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Monitoring access to safely managed drinking water services requires information on water quality. An increasing number of
countries have integrated water quality testing in household surveys however it is not anticipated that such tests will be included in
all future surveys. Using water testing data from the 2016 Ethiopia Socio-Economic Survey (ESS) we developed predictive models to
identify households using contaminated (=1 E. coli per 100 mL) drinking water sources based on common machine learning
classification algorithms. These models were then applied to the 2013-2014 and 2018-2019 waves of the ESS that did not include
water testing. The highest performing model achieved good accuracy (88.5%; 95% Cl 86.3%, 90.6%) and discrimination (AUC 0.91;
95% Cl 0.89, 0.94). The use of demographic, socioeconomic, and geospatial variables provided comparable results to that of the full
features model whereas a model based exclusively on water source type performed poorly. Drinking water quality at the point of
collection can be predicted from demographic, socioeconomic, and geospatial variables that are often available in household

surveys.
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INTRODUCTION

In many low- and middle-income countries the majority of the
population lacks access to drinking water services that are free
from contamination, accessible on premises and available when
needed. In 2020, around 26% of the global population (2 billion
people) lacked safely managed drinking water, rising to 71% in
low-income countries’. Drinking water quality, specifically fecal
contamination of drinking water sources, is often found to be the
limiting factor for safely managed drinking water services?.
Contaminated drinking water can transmit diseases such as
diarrhea, cholera, dysentery, typhoid, and polio and lack of safe
water is associated with substantial disease burden. An estimated
829,000 diarrheal deaths are attributed to inadequate drinking
water, sanitation and hygiene each year®. Expanding access to safe
drinking water is thus an important human development priority
with targets set at national and global levels. The Sustainable
Development Goals (SDG) target 6.1 calls for “safe” drinking water
“for all” by 2030 and the associated safely managed drinking water
services indicator requires information on the quality of drinking
water®,

In the absence of robust water quality data from administrative
systems, an increasing number of National Statistical Offices
(NSOs) in low- and middle-income countries have integrated
water quality testing in nationally representative household
surveys to generate data on water quality and baselines for safely
managed drinking water services In these countries, field teams
have tested 100mL of drinking water for WHO's preferred
indicator of fecal contamination in drinking water, Escherichia coli
(E. coli). To meet WHO guidelines drinking water should not
contain any detectable E. coli in any 100mL sample®. Key
advantages of this approach are ensuring data are representative
and cover the entire population, including households reliant on
informal services or self-supply, and the ability to link water quality
information to the wealth of other information collected in
household surveys. The integration of E. coli testing in household

surveys is, however, an additional burden on field teams and
requires equipment and consumables as well as dedicated
training in aseptic techniques, incubation and interpreting results.
Therefore, it is not expected that the module will be included in all
future surveys conducted by NSOs, but rather that the module
might be repeated every 3-5 years.

Machine learning techniques hold promise for predicting water
quality using data from household surveys given the wealth of
information on household socio-economic conditions and a range
of geospatial information from global datasets that can be
integrated using the household survey cluster locations (where
available). Prior research drawing on data from the World Bank’s
Living Standard Measurement Study (LSMS) surveys has applied
machine learning to a wide range of topics covered in these
surveys including poverty®, housing rental value’, food security?,
crop type mapping®, crop yield', and fertilizer pricing''. Recent
studies have investigated the ability to predict microbial drinking
water quality on smaller scales for specific water source types
including piped water in the Democratic Republic of Congo'? and
groundwater in Uganda and Bangladesh'3. Studies have also
utilized machine learning algorithms to generate national and
global predictive maps for arsenic'® and fluoride' and to develop
predictive models for microbial contamination of surface’® and
recreational waters'”. To our knowledge machine learning has not
previously been applied to drinking water quality data from a
nationally representative sample of households nor has it been
used to predict water quality for surveys that did not include
direct measures of water quality.

Here we examine the performance of a range of commonly
used algorithms to predict E. coli contamination in drinking water
sources in Ethiopia. This study draws on the results of the third
wave of the Ethiopia Socioeconomic Survey (ESS3) in 2016 to
examine the performance of machine learning algorithms in
predicting water quality. The objectives of this study were: (1) to
predict contamination of drinking water sources and assess the
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relative performance of commonly used machine learning
algorithms (Il) to examine the role of different groups of variables
(household characteristics, water service characteristics, geospatial
variables) on predictions and (lll) to apply the highest performing
predictive model to the other waves of the ESS in 2013-2014
(ESS2) and 2018-2019 (ESS4) which did not incorporate water
quality testing.

RESULTS

Drinking water quality

According to the 2015/16 ESS, nationally, about 68% of house-
holds fetched their drinking water from improved sources such as
piped water, bottled water, protected springs, and wells (Table 1)'%,
This is the same level (68%) as reported in the 2016 Ethiopia
Demographic and Health Survey (DHS)'. About a third of
households collected their water from unprotected sources such
as springs, lakes, and ponds. Despite about two-thirds of the
population using improved sources, water testing in the ESS
demonstrated that many of these sources are not free from E. coli
contamination (Table 1). E. coli contamination was detected in
84% (95% confidence interval (Cl) 82%, 87%) of the households’
water sources. There were only 864 households (15.6%) with water
sources free of E. coli contamination. As has been found in
previous studies?®, contamination rates are in general lower in
samples from improved sources (piped sources and protected
springs and wells) than from unimproved sources (unprotected

springs and surface water). Yet, over 78% (95% Cl 74%, 81%) of the
samples collected from households who fetched their drinking
water from improved sources are contaminated. The contamina-
tion rate varies by improved source type; for example, among
users of piped water, contamination rates range from 58% for
piped water on-premises to 74% for public taps. Improved sources
with the highest contamination rates are protected springs and
wells; E. coli was detected from over 89% of the households who
reported using these sources. The detection of contamination in
all types of improved sources confirms that improved sources are
not necessarily safe sources and points to the fact that the
commonly used practice of assessing access to drinking water
services based on the type of water source (“improved” vs
“unimproved) provides an incomplete picture in countries like
Ethiopia?'.

Predicting water quality from socioeconomic information

Classification algorithms. Table 2 presents model selection results
using six classification algorithms including Extreme Gradient
Boosting (XGBoost), Generalized Linear Model (GLM), Generalized
linear models with elastic net regularization (GLMNET), K-nearest
neighbors (KNN), Random Forest (RF), and Support Vector
Machine (SVM). The RF algorithm produced the best performance
across all metrics. It produced the highest discrimination ability
with the area under the receiving operator curve (AUC) of 0.91
(95% Cl 0.89, 0.94). This model is also superior in other
performance metrics including accuracy, F1 score, sensitivity,

Table 1.

E. coli contamination of drinking water at the point of collection by source type.

Drinking water source types Number of households

Proportion of households
with the source

Proportion of E. coli contamination
at the point of collection

A. Improved Sources

Piped on-premises 1143
Piped water public 507
Tanker/Vendor 219
Protected springs, wells, boreholes 1289
Rainwater 47
Improved (all sources) 3205
B. Unimproved Sources

Unprotected springs, wells 897
Surface water 498
Other 88
Unimproved (all sources) 1483
All Sources 4688

0.19 0.58 (0.51,0.65)
0.12 0.74 (0.62,0.87)
0.04 0.71 (0.57,0.85)
0.32 0.90 (0.87,0.94)
0.01 0.97 (0.92,1.02)
0.68 0.78 (0.74,0.81)
0.22 0.98 (0.95,1.00)
0.09 1.00 (0.99,1.00)
0.01 0.82 (0.66,0.97)
0.32 0.98 (0.96, 1.00)
1.00 0.84 (0.82,0.87)

The household numbers are unweighted, proportions are weighted, and values in the parenthesis in the last column are 95% confidence intervals.

Table 2. Comparison of classification algorithms.

Algorithm Accuracy (95%Cl) F1-score Sensitivity Specificity AUC (95%Cl)
RF 0.89 (0.87, 0.91) 0.93 0.95 0.64 0.91 (0.89, 0.94)
XGBoost 0.88 (0.85, 0.90) 0.92 0.94 0.62 0.90 (0.88, 0.93)
SVM 0.83 (0.81, 0.86) 0.90 0.92 0.46 0.82 (0.78, 0.86)
GLMNET 0.85 (0.82, 0.87) 0.91 0.95 0.43 0.85 (0.82, 0.88)
GLM 0.85 (0.82, 0.87) 0.91 0.95 0.42 0.85 (0.82, 0.88)
KNN 0.84 (0.82, 0.87) 0.91 0.93 0.49 0.85 (0.82, 0.88)

models. See Supplementary Table 2 for more results.

Results are based on the 2015/16 Ethiopia Socioeconomic Survey data. Accuracy results are significantly higher than the no information rate (NIR) of 0.80 in all
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(b) Variable Importance (XGBoost Model)
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Fig. 1 Variable Importance. Variable importance for RF and XGBoost models - top 10 features.

and specificity. Another ensemble method, XGBoost provided a
comparable performance with an AUC of 0.90 (95% Cl 0.88, 0.93)
and high performance in other metrics. The remaining four
algorithms, GLM, GLMNET, SVM, and KNN show high predictive
performance but the results in these models are lower than the RF
model.

Variable importance. Figure 1 presents the top 10 predictors
which are found to be quite similar across the RF and XGBoost
models (See Supplementary Tables 7 and 8 for top 20 predictors).
These important features in both models are constructed from a
few commonly included questions in household surveys. These
are geographic variables, water source type, location of the
household, housing characteristics, and assets. Out of the top 10
features that are strongly associated with E. coli contamination,
50% in the RF and 60% in the XGBoost model are geospatial
variables. These variables include region, place of residence (rural
or urban), distance to a major road or a major market center,
average rainfall, wetness index, and temperature of the area
where the household is located. The second most important
features relate to household characteristics including the type of
water source used by household members, the proportion of
households without a toilet facility in the area (open defecation)
and the amount households spend on drinking water.

Model performance using different sets of features. The variable
importance figures for the full model show that features related to
geospatial variables and water source types appear to be strong
predictors of contamination of drinking water sources. We now
compare the performance of different scenarios with the objective
of identifying models that can predict contamination with minimal

Published in partnership with King Fahd University of Petroleum & Minerals

socioeconomic information. We examined models with the
following features: (i) water source type only, (ii) water source
and selected household-level variables but excluding geospatial
variables, (iii) geospatial variables only, and (iv) geospatial and
household level variables but excluding water source types. These
scenarios were selected based on their availability in a range of
household surveys and other data collection activities. For
example, water source type is an important indicator often
included in household surveys and is used to measure access to
improved sources of drinking water?2. Similarly, recent surveys
often capture GPS coordinates of the sampled households or the
center of the census enumeration area. GPS coordinates can be
used to generate several geospatial variables without extra
burden to the survey but not all surveys currently make these
coordinates available to researchers. Other household-level
characteristics and basic demographic information about house-
hold members are often included in LSMS or DHS type surveys but
may not be available in other assessments, such as Ethiopia’s
national WASH inventory?3.

Table 3 presents results of different feature scenarios for the RF
model. As noted earlier, the full model that uses all the features
has a strong discrimination ability (AUC 0.91; 95% Cl 0.89, 0.94).
The rest of the models have lower discrimination ability with the
least performing being the model when water source type is
considered as the only predictor (AUC 0.80; 95% ClI 0.77, 0.84).
However, augmenting water source variables with selected
household-level variables, but excluding geospatial variables,
resulted in a performance comparable to the full model (AUC
0.89; 95% Cl 0.86, 0.91). The geospatial features only model has a
performance (AUC 0.91; 95% Cl 0.88, 0.93) which is also
comparable with the full model. The performance did not
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Table 3. Prediction performance results in different model scenarios.

Model Scenario

Accuracy (95%Cl)

All Features

Water Source Only
Water Source & Household Variables

Geospatial Only

Geospatial & Household Variables

0.89 (0.87, 0.91)
0.80 (0.80, 0.80)
0.85 (0.83, 0.87)
0.88 (0.85, 0.90)
0.87 (0.85, 0.89)

F1-score Sensitivity Specificity AUC (95%Cl)

0.93 0.95 0.64 0.91 (0.89, 0.94)
0.89 1.00 0.00 0.80 (0.77, 0.84)
0.91 0.95 0.46 0.89 (0.86, 0.91)
0.92 0.95 0.58 0.91 (0.88, 0.93)
0.92 0.95 0.56 0.90 (0.87, 0.93)

Results are based on the 2015/16 ESS data. Accuracy results are significantly higher than the no information rate (NIR) of 0.80 in all but the “Water Source Only”

scenario where the model predicted all water sources to be contaminated. See Supplementary Tables 5 and 6 for both train and test data results from RF and

XGboost models.
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Fig. 2 ROC curves for model scenarios. Receiver operating characteristic (ROC) curves for model scenarios using RF and XGBoost

classification algorithms.

however improve when selected household characteristics were
added to the geospatial features model (AUC 0.90; 95%Cl 0.87,
0.89). This is also illustrated in the ROC curves for the RF and
XGBoost models, i.e, the ROC curve for the water source only
model is the shallowest in both cases (Fig. 2).

Classification results. Table 4 presents the distribution of classi-
fication results for the full features RF model by residence and
water source type (Supplementary Table 5 includes performance
metrics). Overall, the predictive model classified 88.4% of the cases
correctly. The performance is higher in rural (93.6%) than urban
(77.8%) areas. There was some variation in classification perfor-
mance by water source type, with at least 79.4% of cases correctly
classified except for truck/vendor where performance dropped to
61%.

Table 4 also presents classification results for the four
scenarios. The water source-only model predicted that all water
sources were contaminated and thus correctly classified all the
contaminated sources but misclassified all the non-contaminated
sources as contaminated. Addition of selected household
variables in the Water Source Plus model, greatly improved
specificity and the classification results became comparable with
the full model. The geospatial features only model performed
well and provided a comparable performance with that of the full
model (88.1%).

npj Clean Water (2023) 63

Model application in different datasets. Lastly, we applied the
predictive model to two other waves of the ESS fielded in 2013/14
and in 2018/19 which did not include a water quality testing
module. These two surveys have information on all the socio-
economic and geospatial features identified in the predictive
model using the 2015/16 survey data. Whereas the 2013/14 and
the 2015/16 survey waves interviewed the same households, the
sample was refreshed for the 2018/19 wave of the ESS and thus
fielded in different households.

Figures 3 and 4 compare the actual proportions of contami-
nated and non-contaminated water sources in 2015/16 against
the predicted values in all three survey waves. The results are for
the full model and the scenarios (Fig. 3) and water source types
(Fig. 4). As expected, the actual and predicted values are very close
for 2015/16. The comparison of prediction results across survey
waves shows slight differences in the households’ access to
drinking water free from E. coli; access was better in the reference
survey than in the preceding and subsequent rounds of the ESS.
This pattern is reflected in all models.

Disaggregating predictions by water source type shows that the
results are comparable for most source type categories (Fig. 4).
The actual in 2015/16 and the predicted values in the three survey
waves are close or within the 95% confidence interval for the
following water source types: piped on-premises, rainwater,
unprotected springs and wells, and surface water. The differences
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Table 4. Classification results from RF prediction model by residence, water source type, and model scenario.
Number of Correctly Classified Misclassified Total Correctly
households Classified (%)
Contaminated Not Contaminated Contaminated Not Contaminated
(%) (%) (%) (%)
a. Full Model
National 883 76.3 12.1 7.5 4.1 88.4
Urban 288 47.2 30.6 12.2 10.1 77.8
Rural 595 90.4 3.2 5.2 1.2 93.6
Piped on-premises 214 411 383 9.8 10.7 79.4
Public standpipe 103 77.7 13.6 49 3.9 91.3
Truck, vendor 41 56.1 49 26.8 12.2 61.0
Rainwater 6 100.0 0.0 0.0 0.0 100.0
Protected spring/well 245 86.5 24 9.4 1.6 89.0
Unprotected springs, well 159 97.5 0.6 1.9 0.0 98.1
Surface water 29 100.0 0.0 0.0 0.0 100.0
b. Scenarios
Water Source only 883 80.4 0.0 19.6 0.0 80.4
Water Source Plus 883 76.2 9.4 10.2 4.2 85.6
Geospatial only 883 76.7 11.4 8.2 37 88.1
Geospatial Plus 883 76.1 10.6 8.9 43 86.7
The total number of households included in this study is 4688. The total number of households in column 2 of this table refers to the number of households in
the test data.
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Fig. 3 Prediction results by model scenario. Prediction results of E. coli contamination of drinking water sources in three survey waves by

model scenario. Error bars represent 95% confidence intervals.

across survey waves are concentrated in two categories of
improved sources namely public standpipes and water tanker
and water kiosk/vendors. Overall, the prediction results in Figs. 3
and 4 show that the general pattern is maintained, i.e., the
average contamination rate is always close to 90% and by source
type, it is the highest in the unimproved source categories and the
lowest in the pipes on-premises category.

Published in partnership with King Fahd University of Petroleum & Minerals

DISCUSSION

This study has examined the performance of a range of machine
learning algorithms to predict the quality of drinking water
sources in Ethiopia from household survey data.

The models performed well in predicting E. coli contamination
at point of collection. RF performed the best across most metrics
with XGBoost a close runner up. Overall, predictions for ESS3
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Fig. 4 Prediction results by water source type. Prediction results of E. coli contamination of drinking water sources in three survey waves by

water source type. Error bars represent 95% confidence intervals.

(2015/16 ESS) were comparable to the actual data and the
proportion of misclassified results was low (2.4%). There was some
variation in model performance by water supply type and by
residence. Among water source types, misclassification rates were
highest for tanker truck/vendor and piped water. Water quality in
piped supplies and truck/vendor water is highly dependent on the
management which may be poorly predicted by the available
variables. Notably, we were unable to include operational
parameters such as chlorine residual in our models as this
information was only available for a subset (n = 1297) of house-
holds in wave 3. In contrast, misclassification was very uncommon
for protected wells and springs, unprotected wells and springs,
rainwater, and surface water, reflecting the very low chance of
these water sources not containing E. coli in Ethiopia. The
misclassification rate was lower in rural (1.6%) than urban (5.1%)
areas, again reflecting the higher risk of contamination in
rural areas.

Examining variable importance from the RF model we find that
the top five predictors were: distance to nearest market, mean
rainfall, mean temperature, source type—piped own, and open
defecation in the EA. That water source type is among the top
predictors is expected given the considerable variations in quality
by water source type observed in the ESS water quality module
and in other countries®. For example, a systematic review of water
quality studies in LMICs found piped water to be considerably less
likely to be contaminated than other types of improved drinking
water®, Notably, many of the top features are either basic
geospatial information generated using the household’s location
or socioeconomic variables that are routinely captured in many
household surveys such as DHS, LSMS and MICS.

We examined the relative performance of RF models across
scenarios depending on the types of data available. This analysis
was conducted to understand the contributions water source
type, household-level and geospatial variables to model perfor-
mance. In comparison with the reference “full features model”, the
scenario relying solely on information about the type of water
source performed poorly (AUC=0.80 vs 0.91). This is expected
given the wide range of reported contamination rates for users of
the same water source type as observed in Ethiopia and
elsewhere®2°, Scenarios that relied only on geospatial information
(AUC =0.91) or household-level variables (AUC = 0.88) performed
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surprisingly well with performance equivalent to or approaching
that of the reference scenario. This finding suggests that
predictive models relying only on geospatial variables may suffice
for the purposes of understanding variations in risk of E. coli
contamination at the point of collection and support the use of
machine learning to generate risk maps'3. Similarly, the finding
that household-level variables alone can provide good predictive
performance. The finding suggests that the approach taken in this
study could be applied to the 25 ++ MICS that are not disseminated
with GPS coordinates?.

Lastly, we predicted water quality at the point of collection for
households in wave 2 (the 2013/14 ESS) and wave 4 (the 2018/19
ESS). The results provided a similar picture to that of the reference
data. The findings of this exercise, however, cannot be assessed
against any “truth” which is a key limitation here. Further work is
needed to examine the performance of these predictive models
over time which may necessitate the incorporate variables that
capture temporal changes, including seasonality?®. At present
there are few countries that have repeated water quality testing in
household surveys. Bangladesh and Nepal MICS would be good
candidates for this analysis, especially given we have found good
performance in the scenarios excluding geospatial variables which
are not currently available in MICS.

A key strength of this analysis is the use of common machine
learning techniques and a workflow in R that can be adapted for
use in other household surveys. Here we utilized Boruta to automate
the selection of features to include in the model. Future studies
could examine the potential benefits of alternative approaches,
including the use of ensemble methods. There are a number of
limitations to the study and the underlying dataset. Firstly, E. coli
measurements are a “snapshot” and consequently reflect the levels
of contamination at the time samples were collected from
households. As a measure of water quality, E. coli is not a perfect
proxy for fecal contamination - for example being more sensitive to
chlorine than pathogens such as cryptosporidium?’. Secondly, the
ESS water quality module was administered by separate teams
revisiting households from the wave 3 of the survey. There is some
discordance between the types of water sources reported in wave 3
and those from the water quality survey. For example, there is about
a 10 percentage points difference in access to water from improved
sources?®, The differences in reporting on types of water source

Published in partnership with King Fahd University of Petroleum & Minerals



used between these two assessments may partially explain the
greater contamination predicted in waves 2 and 4 and could be the
result of seasonal or multiple source use?®. Third, we did not include
all variables collected in the ESS and there is inherently a choice in
the geospatial datasets to consider in the analysis. In addition,
emphasis is given to variables that are commonly available in
different household surveys. The selection of which features to
include and the pre-processing decisions introduce a degree of
subjectivity and may influence the resulting performance of
machine learning models. Fourth, our study examined drinking
water quality at the point of collection and the performance of
machine learning models (and relative importance of different sets
of features) may differ for E. coli contamination at the point of use
(i.e., immediately prior to consumption).

METHODS

Input data

The analytical framework begins with input data and continues to
data preparation, modeling and application (Fig. 5). The study uses
the ESS. The survey is a collaboration between the Central
Statistics Agency and the World Bank under the Living Standards
Measurement Study- Integrated Surveys on Agriculture (LSMS-ISA)
project. ESS began in 2011/12 and the first wave, ESS1 covered
rural and small-town areas. The survey was expanded to include
medium and large towns in 2013/14 (ESS2). The 2013/2014 sample
households were again visited in 2015/16 (ESS3) during which the
water quality module was implemented. The survey was fielded
again in 2018/19 (ESS4) with a refreshed sample. This study is
primarily based on the 2016 Survey (ESS3) and associated water
quality survey'®2%, In this study, ESS2 is the Earlier Survey, ESS3 is
the Reference Survey, and ESS4 is the Latest Survey. ESS1 was not
used because the survey did not cover medium and large towns.
See the Data Availability section for further information on these
data sources including metadata.

ESS is a multi-topic household survey with several individual
and household level socioeconomic and demographic informa-
tion. These included basic individual-level demographic informa-
tion on household structure, education, health, and labor market
outcomes, as well as several household-level information such as
household assets, consumption expenditure, dwelling character-
istics, access to electricity, water, and sanitation facilities. ESS data
also comes with a range of geospatial variables that are
constructed by mapping the household’s location to other data
available for the area. These include, among other things, rainfall,

Input Data: Ethiopia Socioeconomic Survey- household

demographics, household assets and amenities, water
and sanitation facilities, household location, and other
geo spatial characteristics.

Data Preparation: Pre-Processing, Data splitting, and

Dimension reduction.

Model Selection: Selecting machine learning classification

algorithm, Model performance evaluation.

Model Application: Predictions with the reference data
(ESS2 - 2015/16) and datasets from earlier (ESS3-2013/14)
and recent (ESS 4 - 2018/19) surveys.

Fig. 5 Analysis Framework. Methodological workflow from input
data to model application.

Published in partnership with King Fahd University of Petroleum & Minerals

A.A. Ambel et al.

npj

7
temperature, greenness, wetness, altitude, population density, the
household’s closeness to the nearest major road, urban and
market centers. In addition, the 2015/16 survey (ESS3) which is the
main focus of this study, implemented a water quality module that
included microbial and chemical tests to measure water quality.

The microbial test included the presence of E. coli WHO's
preferred indicator of fecal contamination®.

Response variable

The response variable in this study is the presence of E. coli
contamination at the point of collection. Contaminated drinking
water refers to the detection of E. coli in water samples collected
from the household’s drinking water source.

Data preparation

The objective of this study was to develop a predictive model for
drinking water contamination from minimal socioeconomic
information. Therefore, only features that are often included in
household surveys are considered. For example, the 2015/16
water quality module has some information on the chemical and
physical characteristics of the water. These variables were not
included in the training dataset because they are not usually
available in other surveys. Therefore, the data preparation for this
study considered only selected variables.

Data preparation activities included pre-processing, data split-
ting, and dimension reduction. The pre-processing step involved
constructing some variables from existing variables, variable
transformation, and treating missing values by imputation or
dropping them from the analysis. Constructed variables included
wealth index and open defecation in the area. The wealth index
was constructed from selected assets using principal component
analysis. Open defecation in the area is an enumeration area (EA)
level variable and indicates the proportion of households in the EA
who do not have a toilet facility. Variables that were transformed
include the water source type. For example, we combined
boreholes, protected springs and wells into a single category
given the comparatively low number of respondents and in order
to harmonize responses across the three waves of the survey.
Similarly, unprotected springs and wells were combined. Conse-
quently, the water source type list included in the model selection
analysis had fewer categories than in the raw data.

To assess how the classifiers generalize to unseen data, the pre-
processed data was split into training and test datasets stratified
by the distribution of the response variable. Accordingly, 80% of
the data is assigned to the training dataset and the remaining 20%
is assigned to the test dataset. The training dataset was used to
train the classifiers and estimate the hyperparameters, and
the test dataset was used to evaluate the performance of the
classifiers and get an independent assessment of how well the
classifiers performed in predicting the positive class (contami-
nated drinking water source). To reduce the dimension of the
processed data, the Boruta feature selection algorithm was used.
The final list of features used in the analysis is presented in
Supplementary Table 1.

Statistical analysis

We examined a few commonly used classification algorithms
including GLM, GLMNET, KNN, SVM, and two decision tree-based
classifiers: RF, and XGBoost. To obtain the optimal values of the
classifiers’ hyperparameters that maximize the area under the
ROC, we tuned the non-liner classifiers using regular grid search
method.

The GLM uses a parametric model allowing for different link
functions for the response variable. For classification purposes,
the response values are categorical. Especially in this study, we
have a binary classification problem; i.e,, “contaminated” versus
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“non-contaminated”. Therefore, logistic regression is used as a
reference model. The glm R package was used in this study°.

The GLMNET classifier uses GLM via penalized maximum
likelihood. The lasso and elastic net are popular types of penalized
linear regression (or regularized linear regression models) that add
penalties to the loss function during training. It promotes simpler
models with better accuracy and removes features that are highly
correlated. We also used glmnet R package for the GLMNET
classifier and tuned two hyperparameters penalty (regularization
parameter) and mixture (representing relative amount of
penalties).

KNN is one of the most widely used non-parametric classifiers. It
defines similarity as being in close proximity. In other words, it
classifies a new case or data point based on its distance or
closeness to the majority of its k nearest neighbor points in the
training set. We used “kknn” package in R and tuned two
hyperparameters neighbors (nearest neighbors) and weight func
(distance weighting function).

SVM is another classification method that uses distance to the
nearest training data points. It classifies data points by using
hyperplanes with the maximum margin between classes in high
dimensional feature space®'. It works for cases not linearly
separable. In this study, we used a non-linear kernel (“kernlab”)
package in R and tuned two hyperparameters including cost and
degree (polynomial degree).

RF is an ensemble method that builds multiple decision trees by
sampling the original data set multiple times with replacement®2
Therefore, it uses a subset of the original dataset to train the
decision trees and to separate different classes as much as
possible. RF combines the trees at the end by taking the majority
of votes from those trees. Although large number of trees will slow
the process, the greater number of trees in the forest help
improve the overall accuracy and prevent the problem of
overfitting. We used “ranger” package in R, which provides the
importance of features as well. We tuned the following three
hyperparameters: mtry (number of randomly selected predictors),
min_n (minimal node size), and trees (1000).

XGBoost is another machine learning ensemble method which
uses the gradient of a loss function that measures the
performance®3. Different than other ensemble methods, which
train models in isolation of one another, XGBoost (or boosting)
trains models sequentially by training each new model to correct
the errors made by the previous ones. This continues until there is
no scope of further improvements. XGBoost is fast to execute in
general and gives good accuracy. In this study, we used
“XGBClassifier” from “xgboost” package in R. The xgboost package
has few tunable parameters and we tuned two of them: trees
(trees) and tree_depth (tree depth).

The classification algorithms are evaluated using metrics that
are calculated from the four predicted results of the confusion
matrix: (i) true positive (TP) or correctly predicted as contaminated,
(ii) true negative (TN) or correctly predicted as not contaminated,
(iii) false positive (FP) or wrongly predicted as contaminated, and
(iv) false negative (FN) or wrongly predicted as not contaminated.
With our data being class-imbalanced, we used a combination of
metrics to evaluate the models. We calculated accuracy, sensitivity
(also known as recall or true positive rate (TPR)), specificity or true
negative rate (TNR), F1 score, and area under the curve (AUC) of
Receiver Operating Characteristics (ROC). The positive cases are
more important than the negative cases and the goal is to make
sure the best performing model maximizes the TPR. Finally, given
the data we used is of imbalanced classes we have implemented
resampling techniques'”. These include upsampling the minority
class and downsampling the majority class (See Supplementary
Tables 3 and 4). However, there were no significant improvements
in the prediction results. The AUC for the RF model using
upsampling and downsampling techniques is 0.90 (95% Cl 0.88,
0.93). Similarly, AUC for the XGBoost model is 0.90 (95% Cl 0.87,
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0.92) for upsampling and 0.89 (95% Cl 0.86, 0.92). These are similar
to the main results reported in Table 2.

The analyses were conducted with the R programming
language.

DATA AVAILABILITY

The raw data that support the findings of this study are available in World Bank
Microdata Library at the following sites.

ESS Wave 2: https://microdata.worldbank.org/index.php/catalog/2247/get-microdata
ESS Wave 3: https://microdata.worldbank.org/index.php/catalog/2783/get-microdata
ESS Wave 4: https://microdata.worldbank.org/index.php/catalog/3823/get-microdata

CODE AVAILABILITY

The data analysis code used in this study is available from the authors upon request.
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