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Modelling seasonal household variation in harvested rainwater
availability: a case study in Siaya County, Kenya
Weiyu Yu1,2, Peggy Wanza3, Emmah Kwoba3, Thumbi Mwangi3,4, Joseph Okotto-Okotto5, Diogo Trajano Gomes da Silva6 and
Jim A. Wright 2✉

Rainwater harvesting reliability, the proportion of days annually when rainwater demand is fully met, is challenging to estimate
from cross-sectional household surveys that underpin international monitoring. This study investigated the use of a modelling
approach that integrates household surveys with gridded precipitation data to evaluate rainwater harvesting reliability, using two
local-scale household surveys in rural Siaya County, Kenya as an illustrative case study. We interviewed 234 households,
administering a standard questionnaire that also identified the source of household stored drinking water. Logistic mixed effects
models estimated stored rainwater availability from household and climatological variables, with random effects accounting for
unobserved heterogeneity. Household rainwater availability was significantly associated with seasonality, storage capacity, and
access to alternative improved water sources. Most households (95.1%) that consumed rainwater faced insufficient supply of
rainwater available for potable needs throughout the year, with intermittencies during the short rains for most households with
alternative improved sources. Although not significant, stored rainwater lasts longer for households whose only improved water
source was rainwater (301.8 ± 40.2 days) compared to those having multiple improved sources (144.4 ± 63.7 days). Such modelling
analysis could enable rainwater harvesting reliability estimation, and thereby national/international monitoring and targeted
follow-up fieldwork to support rainwater harvesting.
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INTRODUCTION
Target 6.1 of the Sustainable Development Goals (SDGs) seeks to
‘achieve universal and equitable access to safe and affordable
drinking water for all’1. Within this target, ‘access’ implies
‘sufficient water to meet domestic needs is reliably available close
to home’2. The corresponding indicator proposed by the Joint
Monitoring Programme for Water Supply, Sanitation and Hygiene
(JMP) of the World Health Organization (WHO) and the United
Nations Children’s Fund (UNICEF) builds on a previously estab-
lished measure for monitoring the Millennium Development Goals
(MDGs), namely, use of an improved drinking water source. The
new indicator includes availability (‘available when needed’) as
one of several criteria identifying ‘safely managed drinking water’,
alongside accessibility (‘located on premises’) and quality (‘com-
pliant with faecal and priority chemical standards’)2. Availability of
drinking water was not only incorporated into the indicator for
SDG monitoring as a normative human rights criterion3, it also
significantly affects public health and wellbeing4 and supports
economic, social and cultural development in many countries,
including Kenya5.
Rainwater harvesting (RWH) is where rainfall runoff is collected

on premises from surfaces, typically a roof catchment, and stored
in a container or reservoir for drinking or other purposes. Being
natural and decentralised, RWH offers good perceived quality, low
environmental impact, health benefits, energy saving and
convenience at household level6,7, and thus may improve rural
drinking water availability in rural areas of developing countries

where groundwater and surface water resources are limited or
contaminated8–10. The WHO/UNICEF JMP has classified RWH as an
‘improved water source’ given its potential to deliver safe water11.
Following the growing awareness of water conservation and
sustainable developments alongside progressive stress on water
resources, the dependence on RWH as a drinking water source is
increasing globally12. However, given the seasonal and often
unpredictable variations in precipitation, most household RWH
systems are unable to provide a continuous supply of sufficient
quantity through dry periods. For example, a previous study5 in
eastern Kenya found that harvestable rainwater during the wet
seasons could last for ~82 days, insufficient to cover dry season
household water demand. Therefore, RWH often serves as an
alternative or supplementary drinking water source13.
For RWH systems, availability is typically expressed as reliability,

defined as the proportion of days per year that the system meets
user needs. As a significant factor inhibiting rainwater use, the
reliability of RWH systems can be calculated via a water balance
modelling approach, in which a volume of collectable water is first
calculated from the roof catchment area, daily rainfall, and a runoff
coefficient14. When combined with storage tank capacity and
household daily water demand estimates, collectable water
volume can be used to estimate the proportion of days when
demand is met and so measure reliability. Alongside assessment
of household willingness to pay for upgraded RWH infrastructure,
such calculations are often used to optimise storage capacity and
roof catchment areas, so as to increase the reliability14.
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Understanding RWH reliability at the national level supports
monitoring of SDG target 6.1 and spatial targeting of data
collection to assess potential RWH system upgrades. However,
limited survey implementation resources often restrict the content
of multi-purpose, nationally representative household surveys
frequently used for monitoring of SDG target 6.1 resources15.
Since surveys such as the Demographic and Health Surveys (DHS)
and Multiple Indicator Cluster Surveys (MICS) are multi-purpose
and used to monitor multiple SDGs, their thematic content in any
one sector such as Water, Sanitation and Hygiene (WASH) is
restricted. The JMP have developed a core and expanded set of
household survey questions for WASH16, but questions specific to
RWH systems, such as storage tank capacity, roof catchment
material and roof catchment area measurements, are thus
necessarily not included. Our main objective in this study is
therefore to explore whether the addition of two new expanded
household survey questions, identifying the source and availability
of a household’s stored drinking water on the day of the interview,
would enable estimation of RWH reliability through a modelling
framework. To evaluate this, we draw on household survey data
from two local-scale projects in Asembo area, Siaya County,
western Kenya (Fig. 1), namely the OneHealthWater (OHW) project
and the Population-Based Animal Syndromic Surveillance (PBASS)
project, which included these questions alongside other questions
commonly found in national household surveys. We integrate
these survey data with gridded precipitation data that would be
scalable to national level. As a secondary objective, we also assess
potential differences in rainwater availability between households
with and without access to alternative improved water sources.

RESULTS
Household characteristics
A total of 234 households were interviewed, of which four
households that did not participate in the second round of the
OHW survey (where household water storage reservoir used
exclusively for storing rainwater was identified), five households
that did not report rainwater as a drinking water source, and one
household that did not report any water storage were then
excluded. The final sample for model fitting (hereinafter referred
to as the ‘training data’) therefore consists of 448 observations
from 224 households, whilst the sample used for model
performance evaluation (hereinafter referred to as the ‘test data’)
consists of 100 observations from 100 households. The majority
(66.07%) of the study households interviewed rely on small vessels
with storage capacities of less than 150 litres. Detailed summaries
of household characteristics potentially affecting household
stored rainwater availability at the time of the interview are
shown in Table 1. There were no significant differences in
household characteristics between households with and without
alternative improved water sources (see Fig. 2).

Local climatological seasonality
Figure 3 shows the climatological anomalous rainfall accumulation
curve produced for nine 4 km × 4 km TAMSAT grid cells covering
the Asembo study area, Siaya County, Kenya. The rainfall patterns
are bimodal for all nine grid cells, but with local variations in
climatological seasonality apparent. For example, for Grid 9, the
long rainy season begins around late February or early

Fig. 1 Map of the Asembo study area in Siaya County, western Kenya. The inset map shows the location of Siaya County (in green) in Kenya.
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March (day 60) and ends around early June (day 156), whilst the
short rainy season runs from early to late November (day 306–day
334). In contrast, for Grid 8, the long rainy season begins around
mid-March (day 73) and ends around early June (day 156), whilst

the short rainy season runs from late October (day 298) to late
November (day 334). After the long climatological rainy season,
households living within Grid 9 will likely experience a much
longer period (approx. two weeks) of climatological dry season
than those living within Grid 8 before reaching the short
climatological rainy season. Additionally, the climatological short
rainy season of Grid 9 is also slightly shorter (8 days) than that of
Grid 8.

Model results
In this study, rainfall totals for 14 days preceding the survey gave the
most parsimonious model fit (AIC= 359.3) among the 30 tested
preceding periods. The mixed model displayed good performance
(test AUC= 0.858), which suggests that it explained the majority of
variance in the data. As summarised in Table 2, time-varying variables
depicting precipitation and seasonality and time-invariant variables
depicting household rainwater storage capacity and access to
alternative improved water sources were significantly associated
with availability of stored rainwater. Figure 4 illustrates predicted
rainwater reliability (total number of days annually per household
with stored rainwater available), broken down by four household
characteristics employed in our model. The vast majority (213 out of
224; 95.1%) of the study households do not have rainwater available
at home throughout a year. Figure 5 shows the predicted distribution
of household rainwater availability, which highlights the periods
within the year when households run out of rainwater at home.
Among households without alternative improved drinking water
sources, predicted rainwater availability varies considerably by
household context (301.8 ± 40.2 days), with the best-served house-
holds having rainwater available throughout the whole year, whilst
the worst have rainwater available for approximately 203 days per
year. For households with access to alternative improved water

Fig. 2 Boxplots showing household characteristics by access to alternative improved water sources. Separate graphs are presented for
different household characteristics: a total number of household members. b household socio-economic status characterised by an SES index.
c household capacity index. d household rainwater storage capacity in Log10-scale. The bottom and top of the box are the 25th and 75th
percentiles respectively, whilst the thick line that divides the box represents the median value; the superimposed coloured dots show
individual households.

Table 1. Characteristics of study households (n= 224).

Household characteristics Data summary

Household total capacity index

1 Very small (<150 litres) 148 (66.07)

2 Small (150–500 litres) 64 (28.57)

3 Moderate (500–1800 litres) 5 (2.23)

4 Large (1800–5000 litres) 4 (1.79)

5 Very large (5000–10,000 litres) 2 (0.89)

6 Extremely large (>10,000 litres) 1 (0.45)

Household size (number of persons) 6.28 (± 2.06)

Household SES quintile

1st quintile – poorest 29 (12.95)

2nd quintile 56 (25.00)

3rd quintile 36 (16.07)

4th quintile 54 (24.11)

5th quintile – least poor 49 (21.88)

Alternative improved water source

Available 123 (54.91)

Not available 101 (45.09)

All continuous data are reported as mean (± standard deviation); whilst all
ordinal data are reported as total number (%) by each class.
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sources, in general, relatively shorter periods of rainwater availability
can be observed in comparison with the households without
alternative improved sources (144.4 ± 63.7 days; see Fig. 6). Among
the 123 households with alternative improved water sources, 88
(71.5%) are predicted to run out of stored rainwater for more than
half a year. The lowest predicted number of days annually that a
household with alternative improved sources has stored rainwater
available is 64 days. In general, our model predicts periodic seasonal
shortages of household rainwater availability (Figs. 5, 6), broadly in
line with climatological seasonality, with most households using RWH
as their main source having stored rainwater available during both
the long and short rainy seasons (Fig. 6a). In contrast, for many
households with alternative improved drinking water sources,
intermittent rainwater availability can be observed in the short rainy
season (Fig. 6b). Detailed distribution maps of predicted number of
households (in total, and broken down by access to alternative
improved water sources) with 95% prediction intervals are shown in
Supplementary Information 1.

DISCUSSION
By integrating household survey and gridded precipitation data,
this study demonstrated how two extended survey questions can
be used to model RWH reliability with good predictive perfor-
mance. These two questions could potentially be added to a
national household survey such as a DHS in a country where RWH
is practiced widely, to enable RWH reliability modelling at the
national level. The analysis provides evidence-based insights into

RWH reliability not only for monitoring of progress towards SDG
target 6.1, but also for supporting RWH system upgrades. Our
local-scale modelling analysis suggests that most households in
Siaya County, western Kenya that consume rainwater face an
insufficient supply of rainwater available for potable use through-
out the year. Our finding is broadly in line with a previous study in
Embu County, eastern Kenya5 where harvestable rainwater
showed a bimodal pattern, sufficient only for ~82 days in total
during the long (from March to May) and short (from October to
December) rains. Whilst RWH is classified as an improved water
source by WHO and UNICEF, our modelling indicates that the
proportion of population using ‘safely managed’ drinking water
sources could often be substantially overestimated for this group,
given that RWH remains the only improved drinking water source
for many of these households.
To incorporate availability (‘available when needed’) into SDG

monitoring of drinking water, the JMP have developed a core and
expanded set of questions for household surveys16. The core
question W5 (i.e. ‘In the last month, has there been any time when
your household did not have sufficient quantities of drinking
water when needed?’) has been included in the recent DHS and
MICS household surveys specifically for measuring drinking water
availability17,18. Whilst this question is only asked of households
using piped water, borehole, or public tap/standpipe as their main
water source in the DHS17, it is asked of households using all
drinking water source types in MICS household surveys, so as to
calculate the MICS indicator WS.3 (i.e. percentage of household
members with drinking water available when needed)19. It uses

Fig. 3 Climatological anomalous rainfall accumulation curves for nine 4 km × 4 km TAMSAT grids covering the study area. ‘S1’ and ‘E1’
respectively represent the start and end of the long rainy season for each TAMSAT grid, whilst S2 and E2 are the start and end of the short
rainy season respectively for each grid. The long dry periods are between ‘E1’ and ‘S2’; whilst the short dry periods are between ‘E2’ and ‘S1’.

Table 2. Results of the logistic mixed effects model of household rainwater availability using rainfall totals for 9 days preceding the survey.

Covariate Estimate 95% confidence interval P value

Cumulative rainfall for 14 days prior to the survey date 0.064 (0.045, 0.083) <0.001***

Days since the last wet season −0.004 (−0.021, 0.013) 0.637

Dry season 1.942 (0.692, 3.193) 0.002**

Total number of household members −0.059 (−0.205, 0.088) 0.431

Household SES index 0.032 (−0.186, 0.250) 0.774

Household total capacity index 0.477 (0.037, 0.918) 0.034*

Access to alternative improved water source(s) −1.003 (−1.650, −0.356) 0.002**

*p < 0.05; **p < 0.01; ***p < 0.001.
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the occurrence of water insufficiency ‘in the last month’ preceding
the interview as an indicator of availability of sufficient drinking
water when needed. However, since our study found a bimodal
pattern in distribution of household rainwater availability (Fig. 6a),
the occurrence of water insufficiency ‘in the last month’ may not
reflect annual reliability of RWH. For example, households relying
on RWH may likely run out of rainwater only during dry seasons,
but interviews conducted in the late rainy seasons would not
capture this shortage, thus potentially over-estimating RWH
coverage, and in turn, over-estimating ‘safely managed’ drinking
water coverage in settings where harvested rainwater is free from
faecal and priority chemical contaminants. When large-scale
household surveys often compress fieldwork into a relatively
short period of time due to reasons such as resource availability or
project schedule, attention must be made in survey planning and
implementation to ensure any seasonality effects are evaluated20.
Given incorporation of the two additional questions in a house-
hold survey, the modelling analysis as demonstrated in this study
could provide an alternative means of estimating RWH reliability,

thereby avoiding these pitfalls in estimating RWH availability. Such
an analysis could also help in planning the seasonal timing of
household survey implementation and interpreting past house-
hold survey findings in light of likely seasonal RWH household
behaviours.
The outputs of this study reveal apparent differences in

rainwater availability between households with and without
alternative improved water sources. In general, stored rainwater
tends to last longer for households who use RWH as their only
improved water source (as shown in Fig. 4d), despite a lack of
significant differences in other characteristics between these two
groups (Fig. 2). Many such households would need to revert to
using surface waters such as Lake Victoria, streams, and ponds, a
dilemma faced by many other users of intermittent improved
sources globally according to systematic review evidence21. In
other countries such as the Solomon Islands22, rationing
behaviours have been reported among RWH users when faced
with scarcity. It, therefore, seems plausible that this finding reflects
rationing of harvested rainwater by households lacking access to

Fig. 4 Boxplots showing total number of days annually that study households have stored rainwater available, broken down by
household characteristics. Separate graphs are presented for different household characteristics: a total number of household members.
b household socio-economic status characterised by an SES index. c household capacity index. d household access to an alternative improved
water source. e household location defined by TAMSAT grid ID. The bottom and top of the box are the 25th and 75th percentiles respectively,
whilst the thick line that divides the box represents the median value; the superimposed coloured dots show individual households.
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an alternative improved source. In contrast, households with
multiple improved source options may temporarily substitute
rainwater for drinking water from other improved sources when
available, since rainwater is free-of-charge and often considered
safe and palatable by Siaya residents23. Such potential behavioural
and consumption patterns may explain the apparent intermitten-
cies in RWH availability for households with alternative improved
sources during the short rains in Fig. 6b. Households with multiple
improved water sources may store rainwater from April to late
June, and then practice source-switching frequently during the
latter short rains from July to October (Fig. 6b). Such source-
switching behaviour allows these households to avoid over-
reliance and depletion of a single valuable source24. In related
fieldwork in Siaya County25, we found some households had
designed storage tanks with both piped and rainwater intakes,
thereby adapting to water scarcity but potentially increasing
exposure to water-borne pathogens26. In contrast, households
without alternative improved water sources rely mostly on stored
rainwater during much of the short dry season and short rains
from April to October. Outside of these periods, such households
may be forced to use unimproved sources and thus be exposed to
faecally contaminated drinking water. This suggests that having
data concerning secondary or seasonal water sources would be
important, were our approach to rainwater harvesting reliability
estimation to be scaled up nationally or internationally.
RWH is a means of improving drinking water availability in a

wide range of climatic and socio-economic environments,
particularly in rural areas of developing countries where ground-
water and surface water sources are often contaminated, limited
or otherwise have low potential8–10. Despite RWH often being
considered a supplementary or secondary source, it sometimes
can also be reported as a primary drinking water source21. In this
case study, our findings reflect that most Siaya residents without
access to alternative improved sources may use RWH as their

primary drinking water source, given that RWH could potentially
meet their needs for approximately 84.2% of days of a year in
average. In contrast, RWH is likely used as a supplementary or
secondary source to bolster resilience in households with multiple
options of improved water sources, since RWH could only cover
their needs for 44.0% of days of a year in average. Previous studies
revealed high demand and preference for rainwater not only in
Kenya27, but also in other parts of the world28–30. Particularly
where GPS coordinates are collected as part of a household
survey, there is potential to spatially target RWH resources.
Examples of such support could include local willingness-to-pay
assessments for RWH improvements, localised RWH water quality
testing, technical support for RWH upgrades, and even targeted
marketing of newer innovations, such as a cell phone app recently
developed to assess the appropriateness of RWH configuration31.
Our modelling analysis also highlights the value of collecting

GPS coordinates in household surveys. Previous studies have
illustrated the utility of georeferenced household survey data in
generating spatially explicit estimates of WASH indicators32,33. This
study, on the other hand, shows the importance of including GPS
coordinates, so as to enable spatial integration of household
survey with other data products for further analysis. However, for
large-scale nationally representative household surveys, GPS
coordinates are often released with random displacement to
protect respondent confidentiality. For example, DHS cluster
coordinates are randomly displaced by up to 2 km for urban
locations and up to 5~10 km for rural areas34. This may undermine
their utility in local-scale analysis and may introduce uncertainty
when integrating with high-resolution gridded data products such
as TAMSAT.
This study is subject to several limitations as follows: firstly,

whilst nationally representative household surveys such as DHS
and MICS are often conducted in a wider variety of contexts, our
study was longitudinal, not cross-sectional, and thus was merely

Fig. 5 Heat map of predicted availability of rainwater stored at home. Each column represents a day (of a year), and each row represents
one of the 224 study households. Predicted probability of having stored rainwater was scaled from red (NOT AVAILABLE: smaller than the
optimal cutoff value of 0.767 (in white), selected by maximising the sum of sensitivity and specificity) to blue (AVAILABLE: greater than 0.767)
colours.
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representative of the study villages in Asembo area, Siaya County,
western Kenya, potentially limiting its generalisability. Secondly,
this study drew upon two local-scale multi-purpose household
surveys and incorporated a limited number of questions related to
household rainwater harvesting or water demand into a simplified
RWH model. However, a typical RWH reliability assessment
includes measurement of roof catchment area and RWH storage
capacity, alongside household water demand estimation35. Since
roof catchment area would be difficult and expensive to measure
through a national household survey campaign, we did not
include it in our study, so this RWH parameter is omitted from our
model. Thirdly, rather than having specific RWH systems, many
households in Siaya County harvested small quantities of
rainwater with vessels of any kind available (e.g., 20-litre jerry-
cans, pails, pots, basins, etc.), which presented difficulties when
estimating rainwater storage capacity. Our household survey
therefore may underestimate actual household rainwater storage
capacity, which in turn affects our analysis and outputs. Fourthly,
assessing household water demand is notoriously difficult when
planning RWH in rural areas of developing countries, given
multiple source use and the lack of reliable, affordable metering
systems22. Here, we used household size and socio-economic
status as proxy indicators of household water demand, but
depending on national context and household survey content,
other variables such as household livelihoods or adult member
educational status could be explored instead36. Additionally, due
to lack of published evidence for model parameterisation, we used
AIC statistics for successive logistic regression models fitted using
total rainfall of periods between one and 30 days preceding the
survey to identify the optimal period duration for modelling. The
optimal period for TAMSAT, pooling all households in this case

study, was 14 days, but this varied depending on precipitation
data used and for sub-groups of households. This estimated
period may reflect storage times for harvesting rainwater and
household storage capacity, but should be interpreted with
caution given the estimated period’s sensitivity to input data and
model selection metrics. Finally, instead of using station data, this
case study adopted a gridded precipitation data product to
illustrate a form of climate data that would be scalable to national
level. However, such gridded data often has a coarse spatial
resolution for a small-scale study area and may not reflect the
actual local variation in rainfall.
The growing availability of daily gridded climate data plus

expanded WASH content in georeferenced household surveys
could provide an opportunity for quantification of RWH reliability
through a simplified national-scale model. However, this would
require the addition of a new pair of survey questions concerning
the availability and source of water stored in the home at the time
of the interview. We, therefore, recommend that household
surveys in countries where RWH is widespread and where
household preference for RWH technology is high could
incorporate such a question pair. This would enable estimation
of RWH reliability and thereby provide evidence for spatially
targeted RWH support and richer monitoring insights. In scaling
up this approach, we also recommend avoiding study countries in
regions that have sparse or unreliable rainfall gauges and/or
where intra-seasonal variability is poorly captured by high-
resolution gridded rainfall data products. An alternative future
study design could collect more detailed household survey data
on roof catchment area, household water demand, and rainwater
storage capacity, alongside recording the availability of stored
rainwater in the home. Enumerator time spent collecting these

Fig. 6 Heat map of predicted availability of rainwater stored at home, broken down by household access to alternative improved water
sources. In the upper heat maps, each column represents a day (of a year), and each row represents a study household. Predicted probability
was scaled from red (NOT AVAILABLE: smaller than the optimal cutoff value of 0.767 (in white), selected by maximising the sum of sensitivity
and specificity) to blue (AVAILABLE: greater than 0.767). The lower inset bars (with a grey background) show the percentage of all households
without (a; n= 101) and with (b; n= 123) alternative improved water sources that had harvested rainwater available at home on a given day
of a year, scaled from red (less than the 50 percent threshold as shown in white) to blue (greater than 50 percent).
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data could also be recorded. This would enable the systematic
assessment of the trade-off between survey implementation costs
and successive improvements in the predictive performance of
RWH reliability estimates through greater model complexity and
the inclusion of more household variables.

METHODS
Study site
The study area of Asembo, Siaya County is in rural western Kenya
on the shores of Lake Victoria (Fig. 1). Rainfall in Siaya County is
bimodal with a long rainy season between March and June, and a
short rainy season between September and December. Influenced
by altitude, annual rainfall is ~800–2000mm37. Resident commu-
nities suffer high poverty levels38 and a high burden of infectious
diseases39 concurrently. In Siaya County, rainwater is widely
considered the safest and most preferred drinking water source
by the local communities according to their religious percep-
tions23. Approximately 32% of Asembo households consumed
rainwater40.

Study design and data acquisition
This study collected data primarily from a household survey
module in the OneHealthWater (OHW) project, designed to
examine livestock-related microbial contamination of household
stored water41. The OHW household survey captured several
household characteristics that may affect rainwater harvesting and
storage. In total, 234 households were selected at random from
1500 households participating in an ongoing Population-Based
Animal Syndromic Surveillance (PBASS)40 after seeking their
informed consent. Participants were interviewed twice during
2018–2020 in both wet and dry seasons to collect information on
domestic water and household conditions and behaviours
presenting contamination hazards through close-ended ques-
tions. 234 households were interviewed from 12th March to 24th
May 2018, and 230 of these households were interviewed from
20th November 2018 to 18th february 2019, excluding four
households who were unavailable. Data collection was performed
using a smartphone-based app, CommCare® (https://
www.dimagi.com/commcare/). To measure the availability and
source of a household’s stored drinking water at the time of
interview, we asked households “do you have any stored water
now?” We then asked those households answering yes “Where did
the water stored in this container come from?” (see Supplemen-
tary Information 2).
The OHW household survey data was then integrated with the

PBASS data stream, which also contains household-level data on
socio-economic status, human health and animal health40,42. We
restricted household characteristics included in modelling to
those plausibly related to water demand or rainwater storage
practices and commonly found in national household surveys
such as the DHS. We included household size alongside wealth
quintiles derived from a socio-economic status (SES) index43 for
PBASS households, since both may affect household water
demand36 and since wealth quintiles are routinely calculated for
national household surveys such as the DHS44. In addition, wealth
may also potentially affect a household’s capacity for storing water
and ability to construct and maintain an appropriate harvesting
system28.
To illustrate a means of integrating household survey and

climate data that would be scalable to national level, we derived
daily rainfall data from the Tropical Applications of Meteorology
using SATellite data and ground-based observations (TAMSAT)
version 3.1 dataset45, which provides a high-resolution (0.0375
degree, ~4 km) satellite-based precipitation estimates from 1983
to the delayed present for Africa at daily to seasonal time intervals.
We chose this precipitation dataset for its gridded spatial

representation that would be scalable to national-level household
survey analyses, for its higher spatial resolution, and comparatively
higher accuracy in depicting sub-seasonal rainfall in eastern
Africa46. Firstly, we extracted TAMSAT daily rainfall from 1st
January 1983 to 31st December 2020 (i.e., the last year of our
fieldwork) at each household location in order to explore the long-
term locational variation in climatological seasonality. In pre-
ference to other methods, such as those that define the dry
season as the period when potential evapotranspiration exceeds
precipitation47, the climatological anomalous rainfall accumulation
method developed by Liebmann et al.48,49 was employed to
identify the onset and cessation of rainy season, given its
suitability for regions experiencing long and short rains50. For
each household location, survey dates were then classified as wet
(rainy) or dry (low rainfall) season accordingly. Anomalous rainfall
accumulation is the sum of the daily precipitation minus the long-
term annually-averaged daily precipitation. For each location, an
anomalous rainfall accumulation curve can be created by plotting
the anomalous accumulation against the day of a year, where an
upward slope can be used to define the local climatological wet
season, whilst a downward slope can be used to determine the
local dry season. The total number of days since the end of the last
rainy season was then calculated for each household survey visit,
setting this to zero if the household was visited during a rainy
season. In addition, for each household location, cumulative total
rainfall was calculated for all periods between one and 30 days
prior to the household survey date.
Many households used small containers to harvest rainwater,

such as 20-litre jerry-cans, even though they lacked more
sophisticated rainwater storage systems. Household capacity was
therefore converted to an ordinal variable with six levels using
k-means clustering (referred to as a household capacity index) in
order to avoid numerical difficulties in statistical analysis.
For validation purposes, we further adopted the same two

questions as a part of the subsequent 2019–2020 PBASS routine
data collection for the same 234 households who participated in
the OHW study. This data was then integrated with the OHW and
the TAMSAT data to create the ‘test data’ for model performance
evaluation. Due to the impact of the coronavirus 2019 (COVID-19)
pandemic, the PBASS fieldwork was suspended part-way through
the household survey campaign, meaning that only a subset of
households was interviewed. In total, 104 households were
successfully interviewed between 11 Nov 2019 and 19 March
2020 before the COVID-19 lockdown.

Data analysis
The availability of rainwater stored at household level was
modelled as a function of the identified environmental and
socio-economic factors (see Table 3) as explanatory variables. We
assumed that household storage of rainwater for drinking and
domestic use follows a Bernoulli distribution, which takes a value
of one when the household has stored rainwater at home for
drinking on a specific day and a value of zero otherwise.
Successive logistic regression models were fitted using total
rainfall of periods between one and 30 days preceding the survey
alongside other explanatory variables, with the best model chosen
based on the Akaike Information Criterion (AIC)51. We utilised
logistic mixed effects models with random effects selected based
on principal component analysis (PCA) to account for unobserved
heterogeneity among 4 km × 4 km TAMSAT grids and among
households within TAMSAT grids. The pre-processed household
survey data integrated with TAMSAT (i.e. the ‘training data’) was
used to fit the models, whilst the ‘test data’ was used to evaluate
the model performance. The Area Under the Receiver Operator
Curve (AUC)52 calculated from the ‘test data’, with a range of 0.5 to
1, was used to evaluate model performance. The model is
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considered a perfect predictor for the outcome when the AUC
value is 1.0, or has no predictive value when the AUC value is 0.5.
To better understand the pattern of seasonal changes in

household rainwater source availability, for each participating
household, we simulated daily availability of household stored
rainwater based on long-term averages (1st January 1983–31st
December 2020) of daily precipitation. The optimal cutoff value for
predicted probability of having stored rainwater was selected by
maximising the sum of sensitivity and specificity53. All data
analyses were carried out in R 3.5.254.

Ethics and inclusion statement
P.W., T.M., J.O.O., and E.K. are all researchers based in Kenya, where
fieldwork took place. As we make clear in our author contributions
statement, this team of authors were integrally involved through-
out the research process. J.O.O. works for VIRED International, a
research and implementation NGO in Western Kenya and was an
integral part of the research team. He led community engagement
and feedback meetings following the project. Capacity-building
plans for local researchers were discussed, with sharing of project-
relevant expertise between the UK and Kenya. J.W. provided
additional geospatial co-supervisory for TM’s PhD student M.N.
working on a related topic. This research would not have been
restricted or prohibited in Kenya. The research was approved by
the Scientific and Ethical Review Committee of the Kenya Medical
Research Institute. There are no specific animal welfare, environ-
mental protection, or biorisk regulations that affect the conduct of
this study and no significant risk to participants, as per the ethical
review and approval process. We put in place health and safety
measures for the whole research team, such as having health and
safety reporting as a standing agenda item at project meetings.
Citations of locally and regionally relevant research are included in
our manuscript, e.g., 37,38,40,42,43.
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