amount of pesticide use. A zero-growth pesticide
usage policy implemented by government regulators in China in
2015 led to a 152,000 tons reduction in usage and a 1.6% increase
in efficiency in 1 year16. From 2016 to 2019, a further 390,000 tons
reduction was observed. Correspondingly, field monitoring
campaigns in China have demonstrated decreased concentrations
of pesticides in some rivers17,18. Although the pesticide reduction
policy mitigates diffuse pollution, ignoring the long-term pre-
cipitation effects may overestimate the actual efforts to discharge
loads, which should be addressed by conducting long-term
exploration to fill in the gaps.
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Under the dual impact of increased precipitation variability and
pesticide reduction policy, identifying the driving factors of
pesticide discharge loads in the watershed is essential. A
representative herbicide, atrazine, characterized by high usage,
high mobility, high persistence, high detection, and endocrine
disruption, was used as the target pesticide19,20. Atrazine is a
widely used herbicide in corn, broomcorn, sugarcane and other
crops. The annual usage of atrazine in USA and China has been
ranked number two among conventional pesticides21. Atrazine is
moderately dissolved in water and is highly persistent in the
environment, with half-life up to 2 years22. Therefore, atrazine is
ubiquitously in aquatic environments with 100% detected
frequency, and poses potential risks to aquatic life23. Based on
the model simulation, field observations, and sensitive analysis, we
analyzed the spatiotemporal pattern of atrazine discharge loads
and the change of the driving factors of atrazine discharge loads
before and after the pesticide reduction policy in the watershed.

RESULTS
Decadal precipitation and herbicide usage variation in a
watershed scale
Precipitation in the YRW has increased significantly (p < 0.01) from
2010 to 2019 (Fig. 1B). The average annual precipitation has
increased from 453 ± 50mm during 1990–2009 to 585 ± 62mm
after 2010. After 2012, the average annual precipitation in the YRW
generally exceeded 600mm, with the maximum annual precipita-
tion of 641 mm occurring in 2017. The precipitation increased
significantly (p < 0.05) in the watershed in 2017. In addition,
annual precipitation showed wide swings between the wet and
dry extremes. The variance in annual precipitation between 2010
and 2019 was higher than that between 1990 and 2009. From

2011 to 2012, precipitation increased by 137mm, whereas from
2014 to 2015, precipitation decreased by 59mm.
On a decadal scale, herbicide application intensity in the YRW

showed an increasing trend (Fig. 1C). The arable area in the YRW
remained at 13–14 million ha, and herbicide usage increased by
4.9-fold between 1990 and 2015, resulting in a 4.6-fold increase in
herbicide application intensity. Since 2015, the government has
implemented a zero-growth policy for herbicides. Both herbicide
usage and application intensity decreased by 24% between 2015
and 2019, with an average annual decrease rate of 3.61% and
3.69%, respectively. The herbicide usage and application intensity
in 2019 was 29,900 tons and 2.14 kg/ha, respectively, equivalent to
that in 2011. Reducing pesticide usage effectively mitigated the
discharge load exports to the aquatic environment.

Comprehensive water inflow coefficients of diffused
pollutants
Among the five factors considering the comprehensive water
inflow coefficients, the terrain and the retention index were stable
on a decadal scale. While the precipitation, runoff transport, and
leaching indices varied with the annual precipitation. Therefore,
the spatiotemporal patterns of the diffuse pollutant discharge into
watersheds were calculated using precipitation as the indepen-
dent variable and the comprehensive water inflow coefficient as
the dependent variable. The annual spatial distributions of the five
factors are shown in Supplementary Fig. 1.
The comprehensive water inflow coefficients level of diffuse

pollutants showed higher level in intensive agricultural areas than
others within the watershed (Fig. 2A). The Hetao and Fenwei
Plains, characterized by gravity-fed irrigation and traditional
irrigation, respectively, are critical discharge areas for diffuse
pollutants because of their intensive agricultural activities. In the
gravity-fed irrigation areas, arable land was located on both sides

Fig. 1 Background information and database of the Yellow River Watershed. A Land use, sub-basin delineation, sampling sites location,
digital elevation model (DEM), normalized difference vegetation index (NDVI), and slope data of Yellow River Watershed (YRW). B Annual
precipitation of YRW from 1990 to 2019 (mean ± standard deviation). C Arable area, herbicide usage, and herbicide intensity in YRW from 1990
to 2019.
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of the mainstream for the convenience of irrigation (Fig. 2B).
Diffuse pollutants were easily discharged from the soil into the
water with a comprehensive water inflow coefficient close to 1
when the mainstream served as the irrigation network. The
comprehensive water inflow coefficients of diffuse pollutants in
the traditional irrigation areas were slightly low because tributary
confluence lengthened the transport path to the water, and arable
land was mainly located beside the tributaries.
The comprehensive water inflow coefficient followed the

variance of precipitation but showed more variability than
precipitation did (Fig. 2C, D). The coefficient of variation among
these three indices suggests that the variability of the precipita-
tion and runoff transport index was higher than that of the
leaching index, showing a conservative relationship with pre-
cipitation variance. Prior to 2015, the comprehensive water inflow
coefficient varied conservatively with precipitation, which mainly
reflected in 2010–2012. The variability of the coefficient was
temporally enhanced. Notably, the precipitation increased by
70mm (12.3%) in 2017 compared to that in 2016, corresponding

to a 1.29-fold increase in the comprehensive water inflow
coefficient. Under the impact of climate change, precipitation
increased the variability of diffuse pollution discharge to
watersheds.

Spatiotemporal distribution of atrazine load and field
evidence
Most studies on atrazine transport loss in watersheds have
explored Corn Belts in the United States because of the high corn
production and high atrazine application (Table 1). Compared with
agricultural watersheds with similar soil properties, land use
proportion, and slope, the ratio between atrazine and total
nitrogen in the Walnut Creek watershed shared the same alfisol
and cambisol soil types and average slopes with the YRW.
Although Walnut Creek had a large proportion of cropland,
various parameters in the known watersheds were most similar to
those in the YRW. In addition, research on the relationship
between atrazine and total nitrogen was abundant (N= 34). The

Fig. 2 Spatiotemporal distribution of the comprehensive water inflow coefficients of diffuse pollutants in the Yellow River Watershed.
A Spatial distribution of the comprehensive water inflow coefficients of diffuse pollutants in the Yellow River Watershed. B Average level
(mean ± standard deviation) of comprehensive water inflow coefficients of diffuse pollutants in Hetao Plain (HT, covering sub-basin 22),
Fenwei Plain (FW, covering sub-basin 17, 18, 39, 41, 43), and other areas in the Yellow River Watershed. C Temporal pattern of the leaching
index (LI), precipitation index (α), transportation index (TI), and comprehensive water inflow coefficients (λ) in the Yellow River Watershed.
D The coefficient of variance (CV) of LI, α, TI, and λ during 2010–2014 (before) and 2015–2019 (after).

Table 1. The background information of soil type, land use, and slope among watersheds.

Watershed Soil type Land use proportion Slope (°) N Median Location Ref.

Goodwater Creek Black soil Farmland (73%), town (10%), forest (9%),
grassland (8%)

3 1 2543 US Corn Belt 48

Walnut Creek Alfisol, cambisols Farmland (63%), forest (13%), grassland (17%) 7 34 42 US Corn Belt 49

St. Esprit Podsol Farmland (77%) and grassland (23%) 4 7 3055 Canada 50

Grand River Podsol Farmland (24.9%), forest (12.4%), grassland
(51.2%)

4 2 371,658 US Corn Belt 51

Choptank River Acrisol Farmland (61%), forest (29%), wetland (10%) 3 19 22,895 Maryland, US 52

Platte River Kastanozems Farmland (80%) and town (20%) 2 2 16,727 US Corn Belt 53

Brazos River Regosol Farmland (100%) 0.5 6 371 Texas, US 54

Jakes Creek Alfisol Farmland (64%) 3 3 240 US Corn Belt 55

Illinois Basin Black soil Farmland (49%), forest (28%), grassland (22%) 4 1 928 US Corn Belt 56

Owl Run Watershed Plinthosols Farmland (80%) 3 3 680 Virginia, US 57

Yellow River Watershed Alfisol, cambisols, sandy
soil

Farmland (31%), forest (13%), grassland (45%) 9

N number of references, median median load ratio between total nitrogen and atrazine.
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ratio of total nitrogen and atrazine loads from the Walnut Creek
watershed was used as the θ parameter in this study. The average
annual discharge load of atrazine in the YRW was estimated using
the modified export coefficient model and was found to be
101.7 ± 3.2 tons, accounting for 18% ± 2.4% of the total herbicide
use. The spatial pattern of the runoff discharge loads of atrazine
(Fig. 3A) matched the comprehensive water inflow coefficients,
which mainly highlighted two intensive agricultural activity areas,
gravity-fed irrigation and traditional irrigation. The runoff dis-
charge loads of atrazine showed the similar pattern in different
years 2010, 2015, and 2019 (Supplementary Fig. 2). In the gravity-
fed irrigation area Hetao Plain, the annual runoff loads of atrazine
were 14.7 tons, accounting 2.5% of the atrazine applied amount,
whereas in the traditional-irrigated Fenwei Plain, annual runoff
loads of atrazine were 9.7 tons, accounting 1.4% of the atrazine
applied amount. The field observations also highlighted these
intensive agricultural activity areas (Fig. 3B), the mainstream was
dispersed into several branches between sites BYGL and SHHK,
and the atrazine concentration in SHHK increased 1.4-fold than
that in BYGL, indicating a high contribution of atrazine in the
gravity-fed irrigation areas. The traditional irrigation areas with
intensive arable land dedicate a lot of atrazine discharge loads,
such as TR, FR, and WR, whose controlled sub-basins showed high
atrazine discharge loads.
The temporal discharge variations and comprehensive water

inflow coefficients were typically consistent (Fig. 3C). After the
launch of the pesticide reduction policy in 2015, atrazine usage
decreased, reducing the runoff discharge loads of atrazine, except
in 2017. The impact of the comprehensive water inflow coefficient
on pesticide reduction increased the runoff discharge load of
atrazine. Although pesticide usage decreased by 10% from 2016
to 2017, precipitation increased by 12.4%, increasing the atrazine
water flow coefficient and discharge load (31.0% and 19.1%,
respectively). In other years, fluctuations in precipitation did not

affect the decreasing trend in atrazine discharge loads with
reduced pesticide use.

Impact of increasing precipitation on atrazine discharge load
In the case of stable arable land areas, the application intensity of
atrazine was mainly subject to variations in atrazine usage,
affecting the comprehensive water inflow coefficients. A Bayesian
Gaussian process regression model involving the full Bayesian
Monte Carlo sensitivity analysis method was used to explore the
sensitivity of the application intensity of the atrazine discharge
loads and comprehensive water inflow coefficients by dividing the
periods before and after the pesticide reduction policy into two
groups.
The main response factors for atrazine discharge loads changed

substantially after implementing the pesticide reduction policy
(Fig. 4A). Whether before or after the pesticide reduction policy,
the response level of comprehensive water inflow coefficients to
atrazine discharge loads was stable ranging from −0.3 to 0.2.
However, the response level of atrazine application intensity
significantly increased after the pesticide reduction policy. The
response level for atrazine application intensity was only between
−0.06 and −0.02 before, but it increased to −4.75 to 4.44 after
implementing the pesticide reduction policy. In addition, the
overall sensitivity indices (Fig. 4B) indicated the interactions
between atrazine application intensity and the comprehensive
water inflow coefficients to discharge loads of atrazine. The
atrazine discharge loads were controlled by the interaction of the
comprehensive water inflow coefficients and atrazine application
intensity due to the total sensitivity index was close before the
policy. The comprehensive water inflow coefficients indicated a
stronger influence to atrazine discharge loads. After implementing
the policy, the discharge loads of atrazine was mainly influenced
by atrazine application intensity while the effect of the

Fig. 3 Spatiotemporal distribution of annual runoff discharge loads of atrazine and the field observation. A Annual runoff discharge loads
of atrazine simulated by the modified export coefficient model. B Atrazine concentration in surface water from the field observation.
C Temporal variation among inflow coefficients of atrazine, runoff discharge loads of atrazine, precipitation, and herbicide usage smoothed by
spline model.
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comprehensive water inflow coefficients sharply decreased,
indicating that the discharge loads of atrazine were mainly
controlled by the application intensity after the policy
intervention.
However, in unusual years, when precipitation increased

significantly, the discharge load of atrazine increased. To explore
the impact of the unusually increased precipitation, we used data
from other years to estimate the precipitation and discharge loads
and then compared the model-simulated precipitation with the
actual precipitation in 2017 (Fig. 4C). The simulated scenario
showed a discharge load 56.8 tons in 2017 when the actual
atrazine discharge load was 74.5 tons. The simulated precipitation
was 12.4% less than the observed values, and the corresponding
runoff discharge was 23.7% less than the observed values. This
result suggested that the effect of precipitation replaced pesticide
reduction as the driving factor in years with an unusual increase in
precipitation, and in years with unusual increase in precipitation, it
promoted discharge. This difference suggests that the unusual
increase in precipitation drives the discharge loads of atrazine in
the context of pesticide reduction policy.

DISCUSSION
The atrazine concentration in surface water reflects the regional
discharge level. Therefore, we collected 180 sets of atrazine
concentration in surface water from the relevant literature
worldwide (Supplementary Table 4). The global average level of
atrazine in surface water was 430 ng/L. The atrazine concentra-
tions in different countries varied by up to three orders of
magnitude, with developed crop-farming countries, such as the
United States, Australia and China, exerting high concentrations
(Fig. 5A). In addition to crop farming, sugarcane is an atrazine-
consuming source, and countries, such as Brazil and Myanmar,
have harmful atrazine concentrations in surface water. In the
subregions, the highest atrazine level, 552 ng/L, was found in the
Asia-Pacific region, followed by North America and Latin America
(Fig. 5B). Europe banned atrazine application in the 1990s, and its
atrazine levels in surface waters have decreased19. Notably, the
regions with the largest number of studies were typically the areas

most polluted with atrazine, such as the Corn Belts in the United
States. The United States is the largest corn producer globally with
an annual production more than 350 million tons;24 the average
concentration of atrazine in the surface water in the United States
was 794 ng/L. Although Australia’s corn production was not high,
the corn is intensively cultivated on the Great Barrier Reef,
resulting in high atrazine concentrations in surface waters25. China
is the second largest corn producer globally and has huge atrazine
usage20. The average concentration of atrazine in the surface
waters of China (535 ng/L) exceeds the global average, while the
investigations about atrazine transport behavior and discharge
loads in China are inadequate.
Atrazine exposure in surface waters is closely related to the use

of herbicides. Global herbicide usage reached 1 million tons in
2004, increased by 1.2-fold from 1990 to 201226, and leveled off
between 1.37 and 1.43 million tons (Fig. 5C). Notably, agriculture
in China is a crucial part of the global agricultural industry.
Herbicide use in China increased to 141,244 tons in 2014, an
increase of 135% from 1990. In 2015, to mitigate the risk of diffuse
pollution, the Chinese government launched a zero-growth
strategy for pesticides16. This policy led to a staged decline in
pesticide use, especially the 10% decrease in 2017–2018 (Fig. 5D).
The YRW in China also attained this goal: with a 13.6% decline in
herbicide use in 2018–2019. The application of the zero-growth
policy effectively reduced herbicide usage, mitigating atrazine
levels in surface water. Therefore, the dataset for USA and China in
the literature was divided into two groups for comparison: before
(n= 21) and after (n= 17) implementation of the zero-growth
policy (Supplementary Fig. 3). The average atrazine level before
the implementation of the policy in China was 259 ng/L, which
decreased to 105 ng/L thereafter. In the YRW from 2014 to 2019,
the average concentration decreased from 154.8 to 99.1 ng/L17.
However, in USA, another atrazine intensively used country, the
average atrazine level slightly increased from 1250 to 1321 ng/L in
this period.
Spatiotemporal variations and driving factors of atrazine were

abundant in small agricultural watersheds. In small watersheds,
atrazine discharge levels are affected by the atrazine application
intensity, precipitation, soil type, and slope, the main factors

Fig. 4 Sensitivity analysis of two parameters to runoff discharge of atrazine. A Response of two parameters to runoff discharge simulation
before reduction policy and after reduction policy. B Total effect sensitivity indices of export intensity of atrazine and the inflow coefficient (λ)
to runoff discharge of atrazine before and after the reduction policy. The center line denotes the median value (50th percentile), while the box
contains the 25th to 75th percentiles of dataset. The black whiskers mark the 5th and 95th percentiles. C Precipitation and atrazine discharge
load in actual value and simulated values using spline model.
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determining the ratio of atrazine to total nitrogen loss9. Atrazine
concentrations were proved to reach the highest during the first
few runoff events after application and decreased rapidly there-
after, with a 78% loss within 1 month of application27. However,
atrazine showed excellent persistence and can be detected in the
aqueous environment 20 years after concentration decay19.
Regarding spatial distribution, herbicide concentrations in tribu-
taries with intensive agricultural activities are usually higher than
those in the mainstreams28,29. The average tributary concentration
in this study was 9.1 ng/L, which was significantly higher than the
average concentration of 5.8 ng/L in the mainstream. However,
when the scope expands to the large watershed, the discharge
loads of atrazine are mainly obscured by high spatiotemporal
heterogeneity30. The pesticide discharge areas are mainly located
in intensive agricultural areas. In contrast with the tributary
confluence in traditional irrigation areas, dispersing into an
irrigation network from the mainstream in gravity-fed irrigation
areas shortens the transport pathway. The dispersed river channel
form evolves into a vast irrigated farmland area; thus, atrazine can
be directly discharged to the mainstream31. There was a 1.4-fold
increase in atrazine concentration as the Yellow River water
flowed through the gravity-fed irrigation area. This finding
suggests that agricultural structures with short migration distance
have a great risk of pesticide diffuse pollution.
Chemical loads, products of water discharge, and chemical

concentrations are good indicators of chemical loss over time32.
The modified export coefficient method provides reliable dis-
charge loads for atrazine in watersheds13. The spatial discharge
loads of atrazine were generally consistent with the measured
concentration patterns (Fig. 3A, B). The two major parameters of
the export coefficient method, λ and E, reflect the dynamics of
precipitation and herbicide application intensity, respectively. In
spatial distribution, atrazine discharge loads were closely related
with comprehensive inflow water coefficients. Although annual
atrazine use was lower in gravity-fed irrigation areas than in
traditional irrigated areas, the short migration distances resulted in
a high comprehensive water inflow coefficients and discharge
loads in gravity-fed irrigation areas, which contributed the largest

proportion of atrazine loads (14.4%) within the watershed.
Temporally, the climate change drives the precipitation variability
and further impacts the comprehensive water inflow coefficient.
The comprehensive water inflow coefficients and discharge loads
of atrazine was greater in wet years with higher comprehensive
water inflow coefficient than that in dry years33. Typically, because
the atrazine comprehensive inflow coefficient is influenced by
both precipitation and runoff, cumulative effect of extreme runoff
events and extreme precipitation in the watershed leads to higher
variability to the comprehensive inflow coefficient than precipita-
tion34. Increased precipitation variability enhances the frequency
of runoff events during wet years and farmland soil erosion,
promoting atrazine discharge loads in large vulnerable water-
sheds. In addition, increasingly wet environments in a large
watershed and on a global scale are accompanied by increasing
precipitation variability3. Because the variability of comprehensive
inflow water coefficients combined the interaction with precipita-
tion, runoff and leaching process, the increasing of precipitation
variability can enlarge the diffuse effects of pollutants within
watersheds35. During the period of increasing precipitation
variability, a 12.4% increase in precipitation from 2016 to 2017
in this study led to a 31.0% and 19.1% in atrazine water flow
coefficient and discharge load, respectively, despite the pesticide
reduction policy was already implemented (Fig. 3C). Therefore,
instances of drought and flood increase profoundly affect
pesticide migration behavior and environmental risks at the
vulnerable watershed and deteriorate the process of the pesticide
reduction policy.
Some anthropogenic efforts have mitigated diffuse pollution

through regulatory management18. Long-term water quality
monitoring of the Yellow River showed that agricultural chemical
reduction made the largest contribution to improved water
quality when considering precipitation, runoff, evaporation,
reservoir storage, and anthropogenic discharge. Mechanistic
evidence through Fourier spectra and wavelet analysis shows
that anthropogenic activities exceeded most natural biogeochem-
ical processes at all spatial scales of the watershed. Systematic
changes in the spectral properties of water flow have been

Fig. 5 Occurrence of atrazine concentration worldwide and the temporal distribution of global herbicide usage. A Distribution of atrazine
concentration worldwide from 2000 to 2021. B Concentration level in different continents/regions. The center line denotes the median value
(50th percentile), while the box contains the 25th to 75th percentiles of dataset. The whiskers mark the 5th and 95th percentiles. C Global
herbicide usage in the world, China, and Yellow River Watershed (YRW) from 1990 to 2020. D Growth rate of herbicide usage in the world,
China, and YRW during the pesticide reduction policy.
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associated with anthropogenic activities36. Since the government
launched a pesticide reduction policy in 2015, increasing pesticide
efficiency and reducing pesticide usage have mitigated the
intensity of diffuse pollution in the YRW region. Before the
pesticide reduction policy, precipitation variation mainly con-
trolled the interannual discharge load of atrazine within the
watershed, while the effect of atrazine application intensity turned
to major factor after implementing the policy (Fig. 4). Projections
based on the current regulations suggest that chemical pesticides,
including atrazine, will be completely replaced by biopesticides by
205014, and the diffuse pollution from chemical pesticides will be
gradually eliminated. Although unusual increases in precipitation
affect human efforts to optimize environmental pollution issues,
we are confident in the on-going environmental optimization
policies.
Notably, this study has several limitations. First of all, the spatial

heterogeneity of atrazine application data affects the accuracy of
the estimation37. The mismatch in spatial resolution between the
atrazine application database and the watershed’s inflow coeffi-
cient increased the uncertainty of the estimation results. We
acknowledge that the estimated atrazine discharge loads values
remained significant uncertainty; however, this uncertainty did not
affect the main points in this study, as the spatial resolution’s
uncertainty did not propagate to the temporal trend variations
and field observation verified the overall spatial pattern of
atrazine. The development of a regular monitoring system is
required to provide the basic data on the migration behavior of
pollutants in the watershed. In addition, the pesticide reduction
policy was launched for 8 years and the available data could only
trance for 5 year, which needs continue to follow up the policy
impact. Although this study is a regional simulation, the changes
in precipitation caused by climate change are a global issue that
affects us all3. Reducing the use of conventional chemical
pesticides is also an inevitable path for sustainable agriculture14,38.
Exploring the process of environmental changes under the dual
influence of climate change and human policies is beneficial for
adjusting current policies and contemplating future development
directions.
The current status determines that pesticide reduction policy

requires ongoing effort. Our comparison of the atrazine concen-
trations calculated from the annual atrazine loads and runoff
discharge in the watershed demonstrated that the average
atrazine concentration from 2014 to 2017 exceeded the surface
water atrazine concentration limit of 3 μg/L (Supplementary Fig.
4). Excess atrazine concentration can damage the ecological
environment, especially for algae, fish, and frogs, and has potential
neuroendocrine effects on mammals20. Because of the spatial
variability in the entire watershed and the high exposure to
atrazine in agricultural areas29, we speculated that atrazine levels
would exceed the surface water concentration limits in intensively
cultivated areas during the first few runoff events after its
application39. Such high levels of atrazine after runoff mainly
occur in corn cultivation areas, such as the US Corn Belt35, the
Great Barrier Reef region of Australia25. These regions in
intensively atrazine applied areas should pay more attention to
the ecological risks to aquatic atrazine under the climate change
effect, and require continuously tactical efforts to reduce the
atrazine usage and seek alternatives to green pesticides in the
future. Current estimations of the atrazine discharge load are
useful for understanding the dynamic patterns of pesticide diffuse
pollution in the dual effects of climate change and policy
regulations and for providing knowledge for future policy
development. The scale gap in refined modeling of diffuse
pollutants in watersheds needs to be bridged in the future to
better support government decision-making.

METHODS
Study area
The Yellow River is the second-longest river in China and extends
5,464 km from its source to the estuary, covering 795,000 km2

within the watershed (Fig. 1A). The Yellow River is one of the
largest vulnerable watersheds worldwide, and it surrounds the
Loess Plateau, which has the most severe soil erosion rate
worldwide40. Tremendous amounts of diffuse pollutants are
discharged with soil erosion in watersheds, threatening aquatic
environmental quality and ecological health41. Agriculture is one
of the most important economic parts in the Yellow River
Watershed. The main crop types include corn and wheat.
Currently, the corn acreage in the watershed is 15.6 million
hectares, and corn production is 98.9 million tons24. The main
location of intensive agricultural areas is on both sides of the
mainstream. The Hetao Plain is the largest gravity-fed irrigation
area in Asia, with the mainstream of the Yellow River serving as an
irrigation channel. The Fenwei Plain is a traditional irrigation area,
the fourth largest plain in China, and the largest alluvial plain in
the middle reaches of the Yellow River. The map of Yellow River
Watershed and its sub-basins were delineated using ArcGIS
10.2 software based on a 90m resolution digital elevation model
(DEM). All of the visualization results about the Yellow River
Watershed in this study were based on this map.

Export coefficient model
The overall frame work of the research process and the
methodology is provided (Fig. 6). The atrazine discharge load in
the watershed was calculated for the sub-basins using a modified
export coefficient model involving the comprehensive water
inflow coefficient. Based on the conventional export coefficient
method, the modified model incorporates water inflow coeffi-
cients and calculates the atrazine loads in each sub-basin13. The
modified equation is as follows:

L ¼ θλ
X

EiAi (1)

where L represents the diffuse pollution load of atrazine (kg/a), θ
represents the ratio between atrazine and nitrogen loads, λ
represents the comprehensive water inflow coefficient, E repre-
sents the application intensity of atrazine for the i-th sub-basin
(kg/(km2·a)), and parameter Ai represents the tillage area in the i-th
sub-basin (km2). Detailed calculations of λ are provided in the
Supplementary Material (Supplementary Methods).
The λ coefficient is determined by precipitation, slope, surface/

underground runoff, and vegetation interception factors in the
watershed. Among these factors, the terrain index is related to
slope and is stable over long time in a large watershed. The
retention index is related to the fractional vegetation cover, which
were stable in the last two decades in over 95% of the Yellow River
Watershed42. However, the precipitation, transport, and leaching
index were driven by annual precipitation in the decadal scale
(2.09 ± 0.53%)43. We also compared the decadal variance of
precipitation in the study area from 1990 to 2019 (Supplementary
Fig. 5). The average precipitation from 2010 to 2019 significantly
increased compared to the previous 20 years. Based on this
background, the precipitation was determined as the indepen-
dent variable and the λ coefficient was determined as the
dependent variable in this study.

Field sampling and quantification of the atrazine
concentration
Thirteen sites were sampled in September 2019 in the mean
stream and tributaries (Fig. 1A). Sampling site locations are listed
in Supplementary Table 1. Sampling sites in main stream were
determined with the entry and exit of Hetao Plain (BYGL and
SHHK), Fenwei Plain (LM and TG) and other agricultural areas
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along the upstream, middle-stream and down-stream, which
could represent the pesticides discharge level in these areas. In
addition, four agricultural tributaries were sampled in sites joining
the main stream: the Fen, Wei, Tao, and Huangshui Rivers, which
could represent pesticide discharge levels in these tributaries. A
2 L sample of river water from each site was poured into a dark-
glass bottle and then filtered with a glass fiber membrane
(0.77 μm, Whatman, USA). The samples were stored at 4 °C prior to
the next procedure.
Extraction and quantification of atrazine were performed as

described by Ouyang et al.12. In sequence, a 6 mL mixture of
dichloromethane-methanol (v/v, 80/20, acidized by 5mM HCl),
2 mL methanol, and 5mL ultrapure water were permeated via
graphitized carbon black solid-phase extraction (SPE) columns to
activate the SPE columns. Desethylatrazine-13C (30 ng) was used
as the surrogate mixture in filtered water. Next, the water samples
were pre-concentrated using SPE cartridges at a flow of 1.0 mL/
min in vacuum. Then, 1.5 mL methanol and 6mL dichloromethane
methanol (v/v, 80/20, acidized with 5 mM HCl) were used to elute
the extract. When the eluents were concentrated by nitrogen flow
to 200 μL, the residual volume was fixed at 1 mL using methanol.
Next, the residual was filtered using a 0.22 μm polytetrafluor-
oethylene membrane for equipment detection. Atrazine was
quantified using a UPLC-MS/MS machine loaded with a liquid
chromatograph and a mass spectrometer (Supplementary Table
2). Atrazine-13C (30 ng) was used as the internal standard. A 0.1%
formic acid water solution was used as eluent A, and a 0.1% formic
acid acetonitrile solution was used as eluent B. Extracted ion
chromatograms of atrazine, desethylatrazine-13C, and atrazine-13C
are shown in Supplementary Fig. 6.

Quality control
Quality control methods, namely duplicate field samples, blank
field samples, laboratory blanks, and surrogates, were used to
ensure measurement accuracy. The calibration equations, method
detection limits, and method quantification limits for atrazine and
its surrogates are presented in Supplementary Table 3. A loss
control method was used for the extraction process44. The average

recovery ± standard deviation of surrogates desethylatrazine-13C
in surface water was 87 ± 8.3% (N= 13). The average relative
percentage difference of atrazine was 7 ± 13.6% (N= 13).

Statistical analysis
R version 4.0.3 was used for data analysis and visualization45. A
Fully Bayesian Monte Carlo sensitivity analysis scheme was used to
identify the most sensitive factor for atrazine discharge loads in
the watershed based on the Bayesian Gaussian process regression
model in R package tgp46. Random Latin hypercube samples were
drawn at each Markov chain Monte Carlo iteration to estimate the
main effects and the total sensitivity indices. Atrazine application
intensity and precipitation were set as input variables and the
atrazine discharge loads was set as output responses. In the
setting of variables in R program, the size of random Latin
hypercube samples was set as 1000, the span was set as 0.3, the
3-vector of Monte-Carlo parameters (B)urn in, (T)otal, and (E)very
were set as 4000, 8000, and 10, respectively.
The ANOVA assumptions were tested before comparing the

means among sites. The spline model is a reliable tool for
describing nonlinear relationships between complex variables47.
The discharge load of atrazine in the unusual precipitation years
was estimated using a spline model.

DATA AVAILABILITY
The precipitation data are from the National Tibetan Plateau/Third Pole Environment
Data Center and are available at https://data.tpdc.ac.cn/zh-hans/data/faae7605-a0f2-
4d18-b28f-5cee413766a2. The world and China’s pesticide use data are available
from the FAO database https://www.fao.org/faostat/en/#data/RP/visualize. The
pesticide usage and tillage area in the Yellow River Watershed are obtained from
the National Data Center and are available at https://data.stats.gov.cn/
easyquery.htm?cn=E0103. The NDVI data are from the National Tibetan Plateau/
Third Pole Environment Data Center and are available at https://data.tpdc.ac.cn/zh-
hans/data/f3bae344-9d4b-4df6-82a0-81499c0f90f7. The slope data are available at
http://www.ncdc.ac.cn/portal/metadata/ac9f8b4a-d3e3-41fc-975e-7070f7f68b92. The
land use data are available at http://globallandcover.com/defaults.html?
type=data&src=/Scripts/map/defaults/browse.html&head=browse&type=data. The
Digital Elevation Model (DEM) Data are available at https://cmr.earthdata.nasa.gov/
search/concepts/C1214622194-SCIOPS#.

Fig. 6 Overall framework of the research process and the methods.
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