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Influence of point-of-use dispensers on lead level assessment in
drinking water of a lead pipe-free campus
Saroj Adhikari 1,2, Yi-Pin Lin 3 and Ding-Quan Ng 1✉

Point-of-use (POU) dispensers, referring to those directly connected to the water supply lines, are widely used in public facilities
such as schools and universities in Taiwan. These dispensers are equipped with filters that can remove contaminants, including
heavy metals in drinking water. Assessment of water lead (Pb) levels rely heavily on sampling surveys that involve various sampling
protocols. This study evaluated the effects of using first draw (FD), flush (FL) incorporating at least 20 s of flushing, and random
daytime (RDT) sampling protocols on Pb level assessment in water samples collected from faucets and POU dispensers of a Pb pipe-
free campus between March 2017 and July 2020. This was the first study to examine the influence of POU dispensers on different
sampling protocols and their survey results. Pb levels in 19% of faucet and 11% of dispenser samples exceeded the Taiwan EPA
standard of 10 μg/L. FL sampling produced the lowest Pb levels, followed by RDT and FD in the samples collected from faucets.
Interestingly, all three sampling protocols exhibited similar Pb levels in samples collected from dispensers. Thus, any of the three
sampling protocols can be employed to monitor Pb levels in water samples collected from dispensers.
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INTRODUCTION
Lead primarily occurs in drinking water through its leaching from
plumbing systems1–4. The extent of Pb release depends on the
types of plumbing materials used, properties of water flowing
through those materials, and the use of Pb-containing solders or
fittings5–7. Irrespective of the sources, drinking water contami-
nated with Pb can retard intellectual development in the fetus and
young children, increase the risks of miscarriage in pregnant
women, and high blood pressure, kidney failure, and reproductive
problems in adults8–11. Pb is also one of ten chemicals on the
World Health Organization’s (WHO) list of chemicals of major
public health concern12, and its effects are sometimes significant
even at concentrations below the WHO guideline value of 10 μg/
L13–15.
The standards for Pb in drinking water in most Asian cities

follow the WHO guideline value. Singapore16, Hong Kong17,
Japan18, India19, and Taiwan20 are among a few examples. In the
United States, the Lead and Copper Rule Revisions (LCRR) have
introduced a 10 μg/L Pb trigger level, in addition to the 15 μg/L
action level21. The trigger level alerts water utilities in prioritizing
Pb control efforts before an action level exceedance. Furthermore,
if the 90th percentile of the first draw (FD) samples exceeds the
action level, additional remedial measures must be taken, ranging
from planning to monitoring to treatment21. Similarly, the
maximum contaminant level goal (MCLG) of zero under the US
Safe Water Drinking Act22 indicates that any amount of Pb can be
harmful to human health. However, a wide variation exists among
regulated sampling protocols and acceptable Pb levels in different
regions of the world23. The main protocols are FD in United
States21, random daytime (RDT) and 30-minute stagnation (30 MS)
in Canada and Hong Kong17,24, RDT and fixed stagnation in the UK
and the EU25,26, and flush (FL) sampling in Australia27. Additionally,
sequential sampling/profile sampling28,29, service line sampling
(second draw), and 3 T’s (training, testing, and taking action)

sampling for schools7,30 are also being used in the US, aiming
specifically at Pb source assessment. Furthermore, composite
proportional sampling31 and particle simulation sampling are also
practiced while assessing exposure levels. The maximum accep-
table concentration of Pb in RDT and 30 MS samples in Canada is
5 μg/L24. In the United Kingdom, where Pb pipes are a major
source of Pb in drinking water, 99% of the RDT samples must
comply with the 10 μg/L Pb standard32. The regulations for Pb in
drinking water in the above-mentioned countries have been
associated with their sampling method. Hence, a standalone WHO
guideline value may not be sufficient for effective Pb control in
drinking water as Pb levels can be highly dependent on the
sampling method employed.
The selection of sampling method/s is critical in the assessment

of Pb levels in drinking water, as each method has its benefits and
drawbacks and can yield vastly different outcomes. For instance,
FD sampling could detect Pb contamination near the faucets and
inside the premises, but not from outside sources because of the
limited volume33. Similarly, sequential sampling could assist in
identifying and locating Pb sources inside and outside the
premise. Nevertheless, a large number of samples to be collected
may pose a practical constraint33–35. Likewise, although RDT
sampling can be conducted easily at large scales, it may not be
capable of locating the Pb sources and requires a large sample
size to be more accurate32. FL sampling is easier to conduct as a
long stagnation after flushing is not required. However, this is
often considered to underestimate the Pb levels in consumer
water31,36,37. Thus, the choice of sampling methods and protocols
can vary among and within the countries, depending on their
objectives, which include exposure identification and source
detection. In Taiwan, either FL or RDT sampling can be used
based on procedures described in the regulation “Drinking water
quality sampling methods” (NIEA W101.56 A) issued by the Taiwan
Environmental Protection Administration38. For FL sampling, a 1 L
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water sample is collected after flushing for at least 20 s, while RDT
sampling requires no flushing. Although FL sampling has been
heavily criticized as an ineffective method in the assessment of Pb
levels because the action of flushing often reduces the true Pb
exposure in consumer tap water31,36,37, such sampling is still
practiced in some countries. The rationale behind allowing FL
sampling was that consumers should be responsible for the water
quality within private premises, not the water utilities. In practice,
however, water utilities are generally involved in water quality
analysis as most consumers do not have the means to analyze
their drinking water. In Taiwan, water analysis is carried out by
environmental analysis laboratories authorized by the local
government to conduct sampling, testing, and analysis39.
Pb levels in drinking water are being monitored more closely

over the last two decades. Several studies have documented Pb
levels surpassing the regulated standards in the water samples
collected from childcare centers and schools/campuses in Los
Angeles, Washington DC, Baltimore, Seattle40, North Carolina7,41,
Central Kansas42, Philadelphia43 in the US, Ontario44 in Canada,
and Taipei36,45 in Taiwan. These instances associated with the use
of either old Pb pipe or plumbing materials containing Pb
additives reinforce the notion that Pb contamination can occur in
drinking water whether lead pipes are in use or not and
underscore the importance of exploring Pb levels in drinking
water at public utilities such as schools. In Taiwan, Pb pipes were
used before their ban in 1979. Hence, buildings constructed
before the ban could still have such pipes in service, and those
constructed after the ban were equally likely to have Pb-
containing plumbing materials such as brass fittings and
solders12,33,46. Additionally, other than pH and alkalinity adjust-
ments, addition of orthophosphate and other corrosion inhibitors
is not practiced in Taiwan because downstream wastewater
treatment plants may not be able to cope with the increased
phosphorus loading. Under such scenarios, the possible exposure
risk to Pb via drinking water consumption can be easily
overlooked and neglected. Since the health consequences of Pb
contamination are known to be more apparent in young children
than adults, a sampling survey investigating the Pb levels in
drinking water at public utilities such as schools and hospitals is
essential.
The local definition of “drinking water” has evolved with

changing habits in water consumption. The water that comes out
directly from the faucet is largely not considered “drinking water”
by local residents, which has led to the widespread implementa-
tion of water dispensers in Taiwan, especially in public facilities
such as schools47,48. Water dispensers can either be directly
connected to the water lines (point-of-use (POU) dispensers) or
bottled water dispensers (Supplementary Figure 1). POU dispen-
sers are becoming popular since these are equipped with (usually
activated carbon) filters that can remove impurities by adsorption
and size separation, and water from such dispensers is generally
deemed safe to drink. However, depending on the types of filters
installed in the POU dispensers, the quality of water dispensed
could vary. Majority of the POU dispensers manufactured in
Taiwan are equipped with activated carbon filters while few have
reverse osmosis (RO) unit due to the increased cost. The
dispensers used in this study were equipped with ultra-filters
(UF-504). The filters were certified by Water Quality Association
(WQA), whereas the tubes delivering water after filtration were
National Sanitation Foundation (NSF) 61 certified. The filters had a
one-year service life and a total treatment capacity of 1500 GAL
(5813 L). Storage tanks in the dispensers were made of stainless
steel, and the downstream materials delivering the filtered water
were made of plastic tubing. Numerous factors can affect the
performance of filters. First, the quality of the supply water can
determine the lifespan of the filter. For example, suspended solids
in supply water after typhoon events will increase many folds, and
such waters will drastically shorten the lifespan of the filters.

Second, the maintenance of the filter is often determined by a
fixed duration recommended by the manufacturer and not by the
quality of the filtered water. The over-reliance in POU dispensers
to provide safe drinking water raises concern as the public may
have let their guard down. This study thus collected filtered water
samples from POU dispensers and unfiltered water from faucets in
a university campus for Pb level assessment. The comparison of Pb
levels between filtered and unfiltered water samples within the
same sampling location can reveal important information on the
effects of filter systems on Pb levels. Studies on various types of
faucet filters have reported that some filters are ineffective in
lowering Pb levels below the regulatory standard49,50. As a result,
future research into the impact of different types of filters used in
POU dispensers on Pb level assessment may yield useful results.
This study employed three sampling protocols, namely FD, FL,

and RDT sampling, to assess Pb levels in drinking water in a
university campus without any lead pipes in use. None of the
buildings in the campus is expected to contain Pb pipes as they
were constructed in the early 1990s, almost a decade after the use
of lead pipes was outlawed in Taiwan. The FD sampling method
was selected as it represents a worst-case scenario, while FL and
RDT were chosen since both are permissible in Taiwan while
collecting drinking water samples. This study also explores the
comparative effect of POU dispensers and faucets on Pb survey
results from the three sampling protocols in order to assess the
relative usefulness of each protocol. Using the same sampling
protocol to collect dispenser and faucet samples from a
designated location may yield different outcomes, which may
consequently result in vastly different conclusions. The findings in
this study will provide valuable information on Pb levels in
drinking water using various sampling protocols, which will be
useful for future exposure assessment studies. This study is also
expected to aid in improving the existing heavy metal monitoring
regulations, including those for Pb in Taiwan. Current regulations
do not mandate heavy metal testing routinely. However,
depending on the inventory, which would reveal the extent of
contamination, assessment of heavy metals might be essential on
a regular basis.

RESULTS AND DISCUSSION
Lead levels in a lead pipe-free campus
Figure 1 (number of dispenser and faucet samples not stacked but
overlapped) shows the distribution of Pb levels in the 558 water
samples collected from POU dispensers (n= 204) and faucets
(n= 354) during the survey. The distribution of total number of

Fig. 1 Pb levels in water samples. Distribution of Pb levels in water
samples collected from POU dispensers (n = 204) and faucets (n =
354). Dotted line refers to the WHO guideline value of 10 μg/L for Pb
in drinking water.
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samples collected using different protocols is shown in Supple-
mentary Table 1. Table 1 shows the water quality parameters of
the sample water. Among the total 558 samples collected,
regardless of sampling protocols used, 89 samples (16%) had Pb
levels greater than the Taiwan EPA standard value (or the WHO
guideline value) of 10 μg/L.
Samples with Pb levels above 10 μg/L are considered “unsafe”

in this study. Since the number of samples collected from
dispensers and faucets varied, a percentage was used to represent
the proportion of unsafe samples. In this regard, 66 out of 354
(19%) samples from faucets and 23 out of 204 (11%) samples from
dispensers were not safe for consumption. Hence, faucet samples
were approximately twice as likely to be contaminated as
dispenser samples. As expected, the use of POU dispensers could
effectively reduce Pb levels, but not always below the regulatory
standard of 10 μg/L. Possible reasons include inadequate removal
efficiency of dispenser filters and Pb-containing components in
the filter system. The extent of Pb reduction (or unlikely addition)
through a dispenser was, however, not determined in this study.
Although POU dispensers have become necessary in delivering
safe drinking water, the occurrence of unsafe samples from such
dispensers showed that water from dispensers does not always
meet the regulatory standard. The results also indicated that Pb
contamination issues could be prevalent even if no aged Pb pipes
were present. For faucet samples, the Pb sources are most likely
Pb-containing plumbing materials such as brass fittings and Pb
solders5,6. Although regulations of Pb in plumbing materials have
evolved with time, legacy plumbing materials may still be present
in the buildings. Harvey et al.5 collected water samples from
kitchen tap fittings in Australia and demonstrated that Pb-
containing fittings could significantly contribute to Pb in drinking
water. Similarly, Ng and Lin6 concluded that brass fittings were the
main source of Pb in drinking water in a simulated copper pipe
premise plumbing.
All buildings except Building VIII (Supplementary Table 1) had at

least one sample from the faucet and dispenser exceeding 10 μg/L
Pb. Building VIII is the only building without any unsafe samples
from the dispensers. Buildings VII had the highest percentage of
samples that were unsafe (24%), followed by buildings VI (23%), IV
(17%), and III (16%) (Supplementary Table 2). Although the
percentage of unsafe samples from faucets was approximately
twice that from dispenser samples (Fig. 1), a higher proportion of
faucet samples compared to dispenser samples collected in a
building did not always correspond with an increase in the
proportion of unsafe samples among the buildings (Supplemen-
tary Table 2). For example, Building III had more samples collected
from faucets (70%) than Building VII (63%). Still, the proportion of
unsafe samples in Building III (16% of samples) was less than in
Building VII (24% of samples).
Figure 2 shows the median total Pb concentration for

dispensers and faucets in the eight buildings surveyed. The
median Pb level ranged from 1.3 to 5.7 µg/L and 2.2 to 5.7 µg/L for
dispenser and faucet samples, respectively. The median Pb level
for dispenser samples was lower than faucet samples in six of the
eight buildings. The difference in medians between dispenser
(filtered) and faucet (unfiltered) samples were significantly
different using t test (p value < 0.05) (Supplementary Table 3).
This suggests that filter systems in POU dispensers contribute to

reducing Pb levels in drinking water. However, the anomaly
observed in the remaining two buildings may be due to higher
water usage, as those buildings are mainly catered for routine
class activities, causing the filters to reach their treatment capacity
prematurely. Figure 2 also shows the sporadic Pb levels in the
dispenser and faucet samples among the buildings surveyed,
implying that Pb-containing materials may be used in common
practice. Similar findings regarding the sporadic Pb release in
plumbing systems with no Pb pipes have been reported51,52. Both
studies attributed Pb release to the use of brass fittings, fixtures,
and water meters.
The distribution of Pb in the samples was further investigated in

Building VII, which had the highest proportion of unsafe samples,
using the modified FD method, which involved collecting
10 × 100mL samples from dispensers and faucets (Fig. 3). Thirty
of the 90 sequential samples collected from the dispenser
exceeded the regulatory standard. Six samples within the first
100mL indicated that Pb was released from the dispenser
component near the outlet. The rest showed a more uniform
distribution (Fig. 3a). In contrast, 43 of the 100 sequential samples
collected from the faucets exceeded the standard, with 27 samples
within the first three 100 mL, including 10 first 100 mL samples
(Fig. 3b). This finding for faucets reveals that the fittings and
components near the faucets were the most likely source of Pb in
the samples. In many circumstances, sequential sampling can help
identify Pb leaching from plumbing materials at various sampling
locations6,28,35 because a Pb source is expected to be present
when at least one sequential sample exceeds the regulatory
standard.

Impact of POU dispenser on different sampling protocols
Maximum Pb levels measured using FD, RDT, and FL sampling
protocols, irrespective of dispenser and faucet samples, were 88.6,
54.1, and 37.8 μg/L, respectively (Supplementary Table 1). This
finding on the trends in Pb level among protocols was consistent
with the previous studies23,31,36,53, which have shown that FL
sampling exhibited the lowest total Pb compared to other
protocols. However, as water is filtered in the dispenser before
being discharged, the extent of impact due to dispensers on the
overall Pb assessment may vary depending on the types of
sampling protocol employed to collect the samples. Hence, to
elucidate the impact of POU dispensers on the survey results of
three sampling protocols, a comparison between dispenser and
faucet samples exceeding the Taiwan EPA standard for Pb among

Table 1. Water quality parameters of samples.

Sampling units Water quality parameters

Temperature (°C) pH Alkalinity (mg/L as CaCO3)

POU dispenser 19.2–36.7 6.7–7.3 40.2–44.6

Faucet 17.3–29.5 6.9–7.7 42.5–48.3
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Fig. 2 Comparison of Pb concentration at different sampling
locations. Median total Pb concentration in water samples collected
from dispensers and faucets in various sampling buildings on a
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third (Q3) quartiles.
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the protocols is shown in Fig. 4. In FD and RDT samples, respective
percentages exceeding the standard were the highest for faucet
samples considered alone (26%, 14%), followed by a combination
of faucets and dispensers (23%, 12%), and the lowest for dispenser
samples considered alone (14%, 9%). These findings indicate that
POU dispensers can differentially affect survey outcomes. In
contrast, exceedance in FL samples was higher in dispensers than
faucets. This result contradicts the findings of previous sampling
surveys23,31,53, which primarily collected samples from faucets.
Furthermore, the cumulative Pb levels in dispenser and faucet

samples collected using three sampling protocols are shown in
Fig. 5, to illustrate the lead levels at each quartile and 90th
percentile, which would reflect the extent and severity of
contamination. In addition, a comprehensive cumulative graph is
provided in Supplementary Figure 2, which shows the maximum
Pb levels measured using each protocol for dispenser and faucet
samples. Such graphs can provide crucial information regarding
the type of remediation measures based on the extent of the
contamination. FL sampling yielded lower Pb levels in faucet
samples (Fig. 5), for each percentile, consistent with results in the
literature31,34,36,37,54. Lower Pb levels in FL samples for faucets
might be due to higher flow rates (compared to dispenser
samples) involved during flushing. Several previous stu-
dies35,36,55,56 have demonstrated that different flow rates during
pre-flushing may produce different Pb levels in drinking water.
Flushing is generally known to reduce the exposure to Pb at the

consumer end and its efficiency is governed by variables including
premise plumbing configuration, water use, duration, and extent
of flushing prior to sampling, which is usually difficult to
control35,56. FL samples for faucets had a 90th percentile value
of 8.8 μg/L, which was much lower than those for FD (21.5 μg/L)
and RDT (12.3 μg/L) samples. The difference between the highest
and lowest 90th percentile Pb levels yielded respectively by FD
and FL sampling was 12.7 μg/L indicating that FL sampling should
not be used for faucets as it tends to produce lower Pb levels than
other sampling methods unless a more stringent guideline for FL
sampling can be proposed and implemented. The guideline may
have to consider the effects of flushing time and flushing flow rate
on the Pb assessment.
Interestingly, unlike in faucet samples, all three sampling

protocols produced similar Pb levels in dispenser samples, as
evident by 90th percentile values of 10.7, 10.4, 8.2 μg/L for FD, FL,
and RDT sampling, respectively. The difference between the
highest and lowest 90th percentile Pb levels yielded by FD and
RDT sampling was only 2.5 μg/L, compared with 12.7 μg/L in
faucet samples. This phenomenon is likely due to storage tanks in
dispensers which provided a buffering effect against changes in
water quality and sampling methods. The buffering effect was
illustrated by the distribution of the unsafe samples collected
using a follow-up sequential FD from the building with the highest
contamination. A more even distribution was observed in samples
collected from dispensers than in faucets (Fig. 3), where
contamination tends to occur near the faucet. There are no
reported studies that considered collecting water samples only
from the POU dispensers, and hence, the effects of dispensers on
sampling surveys have not been documented yet. As water from
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random daytime (RDT) and first draw (FD) sampling protocols.
Dotted line refers to the WHO guideline value of 10 μg/L for Pb in
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the faucet is generally not consumed directly, water samples
collected from dispensers are more representative of drinking
water quality in schools in Taiwan. Although some previous
studies suggest that the choice and guideline for a particular
sampling protocol varies among countries23,32,57, which depend
on factors such as the minimum number and volume of samples
collected, and stagnation period58, the findings of this study
illustrate that any of the three sampling protocols can be
recommended for sampling drinking water. The limitation,
however, is that only dispenser samples should be considered
during sampling.
Unlike several previous studies that have deemed FL sampling

undesirable, this study demonstrated that FL sampling does not
necessarily produce lower Pb levels, especially samples from
dispensers. Hence, FL sampling being recommended in Taiwan
can reflect Pb levels in drinking water only if the water samples are
collected from dispensers. Since the public generally regards
filtered water as their drinking water, sampling only from
dispensers can provide a more accurate Pb assessment for human
exposure risk.

Effects of water usage
Water usage varies among the seasons and during weekdays
which may result in different Pb levels in the water samples. The
seasonal variation in Pb levels in drinking water obtained using
three sampling protocols and differences between weekday and
weekend samples are illustrated in Fig. 6. The proportion of unsafe
samples was higher in summer (June–August) than in winter
(December–February) for FL and FD sampling, whereas RDT
showed otherwise. The maximum Pb level recorded in summer
(49.0 µg/L) was nearly twice as high as the Pb level in winter
(26.0 µg/L) (Data not shown). Source of water, temperature,
configuration of premise plumbing, and water chemistry are
among some factors causing variations in Pb level in drinking
water58,59. The effects of these factors were not individually
addressed in this study. Nevertheless, the findings regarding
higher Pb levels in summer samples were consistent with the
previous studies1,60,61. The higher temperature in summer is
expected to increase the dissolution rate of the Pb-containing
scale and Pb release from plumbing materials34.
Similarly, all three sampling protocols showed higher propor-

tions of unsafe samples during weekdays than weekends. The
extent of difference was the most pronounced in FD sampling
(29% on weekdays compared to 4% on weekend samples). This
finding contradicts previous literature reporting an increasing Pb
contamination during the weekends, possibly due to lower water
usage and longer stagnation of water1,62–64. Prior studies are
based on premises with Pb service lines where the stagnation can

affect Pb scales and their dissolution in the supply water. However,
this study was conducted on a Pb pipe-free campus. The effects of
stagnation on Pb levels in distribution systems with Pb-containing
plumbing materials may be less significant than a system
containing Pb pipes. In addition, site-specific factors such as local
water quality and plumbing configuration can also influence Pb
levels65. However, both factors can be challenging to determine in
a large-scale survey. Thus, conducting pilot studies to elucidate
the impact of each of these factors on Pb level assessment might
be imperative.

Implications for decision-makers
This study uncovers the scenarios of possible Pb contamination in
a lead pipe-free campus using a systematic sampling survey
method. Findings are expected to provide crucial information for
decision-makers (government) in selecting appropriate sampling
protocols. The incidence of Pb levels exceeding the Taiwan EPA
standard for dispenser samples warrants a comprehensive and
large-scale sampling survey for Pb level assessment studies in
drinking water supplies. Sampling guidelines should also include
important factors, such as the number of samples required, the
frequency of sampling, the location of sample collection, and
proposed corrective measures. Information on such factors can
substantially contribute to updating the existing local EPA
guideline38, which provides information on the sampling proto-
cols allowed for collecting drinking water samples. Very low Pb
concentrations below 10 µg/L have also been shown to be
harmful to human health13–15. Thus, the existing standard of
10 µg/L for Pb in drinking water can be recommended to be
gradually reduced to below 10 µg/L (such as 5 µg/L) for drinking
water samples, especially samples collected from dispensers.
The harmful consequences of Pb contamination in drinking

water have been well reported8–11. This study shows that even Pb
pipe-free plumbing could not eliminate exposure risks. Hence,
sampling surveys should be performed on a regular basis as part
of a monitoring program, especially in places such as nurseries,
elementary schools, and hospitals catered for vulnerable groups.

Discussion of the key findings
This study, for the first time, investigated the influence of POU
dispensers on the assessment of Pb levels in the drinking water of
a lead pipe-free campus. Some of the important findings of this
study are:

● Owing to the extensive use of POU dispensers for drinking
water in Taiwan, the study concludes that such dispensers can
effectively reduce the Pb levels in water but do not always
guarantee meeting the regulatory standard and, hence,
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monitoring the filters used in the dispensers and their periodic
maintenance are recommended.

● Pb concentration in water samples varied among three
sampling protocols employed for the faucets, whereas all
the protocols produced similar Pb levels for dispenser
samples. Hence any of the three protocols can be used for
collecting water samples from dispensers.

● The FL sampling method, incorporating at least 20 s of
flushing, does not necessarily demonstrate lower Pb concen-
trations than other sampling methods. In particular, this
protocol can be as effective as other sampling protocols when
collecting water samples from dispensers.

● Considering water consumption habits, sampling only from
dispensers is recommended while assessing Pb levels in
drinking water in public utilities.

METHODS
Sampling strategies
Water samples were collected from Chaoyang University of
Technology (CYUT), located in Taichung, Taiwan. All major buildings
on the campus were selected for sampling to determine the Pb
levels in water samples. The buildings were provided with unique
codes such that their identities were hidden to remain neutral on the
objectives. A systematic sampling survey was conducted within each
building to collect water from the faucets and POU dispensers
between March 2017 and July 2020 using three sampling protocols:
a modified FD, FL, and RDT based on an independent sample design.
In contrast to a paired study design, filtered and unfiltered water
samples were collected separately from POU dispensers and faucets,
respectively to elucidate the effects of POU dispensers on Pb level
assessment. The sampling strategy was designed to include at least
one dispenser and two faucets from each floor of the buildings.
However, the number of samples collected from dispensers and
faucets among the buildings varied due to the randomness in real
situations where sampling surveys are exposed to accessibility and
availability. For instance, dispensers and faucets in offices were not
available for sampling due to restricted access. A modified FD
sampling method was used in which 10 × 100mL sequential
samples were collected instead of 1 × 1 L. For FD samples, a
stagnation period of at least 6 h was maintained. The samples were
collected in the early morning before classes commenced. To ensure
that the faucets and dispensers were not used during the stagnation
period, the faucets were sealed with tape the night before sampling.
The vicinity of the dispensers was ensured to be dry before
sampling. FL samples were collected by flushing the water for at
least 20 seconds in accordance with NIEA W101.56 A before a 1 L
sample was collected. RDT samples were collected at any RDT
(7 am–7 pm). The faucets were fully opened during sampling. Glass
bottles were used to collect 100mL samples, while high-density
polyethylene (HDPE) bottles were used to collect 1 L samples.

Analysis techniques
A mercury thermometer was used to determine the temperature
on-site, and the pH was measured, within 2 h of sample collection,
with a pH meter (Hanna, HI2020-01, Edge). The pH meter was
calibrated with pH 4, 7, and 10 buffer solutions (Fisher Scientific).
Total alkalinity was measured in accordance with Standard
Method 2320-B66. For the acid-preserved 1 L sample collected
using an HDPE bottle, the sample was well-stirred before a 100mL
aliquot was collected for acid digestion in accordance with USEPA
method 3500A67. The 100mL sample was digested with 2% v/v
HNO3 and heated at 85 °C for at least 2 h before measuring the
total Pb concentration. Inductively coupled plasma mass spectro-
metry (ICP-MS) (Thermo Scientific, iCAP Q) was used to measure
total Pb concentrations following Standard Method 3125-B66.

Statistical analysis
The difference between the Pb levels in dispenser and faucet
samples was tested statistically using the t test (test of statistical
significance).

Quality assurance and quality control
Before usage, all sampling bottles were rinsed in a 10% HNO3

solution, washed with ultrapure water, and dried in the oven. To
avoid precipitation and adsorption to the bottle walls, 100 mL and
1 L samples were acidified below pH 2 with 0.3 mL and 3mL 1+ 1
HNO3, respectively67.
Pb concentration in the acidified samples was analyzed at least

24 h after collection. Pb ICP standard solution (Merck Millipore,
Germany) of 1000mg/L was used to calibrate the ICP-MS, diluted
to various concentrations using ultrapure water. The method
detection level (MDL) for Pb was determined to be 0.2 µg/L. An
instrument blank was examined after every ten samples to ensure
no background contamination. The method blank was used to
determine whether sample preparation, which began with acid
digestion, led to any contamination and was found to be below
the MDL. The field blank was prepared by collecting ultrapure
water (Merck, Milli-Q) in the sampling bottles in the field and was
also below the MDL, suggesting that the bottles were not the
source of contamination. Spiked samples (10 µg/L) were used
regularly, and recoveries were between 98% and 105%.
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