
ARTICLE OPEN

Changes in China’s river water quality since 1980:
management implications from sustainable development
Hanxiao Zhang 1,6, Xianghui Cao2,6, Shouliang Huo 1✉, Chunzi Ma 1, Wenpan Li 3, Yong Liu 4, Yingdong Tong5 and
Fengchang Wu1

Human activities and climate change threaten water quality in China’s rivers. We simulated the monthly concentrations of riverine
total nitrogen (TN), ammonia-nitrogen (NH3-N), total phosphorus (TP), and chemical oxygen demand (CODMn) in 613 sub-
watersheds of the nation’s 10 major river basins during the 1980–2050 period based on a 16-year (2003–2018) monitoring dataset
using the stacking machine-learning models. The results showed that water quality improved markedly, except for the TN
concentration, which was probably due to the lack of a TN control target and assessment system. Quantitative analysis indicated
that anthropogenic factors were the primary controls compared with climatic drivers and geographical drivers for TN, TP, and NH3-
N concentrations. On the basis of all 17 sustainable development goals (SDGs) relevant to water quality in China, the water
resources, water environment, aquatic ecology and water security should be considered collectively to achieve improvements in
the ecological status of China’s rivers.
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INTRODUCTION
Rivers are important channels for matter migration and transport
between land and lakes or oceans, providing abundant fresh
water resources for potable water, irrigation, aquaculture, naviga-
tion, and power generation1,2. However, river ecosystems are
experiencing widespread deterioration and are globally threa-
tened by anthropogenic activities and climate change3,4. A global
study revealed that nearly 80% (4.8 billion) of the world’s
population (for 2000) lives in areas with a high incidence of
threat (>75%) to human water security5. Even worse, one-third of
the world’s population lacks access to safe potable water6. In the
face of current challenges, it is urgent to diagnose the threats to
river water quality over a broad range of time and space scales,
remedy their underlying causes, and limit the threats from the
source to protect river freshwater resources5.
China’s rivers have suffered profound water quality impairments

due to the undeniable pressure of economic development on the
environment since China’s Reform and Opening-up in 19787.
Water pollution in China has been confirmed to be a major cause
of 40 billion cubic meters of water shortage in China per year8. The
elevated input of anthropogenic nutrients is a critical cause of
reduced water quality in Chinese rivers. According to estimates
from multi-scale models, the total dissolved nitrogen (TDN) and
total dissolved phosphorus (TDP) input to rivers in China in 2012
were 28 Tg and 3 Tg, respectively9. Furthermore, excess nutrients
from rivers were transported to lakes and the ocean, resulting in
frequent episodes of blooms and red tide, endangering human
and aquatic health and ecosystem services10. Fortunately, inland
water quality across China displayed marked improvement or was
maintained at favorable levels nationwide from 2003 to 2017,
which is attributed to reductions in nutrient discharge11,12. In
2022, a national investigation of 3641 sampling sites in rivers,
lakes, and reservoirs across China showed that 12.1% of sampling

sites had water quality lower than Class III according to the China
Surface Water Environmental Quality Standard (GB3838-2002),
while 0.7% of sites had a more severe condition at worse than
Class V13. Over the past four decades since the Reform and
Opening-up, under the background of balancing economic
development and environmental protection, it is essential to
identify the water quality patterns and underlying mechanisms in
China’s rivers to provide references and information for river water
quality protection in developing countries7.
Several studies have been devoted to the patterns of water

quality in China’s rivers and their associated drivers, such as
quantifying inputs of N and P to Chinese rivers from different
sources at multiple scales9, the cycle of nutrients in river systems
including sources, transformation, and flux14,15, and the spatial
water quality patterns and critical covariates of river impair-
ment12,16–18. However, there are still gaps in understanding the
spatiotemporal variation and underlying mechanism of water
quality of China’s rivers over the past four decades. First, the lack
of long-term regular frequency nationwide monitoring data is the
major bottleneck in the study of impacts on river water quality,
because the traceable and available monitoring data only extends
from 200312,19. Second, the identification of the driving mechan-
isms of river water quality variation are subject to the temporal
and spatial scale resolution of factorial models and explanatory
variables (including natural geographic characteristics, socio-
economic indicators, land use data, and meteorological fac-
tors)12,17. Finally, it is challenging to bridge the barriers to scientific
research and management applications, and apply the under-
standing of historical river water quality variation and driving
mechanisms to future water quality management and the
achievement of the sustainable development goals (SDGs)7,10.
The study assembled a 16-year (2003–2018) monthly data from

613 riverine water-quality monitoring sites as well as watershed
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characteristics (e.g., longitude, latitude, land-use patterns, net
anthropogenic N/P inputs, and soil properties) and climate
conditions at a national scale to build a set of stacking machine-
learning models. The stacking machine-learning models inte-
grated the different base models’ results, which could reduce
variance and improve the stability of the final model20. Three base
models were selected for their high popularity and performance
based on previous studies, including random forest (RF), support
vector machine (SVM), and k-nearest neighbors (KNN)19,20. The
stacking model was used to simulate and predict the annual and
monthly variations in river water quality during the period of 1980
to 2018 (Fig. 1). We then use two future scenarios (SSP2-RCP4.5
and SSP5-RCP8.5) to predict the decadal trends in water quality
between 2020–2050. Multiple linear regression (MLR) models and
correlation analyses were employed to quantify the relative
contributions of anthropogenic, climatic and geographical factors
to changes in riverine TN, NH3-N, and TP as well as the CODMn. On
the basis of the relations of SDGs to water quality, sustainable
water quality management policies were proposed to achieve a
better aquatic environment for China’s rivers, as well as other
developing countries.

RESULTS AND DISCUSSION
Spatiotemporal trends in TN, TP, NH3-N, and CODMn
concentrations
Comparison between measured and predicted values in the 10
large river basins showed that our machine-learning models were
generally able to recreate TN, TP, NH3-N, and CODMn concentra-
tions at a significance level of p < 0.01 and with a low predictive
bias estimated using the R2, root mean square error (RMSE), Nash-
Sutcliffe efficiency (NSE), and the mean absolute error (MAE)
(Supplementary Fig. 1, Supplementary Table 1). The accuracy
statistics of 10-fold cross validation on both test and validation
datasets also indicated the goodness of fit and predictive power of
the stacking model for TN, TP, NH3-N, and CODMn concentrations
(Supplementary Tables 2–5). Although this data-driven machine
learning stacking model had limited interpretability and deduct-
ibility, it showed promise with its robustness and stability in the
induction capability of the educated ensemble machine
learning19,20.
The concentration trends of TN, TP, NH3-N and CODMn were

different throughout the country from 1980 to 2018 (Fig. 2a–d).

Fig. 1 Framework used for simulating nutrient concentrations in Chinese rivers. Details of the model stacking process including data
processing, stacking model, ten-fold cross validation, and model application. Monitor data of TN, TP, NH3-N, and CODMn concentration from
2003 to 2018 are used to stimulate the monthly data of 1980 to 2018, and the interdecadal data 2020–2050 under two future scenarios (SSP2-
RCP4.5 and SSP5-RCP8.5).
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The proportion of sampling sites with simulated TN concentra-
tions lower than 1.5 mg L−1 in 1980, 1990, 2000, 2010, 2015, and
2018 was 19.83%, 20.25%, 19.60%, 18.65%, 17.41%, and 18.12%,
respectively. These trends suggest that TN pollution increased

during the observational period. At present, although there is a
threshold of river TN concentrations in the China Surface Water
Environmental Quality Standard (that is, 1 mg L−1 for Class III), it
has not been included in the assessment system by water

Fig. 2 Nutrient concentrations in Chinese rivers between 1980 and 2018. Panels a–d display the cumulative proportions of the stimulated
annual average concentration of TN, TP, NH3-N, and CODMn in China’s rivers. e–h Average nutrient concentrations in 613 rivers of China from
1980 to 2018 (mg L−1). The blue circle size represents the average nutrient concentrations for the 10 major basins during 1980 to 2018.
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environment management21. NH3-N concentrations increased
from 1980 to 2010, and then decreased from 2010 to 2018.
CODMn increased from 1980 to 2000, and then decreased from
2000 to 2018 (Fig. 2). This result is generally consistent with the
findings of a previous study, which found that NH3-N and COD
concentrations overall decreased from 2003 to 2017 based on
monthly monitoring data obtained from inland water bodies
(including rivers and lakes) in China12. TP concentrations increased
from 1980 to 2015, and then decreased from 2015 to 2018 (Fig. 2).
In 2000, the Chinese government proposed the Total Amount of
Pollutants Control Plan, taking COD as one of the control indexes
of 12 major pollutants, and remarkable results have been
achieved7,22. The Law of the People’s Republic of China on the
Prevention and Control of Water Pollution enacted in 2008 has
strictly tightened the regulation of water environmental protec-
tion23. Then, the construction of an ecological civilization was
elevated to a national strategy in 2012, and a series of discharge
reduction targets for TP, COD, and NH3-N were set during the 13th
5-Year Comprehensive Work Plan from 2016 to 202024. However,
nutrient concentrations are not expected to decrease under the
influence of future human activities and climate change
(Supplementary Fig. 2). Thus, the smooth implementation of
these policies and action plans is still needed to gradually
decouple economic growth from its environmental impacts7,10.
Due to differences in geographical conditions among the

watersheds, changes in nutrient concentrations differed between
basins during the period 1980–2018 (Supplementary Figs. 3–6).
Except for the Huaihe River (n= 48, p < 0.05, r=−0.21), average
TN concentrations increased, especially within the Southeast River
(n= 41, p < 0.05, r= 0.86) and the Pear River (n= 66, p < 0.01,
r= 0.97), where the temporal trends were statistically significant
(Supplementary Fig. 3). Average TP concentrations decreased in
most basins of China, especially within the Songhua River (n= 45,
p < 0.05, r=−0.75) and the Yellow River (n= 67, p < 0.01,
r=−0.76) (Supplementary Fig. 4). However, NH3-N concentrations
and CODMn displayed several phased changes in some basins.
NH3-N and CODMn concentrations increased during the early part
of the observational period, whereas NH3-N and CODMn concen-
trations decreased in most regions of China in recent years
(Supplementary Figs. 5, 6).
Our results show that TN concentrations exhibited significant

spatial variations with poorer water quality in eastern China
between 1980–2018 (p < 0.01; Fig. 2e). TP, NH3-N and CODMn

concentrations did not vary significantly between basins (Fig.
2f–h). The proportions of sampling sites with TN concentration
greater than 1.5 mg L−1 was 62.3%, which suggests that TN
represents a relatively serious pollution problem in most regions
of China under the current water quality standards. The
proportion of sampling sites with simulated observations where
TP concentration was greater than 0.2 mg L−1, NH3-N concentra-
tion was greater than 1.0 mg L−1 and the proportion of CODMn

concentration was greater than 6.0 mg L−1 was 13.3%, 16.3%, and
13.7%. Compared with the historical distribution of nutrients, the
proportion with higher concentrations increased between the
period of 2020–2050 (Supplementary Fig. 7). Under the SSP2-
RCP4.5 scenario, the proportions of simulated observations where
TN concentration is greater than 1.5 mg L−1, TP concentration is
greater than 0.2 mg L−1, NH3-N concentration is greater than
1.0 mg L−1 and the proportion of CODMn concentration is greater
than 6.0 mg L−1 are 75.8%, 18.2%, 40.2%, and 17.6%, respectively.
Under SSP5-RCP8.5 scenario, the proportion of total simulated
observations where TN, TP, NH3-N and CODMn concentration were
greater than 1.5 mg L−1, 0.2 mg L−1, 1.0 mg L−1, and 6.0 mg L−1

are 75.2%, 19.6%, 43.2%, and 17.5%, respectively. The results make
it clear that human activities and climate change will significantly
influence riverine nutrient concentrations, especially within the
Yellow, Huaihe and Haihe rivers (p < 0.01).

Attribution of riverine water quality variability
The covariates related to nutrient concentration were divided into
three categories including anthropogenic, climatic and geographi-
cal factors. The contribution ratios of these anthropogenic, climatic
and geographical factors for nutrient concentrations are quantified
by inputting data from each of the 10 river basins into the MLR
model separately (Fig. 3a–d). Among the covariates considered, the
anthropogenic predictors had a larger contribution (24.93–71.29%
for TN, 22.43–77.10% for TP, and 52.37–91.06% for NH3-N)
compared with climatic drivers (21.51–58.83% for TN,
17.73–73.86% for TP, and 5.16–37.79% for NH3-N) and geographical
drivers (4.25–16.23% for TN, 3.70–25.61% for TP, and 6.90–18.21%
for NH3-N) when inputting data into the MLR model using the data
for each of the 10 river basins (Fig. 3a–d). However, the pattern of
contribution ratios for the anthropogenic, climatic, and geographi-
cal factors for CODMn differed between river basins. In general, the
geographical drivers had a larger contribution (41.60%) than the
climatic drivers (25.55%) and anthropogenic predictors (32.83%) in
the Northwest Inland River. The climatic drivers had a larger
contribution to the CODMn concentration compared with geogra-
phical drivers and anthropogenic predictors in the Songhua River,
Yellow River, Huaihe River, Southwest River and Southeast River.
This finding may be due to the fact that river nitrogen and
phosphorus are mainly derived from anthropogenic sources and
are therefore highly correlated with human activities25–27. A
previous study found that point sources accounted for 75% of
the TDP input and agricultural non-point sources accounted for
72% of TDN input in Chinese rivers in 20129. However, the possible
sources of COD may be more related to natural sources, including
endogenous sources from the degradation of algae and aquatic
plants and the release of sediments, and exogenous sources from
atmospheric sedimentation and the import of terrestrial vegetation
and soil organic matter28,29. Climate change-induced rising
temperature, hydrological intensification, and extreme weather
affect the timing and magnitude of dissolved organic matter
delivery from terrestrial ecosystems to surface water2,29.
Moreover, the regression coefficients between TN, TP, and NH3-

N concentrations and anthropogenic drivers were higher than
those for the natural drivers and geographical drivers (Fig. 3e–h).
Among the selected geographical drivers, elevation, slope, soil
total nitrogen (STN), soil total phosphorus (STP), and soil organic
matter (SOM) displayed a discernible contribution to nutrient
variability in most river basins. Precipitation factors (Pre and
PRCPTOT) were strong predictors for the concentrations of TN, TP,
and CODMn across the 10 studied basins, with the exception of
NH3-N. In contrast, air temperature (Atmr10) was a weak predictor
of nutrient concentrations across the 10 studied basins (Supple-
mentary Table 6).
Regarding the selected anthropogenic drivers, our analysis

shows that the percentage of farmland, forestland, grassland,
urban area, population and anthropogenic N and P inputs were
critical covariates for nutrient riverine levels (Fig. 3e–h). The extent
of urban area and farmland within any given watershed showed a
consistently positive relationship with nutrient concentrations. By
contrast, forestland and grassland displayed a negative relation-
ship with nutrient concentrations. Population had a distinct
signature on nutrients levels in the Songhua (NH3-N, TN, TP and
CODMn), Huaihe (NH3-N and CODMn), Southwest (TP), and North-
west Inland (NH3-N and TP) rivers. A relevant, previously
conducted study used nighttime light intensity to characterize
population and concluded that the nighttime light intensity had a
distinct signature (contribution > 35%) on the two nutrient levels
(TP and NH3-N) in the Yellow and Pearl River Basins17, which is
different from our study. Anthropogenic N and P inputs had
higher contributions to the variability of both nutrients in the
Songhua, Haihe, Huaihe, Yangtze, Southwest, and Northwest
Inland rivers, where a somewhat higher contribution was
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Fig. 3 Evaluation of the percentage contribution and effect of anthropogenic, climatic and geographical factors to nutrient variability in
ten major basins between 1980 and 2018. a–d Percentage contributions of anthropogenic, climatic, and geographical factors used multiple
linear regression. e–h Regression coefficients for every predictor.
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registered with the regression coefficient of >1 (Fig. 3e–h). The
results suggested that with socio-economic growth, the rivers in
western and inland regions of China (except eastern regions) have
registered severe water quality impairments, which should be
given more attention in the future.

Analysis of natural and anthropogenic drivers
Our attempt to characterize the signature of anthropogenic
activities required an assessment of the role of natural factors,
such as meteorological conditions and geographical character-
istics, in shaping riverine water quality. When considering all 613
sub-watersheds across China, our analysis was able to discern a
weak negative relationship between elevation and/or slope and
nutrient concentrations (Fig. 3e–h), suggesting that sites at higher
elevations and/or that possessed steeper slopes exhibited lower
nutrient levels. In general, anthropogenic activities increase with
the decrease of altitude, and plains and lowland areas are
susceptible to intensive agricultural cultivation, livestock and
poultry farming, urban development, and population aggrega-
tion30. The slope of the watershed determines the speed of water
flow and the severity of soil erosion. Compared with lowland
rivers, mountainous rivers with higher slopes are expected to
experience faster flow rates and more severe erosion, resulting in
shorter retention times for water and a weaker river self-
purification capacity2. Our results confirmed the negative correla-
tion between the altitude and nutrient concentration of China’s
rivers, and found that the theoretical positive effect of slope on
nutrient concentration was offset by other human activities, such
as impoundment to regulate hydraulic and nutrient retention17,31.
The timing and magnitude of exogenous nutrient inputs and

the factors promoting internal nutrient migration and transforma-
tion in rivers may be affected by long-term meteorological
forcing32. Increasing air temperature will influence the riverine
thermal regimes, as well as the physical and chemical properties
of water (i.e., water pH, salinity, solubility, viscosity, and diffusion
rates), further affecting biochemical processes such as nitrification,
denitrification, sediment mineralization and re-release14,33,34. The
role of precipitation or extreme precipitation is also a dominant
factor affecting hydrological regimes, including hydraulic char-
acteristics, water level, flow rate, inundation pattern, and water
cycles3,35. Moreover, changes in the amount, frequency, and
intensity of precipitation will mobilize nutrients on land through
surface and subsurface processes for gathering non-point pollu-
tion, and release higher concentrations of sediment through
erosion and resuspension36,37. A previous study suggested that
precipitation dominated the interannual variability of riverine N
loading across the continental United States during the period of
1987–20073. Our results show that the relationship between
nutrient concentrations in rivers and mean and extreme
meteorological factors varies according to geographical region
and water quality indicators (Fig. 3), possibly due to the covariance
between meteorological factors and other natural and human
activity variables14,33.
Compared to the relatively minor effects of climate and

geographical factors considered, the population, NANI/NAPI, and
the percentage of specific land-use types were found to be the
stronger predictors of riverine nutrients levels (except for CODMn)
and explained most of the nutrient variation collectively (Fig. 3). It
has been confirmed that continuous urbanization and intensive
agricultural development have had a profound impact on nutrient
inputs from land to rivers25,26. It is noteworthy that the average
explanatory rates of the predicted variables used after screening
for the variations in CODMn, NH3-N, TN, and TP concentrations in
the 10 river basins were 52.92%, 35.74%, 72.15%, and 31.97%,
respectively (Supplementary Table 7). Pollution control measures,
as indicated by the proportion of land with drainage systems and
the capacity of sewage treatment plants, and the construction of

water conservancy facilities should be taken into account in
further studies due to their impacts on river nutrient input and
migration, although it is difficult to collect these data with high
resolution and accuracy in China since 198017.

Management implications for future environmental efforts
Our analysis suggested that anthropogenic activities and natural
factors have a significant impact on riverine nutrients levels. In
addition, changes in water environmental management policies
have played an important role in water quality improvement. As the
discharge control standard gradually received attention, the water
environmental management policy was transferred to target the
discharge of COD since 2000. Therefore, CODMn concentrations
have decreased since then, especially in the Yellow River and the
Huaihe River (Supplementary Fig. 8). The Action Plan for Prevention
and Control of Water Pollution in China was formulated in 2015 to
strengthen the prevention, and control of water pollution, and all
water functional areas are required to meet the water quality
requirements. During the period of 2007–2017, the N and P loads
exported from agriculture have significantly decreased from
1.598 × 109 to 7.195 × 108 kg and 1.087 × 108 to 7.62 × 107 kg,
respectively38. TP and NH3-N concentrations have also decreased
with the change in water policy in recent years (Fig. 4,
Supplementary Fig. 9). However, TN was not included in China’s
surface water quality control targets over the past years, and thus
TN concentrations have not significantly decreased (Supplementary
Figs. 3 and 10), which will result in potential detriment to aquatic
ecosystems. Therefore, some mitigation measures should be taken
to manage N to restore water quality in China21.
Although the recent decreases in TP, NH3-N, and CODMn

concentrations in most rivers indicates that China’s nutrient
control measures have been effective, it has to be noted that
reaching a good ecological status will required significant time
(Supplementary Fig. 2). Currently, problems exist within China’s
water environmental management system, such as unified water
environmental quality standards for all regions, separation of
water quantity management and water quality management, and
coordination between different management organizations. The
findings from this study indicate that China now needs more
flexible regional water strategies to cope with the different
regional trends and sources of nutrient loadings to freshwaters.
The ongoing revision of China’s Water Pollution Prevention and
Control Law should propose significant changes to the current
water governance structure and reflect its flexibility between
regions to further reduce pollutant loadings and nutrient
concentrations in rivers.
A sustainable pathway is essential for achieving a reduction in

riverine TN, TP, and NH3-N concentrations as well as CODMn in the
near future. All 17 SDGs have targets that are relevant to water
quality in rivers in China10. Two SDGs, namely SDG 6 “Clean Water
and sanitation” and SDG14 “Life under Water”, are particularly
relevant to water quality. For example, reducing nutrient pollution
in shallow groundwater and surface water resources could help to
achieve universal and equitable access to safe and affordable
drinking water by 2030 (SDG 6.1)8. Achieving a substantial
increase water-use efficiency across all sectors and ensuring
sustainable withdrawals and a sustainable supply of freshwater to
address water scarcity by 2023 (SDG 6.4) could reduce nutrient
pollution in water systems via improving water-use efficiency in
agriculture and upgrading the domestic wastewater pipe net-
works to reduce nutrient leaching and runoff to waters. Reducing
the river export of nutrients could help to achieve the target of the
prevention and significant reduction of marine pollution of all
kinds (in particular pollution due to land-based activities), and
including marine debris and nutrient pollution by 2025 (SDG
14.1)10. On the basis of sustainable development goals, the water
resources, water environment, aquatic ecology and water risk
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should be considered together to achieve good ecological status
in China’s rivers. In formulating future policies, special attention
needs to be paid to pollution discharge, sewage systems and
climate change regarding their economic, societal, institutional
and technical feasibility in ensuring the effectiveness of the
policies in pollution control.

METHODS
Machine-learning models for simulating concentrations of
water quality parameters
The collected variable data were screened using a Maximum
Information Coefficient (MIC). Actually, the process was based on
three steps: (1) MIC > 0.25; (2) deletion of the prediction variables
with collinearity (Spearman correlation analysis, R > 0.8); (3)
retainment of the prediction index that has a high correlation
with a response index (Spearman correlation analysis, R > 0.4). The
general processes inherent in the models are depicted in Fig. 1.
We utilized the model stacking method, which provided a
composite prediction based on the results of multiple base
models (that is, RF, SVM, and KNN)20. The model stacking
algorithm uses a two-layered learning framework where the
outputs generated by individual base models are input into
another model to generate final predictions39,40. The learning
process of the stacking model is categorized into three steps:
stacking generation, stacking pruning, and stacking integration.
The phase of stacking generation mainly refers to the generation
of base models, whereas the last two steps optimally combine the
base model predictions to form a final set of predictions using a
second-level algorithm.

Different methods can be used to combine the base models,
among which linear combination is the most widely used41–43. A
linear stacking model has a prediction function expressed as:

y ¼ ω1f 1 þ ω2f 2 þ � � � þ ωMfM (1)

where y represents the stacking target; f1, f2, ⋯, fM denote the
base model predictions from M individual algorithms (M= 3 in
this study); and wm (m= 1,⋯, M) is the weight assigned for each
base model. The key problem with this approach lies in how to
obtain the optimal set of weights (Fig. 1). A quadratic
programming-based algorithm was adopted to estimate the set
of weights using the R software package. We then assumed that
the dataset which we intend to estimate the weights for N
observations. First, a base model m is trained using the dataset
with the ith observation removed. f̂

�i

m ðxiÞ represents the prediction
of the model m for the ith observation. The estimation of the
weights is obtained from the least square linear regression of yi
(observed value of the ith observation) on the linear combination
of f̂

�i

m ðxiÞ, m= 1,⋯, M. The optimal set of stacking weights are
estimated by minimizing the following objective function under
two constraints:

ω̂st ¼ argmin
XN

i¼1

yi �
XM

m¼1

ωmf̂
�i

m ðxiÞ
" #2

(2)

ωm � 0;m ¼ 1; 2; 3; � � �M

XM

m¼1

ωm ¼ 1;m ¼ 1; 2; 3; � � � ;M

Fig. 4 Temporal trends in TP concentrations with a change in water environmental management policies in several typical watersheds
between 1980 and 2018. I represents the standard discharge control used between 1980 and 2005; II represents the target total amount
control approach used between 2005 and 2015; and III represents the water environmental quality improvement between 2015 and 2018.
a Songhua River; b Yellow River; c Huaihe River; and d Yangtze River.

H. Zhang et al.

7

Published in partnership with King Fahd University of Petroleum & Minerals npj Clean Water (2023)    45 



where ω̂st is the objective function, and xi refers to the ith

observation composed of all environmental variables. The two
above constraints are reasonable if we interpret the weights as
posterior model probabilities. It is worth noting that the ith

observation is removed from the training data when training
model m to avoid assigning unfairly high weights to models with
higher complexity44. More detailed information on the approach
can be seen in the Supporting Information.
The predicting performance of the training and testing datasets

provided complementary information for model validation.
Training primarily exhibited model robustness, i.e., stability and
balance of model predictability in the presence of data shuffling.
Testing measures the model’s performance on the unseen data
and addresses the model fitness. In this context, we used the
Pearson correlation coefficient (R2) as the statistical metric to
quantify the predictive performance of the models (Supplemen-
tary Tables 1–5). To supplement the Pearson correlation coeffi-
cient and provide an in-depth assessment of model accuracy, we
calculated the RMSE, NSE, and MAE. NSE estimates the corre-
spondence between observed and predicted values45.

Factors controlling TN, TP, NH3-N, and CODMn variability
In this study, an MLR model was employed to assess the factors
controlling nutrient levels in the water bodies. MLR models
provide insights into the relationships between the response
variables and multiple explanatory variables. The influence of each
explanatory variable on the response variable is determined based
on the ratio of the standardization coefficients of different
explanatory variables to the sum of the absolute values of the
total standardization coefficients46. The considered response and
explanatory variables are shown in Supplementary Table 6. This
approach has been widely applied to simulate water quality and
to identify the key driving factors3,32. The MLR model applied in
this study used a connection function to establish the relationship
between the response variables (nutrient concentrations) and
explanatory variables (environmental factors). Considering a
response variable Y and p explanatory variables X1,…,Xp, and n
observations for MLR, that is:

yi ¼ β0 þ β1xi1 þ ¼ þ βp�1xi;p�1 þ βpxip þ εi (3)

where εi � Nð0; δ2Þ for i= 1, …, n. After testing the collinearity of
the predictive variables, this study used the annual mean data of
the 613 sub-watersheds from 1980 to 2018 to input the data of 10
major river basins into the model separately. The ordinary least
square method obtains the best function by minimizing the sum
of squares of errors to estimate the standardization coefficient.
The significance of standardized coefficients and fitting equations
were tested using t tests and F tests, respectively46. The
standardized coefficient (r) between response variables and
explanatory variables was used to compare the influence of each
variable on nutrient variability. Influence, in this case, is presented
as a contribution percentage of each variable as follows:

Ci ¼ ri
r1j j þ r2j j � � � þ rp�1

�� ��þ rp
�� �� ´ 100% (4)

where Ci represents the contribution percentage of variable i,
i= 1, 2, 3, ···, p, and ri represents the standardized coefficient
between response variables and the explanatory variable i.

Data sources
In this study, four selected water quality parameters, including
CODMn, TN, NH3-N, and TP were selected to describe water quality
in China. Monthly data were collected between 2003–2018 from
613 river water quality monitoring sites in the nation’s 10 major
river basins from the China National Environmental Monitoring
Center (http://www.mee.gov.cn/hjzl/shj/dbszdczb//). The CODMn,
TN, NH3-N, and TP concentrations were analyzed in a laboratory

using the standard testing procedures recommended by the
Ministry of Environmental Protection of China47, which did not
change over the reported time period. The 10 river basins
included the Songhua, Liaohe, Haihe, Yellow, Huaihe, Yangtze,
Southeast, Pearl, Southwest, and Northwest Inland rivers. Spatial
data were also collected from the basins, including the
geographical conditions, physicochemical soil properties, climatic
conditions, land use, anthropogenic discharges, and socioeco-
nomic development (Supplementary Table 6). The elevations and
slopes of each water monitoring station were determined on the
basis of a digital elevation model (resolution of 1 × 1 km) from the
Resource and Environment Science and Data Center (http://
www.resdc.cn/Default.aspx). The local meteorological conditions
(e.g., temperature, precipitation, wind speed, and extreme climate
index) over the spatial domain covered by the national network
were obtained from the CN05.1 dataset, which was obtained from
the China Meteorological Administration and constructed by the
“anomaly approach”. Data interpolation between sites was based
on many station observations (–2400) in China48,49. The dataset
has a spatial resolution of 0.25° × 0.25°. The soil properties of each
sub-basin were extracted from a digital soil properties map
obtained from the Institute of Soil Science, Chinese Academy of
Sciences (http://www.issas.cas.cn/). The scale of the utilized digital
soil properties map is 1:1,000,000. The land-use dataset from
China (with a resolution of 30 × 30m) was obtained from the
Institute of Geographic Sciences and Natural Resources Research
(IGSNRR, Chinese Academy of Sciences) (http://www.resdc.cn/
Default.aspx). The net anthropogenic N and phosphorus (P) inputs
(NANI and NAPI) were estimated based on the reported discharge
activity data and discharge coefficient50,51. The discharge activity
data were obtained from the Chinese Statistical Yearbook (https://
data.cnki.net/Yearbook/Navi?type=type&code=A). Gross domes-
tic product (GDP) and population density (POP) represent two
important social economic indicators that may affect pollution
sources and the input of pollutants to water bodies52. The spatial
distribution of social economic data (resolution of 1 × 1 km) was
obtained from the Resource and Environment Science and Data
Center in the Institute of Geographic Sciences and Natural
Resources Research, Chinese Academy of Sciences (https://
www.resdc.cn/).

DATA AVAILABILITY
The historical GDP and POP data were obtained from the China Statistical Yearbooks
(1980–2018) (http://www.stats.gov.cn/english/Statisticaldata/). Annual land use data
for the COAC at a resolution of 30 × 30m was obtained from National Earth System
Science Data Center for a period of 39-years (1980–2018), which integrate AVHRR,
MODIS and Landsat data using the BFAST algorithm. Water quality data were
obtained from the China National Environmental Monitoring Center (https://
szzdjc.cnemc.cn:8070/GJZ/Business/Publish/Main.html). All data are also immediately
available from the corresponding author upon reasonable request. The sites of
National Earth System Science Data Center of China and the China National
Environmental Monitoring Center can be translated into English by the Google
Translate plugin in Chrome or the Google Translate site for website translation
(https://translate.google.com/?sl=zh-CN&tl=en&op=websites).
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