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Characterization of the core microbial community governing
acidogenic processes for the production of valuable
bioproducts
Qidong Yin 1✉, Guangxue Wu 1 and Piet N. L. Lens 1

Volatile fatty acids (VFAs) and alcohols generated from acidogenic processes are valuable bioresources. However, how the diversity
of acidogenic microorganisms and environmental factors affect their generation are still poorly understood. In this study, 18
different inocula and 42 sludges from acidogenic lab-scale reactors were collected to analyze the microbial communities and their
metabolic potential using 16S rRNA genes high throughput sequencing coupled with PICRUSt2. 23 out of 30732 distinctive
amplicon sequence variants were identified as the core features and 34.8% of them (e.g., Clostridium spp.) were positively correlated
with the generation of the most common product acetate. PICRUSt2 shows that an average of 27% of predicted fermentation-
pathway genes was assigned to the core features, suggesting their crucial roles in acidogenesis. From the network aspect, the
acidogenic network had a slightly higher number of nodes (12%), but significantly lower numbers of edges (109%) and neighbors
(132%) compared with the inoculum network. A total of 28 independent subnetworks from large to small scales were extracted
from the acidogenic network. The decentralized distribution of core features in these subnetworks emphasized their non-co-
occurring relationships. The electrode potential was the most significant environmental variable (48.2–49.3% of the explanation),
positively affecting the distribution of more than 50% of the core features and fermentation pathways. Results of this study
emphasized the importance of core features rather than microbial diversity in acidogenic performance and highlighted the
response of the core microbial community to environmental changes, which may be applied in practical applications to optimize
acidogenic performance.
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INTRODUCTION
Volatile fatty acids (VFAs) and alcohols, e.g., acetate, propionate,
butyrate, and ethanol, have wide industrial applications but their
current production mainly relies on fossil sources1. Acidogenic
processes, e.g., homoacetogenesis, solventogenesis, fermenta-
tion, and acidification, can be alternative environmentally
friendly approaches for producing VFAs and alcohols. In these
processes, microorganisms catalyze CO2 or other organic wastes
into VFAs and alcohols with complex interactions and metabolic
pathways, simultaneously reducing CO2 emissions and achieving
contaminant removal.
Understanding the distribution pattern of microbial commu-

nities and identification of functional microbes are key to
improving the system performance of acidogenic processes.
Currently, many studies have provided novel insights into the
diversity, distribution, and functions of microbial populations in
environmental biotechnologies through bioinformatic analysis.
For example, Wu et al.2 examined the global diversity and
biogeography of microbial populations in activated sludge
collected from wastewater treatment plants and found that
the bacterial composition was driven by stochastic processes.
Among the high diversity of the microbial communities, 28
operational taxonomic units were identified as a global core
microbial community which could be strongly linked to system
performance2. Microbial community composition and diversity
in anaerobic digestion systems were also investigated and could
be linked to renewable biogas production3,4.

Despite the rapid advancement of biorefinery technologies,
the microbial diversity and ecology of acidogenic systems are
less understood. Some studies focused on the effects of one or
two specific environmental variables on the performance of
acidogenic systems. For example, Zhang et al.5 investigated the
effects of fermentation substrate and zero-valent iron on the
microbial community and metabolic function in a fermentation
system. Park et al.6 investigated the metabolic flux and potential
function of the microbial community in an acidogenic dynamic
membrane bioreactor. Nevertheless, microbial profiles of acido-
genic systems such as microbial diversity and the identification
of the core microbial community are still far from being
comprehensively characterized.
The microbial composition in acidogenic systems may be

affected by many environmental factors such as pH, temperature,
inoculum, and substrate type5,7,8. These environmental factors
provide different microbial niches affecting the microbial com-
munity dynamics and metabolic pathways. For instance, solven-
togenesis usually occurs at a pH lower than 5.59, while propionate-
producing bacteria prefer to grow at a neutral pH7. Besides,
microbial electrosynthesis has been recently proposed as an
efficient approach to control and stabilize fermentation pro-
cesses10. Microbial electrosynthesis has been extensively used to
produce different types of soluble molecules (e.g., alcohols or
carboxylic acids) from the reduction of CO2 or the fermentation of
organic matter, and to overcome some limitations of metabolic
reactions11,12. Such bioelectrochemical systems exert significant
advantages on microbial metabolism, interspecies interactions,
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and the selection of microbial populations10. Nonetheless, the
detailed effects of electrode potential remain largely unrevealed.
Accordingly, comprehensive profiling of microbial communities in
acidogenic systems with different environmental variables may
provide valuable information for predicting microbial ecosystems
responding to environmental changes and benefit the optimiza-
tion of biorefinery technologies.
In this study, 18 different inocula and 42 samples collected from

lab-scale acidification reactors with different environmental vari-
ables were analyzed to explore the microbial community and
diversity of acidogenic systems. The core microbial community and
their metabolic pathways in acidogenic samples were identified.
The acidogenic microbial network and subnetworks were estab-
lished to highlight the distribution and topological structures of
core features from the network aspect. Furthermore, the effects of
key environmental variables, e.g., pH, substrate type, temperature,
inoculum, and bioelectrochemical potential on the core microbial

community and metabolic pathways were analyzed. Statistical
analysis was conducted to investigate the potential correlation
between the acetogenic performance and core microbial commu-
nity or predicted functional pathways. The distribution pattern and
metabolic pathways of core features revealed in this study can help
guide the regulation of core microbial community to optimize
acidogenic practices.

RESULTS AND DISCUSSION
Core microbial community
A total of 3,107,841 sequences were obtained from all 60 samples,
with an average of 51,797 sequences per sample. The core
microbial community was determined by the abundance and
occurrence frequency of ASVs2. As shown in Fig. 1a, 23 out of
30732 ASVs were identified as the core features that accounted for

Fig. 1 Characterizations of core features identified. a Percentage and relative abundance of the core features and b the taxonomic
composition of core features at the genus level and their frequency of abundance (green column), frequency of ubiquity (yellow column), and
correlation with acetogenic performances.
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41% of the sequences in all acidogenic samples investigated. Most
of the core features are acidogenic bacteria and are distinct from
the core microbial community identified in domestic wastewater
treatment plants or anaerobic digestion processes producing
methane2,3, suggesting that the acidogenic system selects a
unique core microbial community.
At the phylum level, nine core features belonged to Firmicutes,

followed by Bacteroidota (6), i.e., 65.2% of the core features
belonged to these two phyla. At the genus level, Clostridium sensu
stricto 12 was identified as the most abundant core feature,
accounting for 13.9% of the sequence abundance. Clostridium is a
well-known acetogen widely existing in acidogenic processes13–15.
Surprisingly, the second most abundant core feature (4.2% of the
sequence abundance) was a typical H2 utilizing methanogen
Methanobacterium. Methanobacterium was ubiquitously detected
in 71.4% and abundant in 59% of all acidogenic samples. One
explanation is that many inoculum samples were collected from
anaerobic digesters producing methane, and although bro-
moethane sulfonate (BES) was added into some of these samples,
it seemed to fail to completely eliminate Methanobacterium9,16.
Besides, it is reported that hydrogenotrophic methanogens have a
higher H2 competitiveness than homoacetogens at a high H2

partial pressure17. Desulfovibrio was also identified as a core
feature, reflecting the importance of incomplete oxidizing sulfate-
reducing bacteria in acidogenic systems that develop out of
inocula from full-scale anaerobic digesters.
The prevailing microorganisms are often suggested to be

responsible for maintaining system performance3. To evaluate the
correlation between the core features and acidogenic system
performance, the highest acetate concentration and the maximum
acetate-production rate were used to characterize acetogenic
performance since acetate was the most common product in all
samples. Three core features were positively correlated with
both the acetate concentration and acetate-production rate
(Fig. 1b), including Clostridium sensu stricto 12 (p ≤ 0.05), Bacter-
oidetes vadinHA17, and one ASV belonged to the phylum
Clostridiaceae (p ≤ 0.05). The other 5 core features were positively
correlated with at least one acetogenic performance while the
remaining core features were negatively correlated with aceto-
genic performance. The core features that were negatively
associated with acetate production might be critical for maintain-
ing other acidogenic functions such as propionate and butyrate
production. For example, butyrate can be produced via bioelec-
trochemical chain elongation from CO2 and acetate, or via acetyl-
CoA reduction with H2 as electron donor18. All these processes
consume acetate or precursors of acetate production. Consistent
with this, the butyrate producers Oscillibacter19 and Caproicipro-
ducens20 were negatively correlated with acetogenic performance.
On the other hand, core features positively correlated with the
acetogenic function might be the winners of substrate competi-
tion since acetate is the end product of homoacetogenesis,
fermentation, and acidification. The correlation result shown in
Supplementary Fig. 1 may support this hypothesis because many
correlations among core features were negative. Particularly,
Clostridium sensu stricto 12 and the ASV belonging to the phylum
Clostridiaceae were negatively correlated with most (73–77%) of
the other core features.

Microbial network
Microbial correlations were also presented by the network analysis
(Fig. 2). As shown in Fig. 2a, a complex microbial network (855
genera involved) was observed with more than 15 thousand
correlations (Pearson correlation coefficient >0.7, p ≤ 0.05) existing
in the acidogenic community. The topological parameters of the
acidogenic network are listed in Supplementary Table 1. The low
network density (0.04) and high heterogeneity (0.9) suggested
that the majority of genera tended to have few connections21.

Besides, the low network centralization (0.1) implied that the
centralities of genera are relatively similar22. Furthermore, the
whole network consisted of many high-density circle-type subnet-
works. There might be multiple relatively independent ecosystems
within the acidogenic system investigated.
To investigate the in-depth structure of the acidogenic network,

subnetworks were further extracted. A total of 28 subnetworks
were formed in the acidogenic network. These subnetworks were
marked from 1 to 28 according to the number of nodes. Figure 2b
shows the structures of the largest 12 subnetworks, many of
which were circle-type subnetworks, consisting of one or two
circle-like structures. Based on the number of nodes, edges, and
the average number of neighbors (Supplementary Fig. 2), the
subnetworks can be divided into three scales. Subnetwork 1 had
the largest scale, including 15.5% of nodes and 38% of edges, with
a high average number of neighbors (81). Subnetworks 2–11 were
medium-scale subnetworks, including more than half of the nodes
and edges. Finally, subnetworks 12–28 were small-scale subnet-
works, with much fewer nodes and edges. Supplementary Table 2
shows the average numbers of topological parameters of the
subnetworks. The scales of subnetworks were positively correlated
with the average clustering coefficient and were negatively
correlated with the network heterogeneity. Another interesting
result is that the subnetworks exhibited different characteristics
from the whole acidogenic network. The acidogenic network was
relatively discrete, while subnetworks were more concentrated.
For example, the network densities of the subnetworks were
much higher than the whole acidogenic network (Supplementary
Table 2), which means that subnetworks were more populated
with edges than the whole acidogenic network.
Supplementary Fig. 3 and Supplementary Table 3 show the

distribution of core features in different subnetworks. Although
subnetwork 1 had the highest number of nodes, only 3 core
features were located in it. 15 core features were distributed in
medium-sized subnetworks and the other 2 core features were
located in small subnetworks. Specifically, the medium-sized
subnetworks 5 and 8 had the largest number of core features (4),
followed by the large subnetwork 1 (3). Subnetwork 5 mainly
contained butyrate (Oscillibacter, the ASV belonged to the phylum
Oscillospiraceae, and Caproiciproducens) and propionate (Paludi-
bacter) oxidizers19,20, while subnetwork 8 included bacteria able
to produce acetate, butyrate, and propionate (Petrimonas,
Bacteroides, the ASV belonging to the family Lachnospiraceae,
and NK4A214 group). On the other hand, core features in
subnetwork 1 include fermenters and syntrophic bacteria that are
able to produce acetate (Mesotoga, the ASV belonging to the
order Syntrophales, and the ASV belonging to the family
Spirochaetaceae). The core features that co-occurred in the same
subnetwork might have similar metabolic preferences, which
however should be confirmed by more solid evidence. In
addition, Clostridium sensu stricto 12 and the ASV belonging to
the phylum Clostridiaceae did not have a strong (Pearson
correlation coefficient >0.7) correlation with the other core
features and were located in two small subnetworks.
Table 1 summarizes the topological properties of the core

features. Core features presented obvious variations in some of
these topological properties, reflecting that they might have
different interactions with other microbes and might play
different roles in the microbial network. This is in line with the
fact that core features were distributed within different subnet-
works rather than clustered together. For example, the ASV
belonging to the family Spirochaetaceae had 103 neighbors,
connecting most of the genera in subnetwork 1, therefore was
likely to be a hub in the subnetwork. In contrast, Clostridium sensu
stricto 12 and Christensenellaceae R-7 group had only 3 and 2
neighbors, respectively. Thus, they did not interact with most of
the other nodes in the network23.
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Previous studies reported that inoculum samples had higher
diversity than acclimated samples, but none of the studies had
clarified this through the aspect of the microbial network. To
assess this, the inoculum network was also established and was

compared with the acidogenic network (Supplementary Fig. 4
and Supplementary Table 1). Generally, the inoculum network
presented a distinct structure. However, the difference between
the acidogenic network and the inoculum network was not in

Fig. 2 Acidogenic network and its subnetworks. a Acidogenic network at the genus level (Pearson coefficient >0.7, p ≤ 0.05) and b Top
12 subnetworks of the acidogenic network. The orange nodes represent core features.
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the number of nodes (i.e., number of genera), but in the
interacting relationships. Specifically, the inoculum network had
109% more edges and the average number of neighbors was
also 132% higher than that of the acidogenic network. Therefore,
genera in the inoculum samples had much more complex
interactions than the acidogenic samples. The higher clustering
coefficient and network density of the inoculum network also
supported this result (Supplementary Table 1). These results
indicate that acidogenic acclimation processes decreased the
microbial interactions. One possible explanation is that com-
pared with the inoculum samples, acidogenic samples have
fewer microbial functions which were interlinked with interac-
tions such as syntrophic oxidation of substrates.

Rare community
In contrast with the dominant species, rare species greatly
contribute to the richness but account for a low percentage of
abundance in the microbial ecosystem4. To understand whether
there was a rare community in the acidogenic systems
investigated, rare features were defined and identified. Surpris-
ingly, only one ASV belonging to the phylum Firmicutes was
found to be the rare feature when the criterion of ubiquitous
features was defined as the occurrence frequency in more than
70% of all samples. Rare features in acidogenic systems are more
likely to exist stochastically, unlike the existing pattern of the
core microbial community.
Decreasing the criterion of the occurrence frequency from 70 to

50% led to the discovery of 5 rare features, including Candidatus
Caldatribacterium, Phaselicystis, Thermovirga, one ASV belonging to
the family Hungateiclostridiaceae, and one belonging to Firmicutes
(Fig. 3). Candidatus Caldatribacterium, Phaselicystis, Thermovirga, and
family Hungateiclostridiaceae are fermenting bacteria, able to
function in VFAs production24–27.

Rare species play different roles in ecosystems. Generally, rare
species serve as a seed bank with huge ecological potential which
can respond to environmental changes and maintain system
stability28. Besides, rare species are responsible for functions such as
the removal of micropollutants29. Although the relative abundance
of rare features was low, the fact that 4 of 5 rare features were able
to function in VFAs production implied a possibility that they might
to some extent contribute to acidogenesis which however needs
further investigation.

Top metabolic pathways
PICRUSt2 was applied to predict metabolic pathways of
acidogenic systems based on 16 S rRNA marker genes. The NSTI
values of acidogenic samples ranged from 0.03 to 0.20 with a
mean value of 0.12. Low NSTI values suggested that these
samples can be tracked for PICRUSt2 prediction30. A total of 410
pathways from the MetaCyc database were predicted in all
acidogenic samples. Figure 4a shows the top 40 pathways,
including 33 biosynthesis pathways, 2 pathways associated with
degradation/utilization/assimilation, and 5 pathways associated
with the generation of precursor metabolites and energy.
Biosynthesis pathways constitute the cells’ spectrum of biosyn-
thetic capacities, including the pathways of synthesis of small
molecules, macromolecules, and cell structure components. Most
(85%) of the top 33 biosynthesis pathways belonged to amino
acid biosynthesis, fatty acid and lipid biosynthesis, and nucleoside
and nucleotide biosynthesis. Similar pathways were reported to
be dominant in fermentation systems5,31. It should be noted that
only 2 fermentation pathways were found in the top 40 pathways,
including one pathway associated with “pyruvate fermentation to
acetate and lactate II” and another one associated with “pyruvate
fermentation to isobutanol”.

Table 1. Topological properties of core features in the microbial network at the genus level.

Core feature Average shortest
path length

Betweenness Closeness Clustering
coefficient

Degree (no. of
neighbor)

Topological
coefficient

f__Spirochaetaceae;g__uncultured 4.36 0.00 0.23 0.87 103.00 0.57

g__Paludibacter 6.04 0.00 0.17 0.74 13.00 0.44

g__Desulfovibrio 6.02 0.00 0.17 0.76 7.00 0.52

f__Oscillospiraceae;g__ 5.95 0.02 0.17 0.29 7.00 0.37

g__Oscillibacter 5.86 0.00 0.17 0.57 17.00 0.39

g__Caproiciproducens 6.09 0.00 0.16 0.81 13.00 0.47

f__Comamonadaceae;g__ 4.68 0.08 0.21 0.58 66.00 0.46

g__Macellibacteroides 6.04 0.01 0.17 0.76 7.00 0.39

g__Proteiniphilum 5.47 0.01 0.18 0.89 24.00 0.28

g__Mesotoga 4.56 0.01 0.22 0.82 65.00 0.49

g__Pseudomonas 5.47 0.08 0.18 0.73 12.00 0.25

g__NK4A214 group 6.28 0.00 0.16 0.65 21.00 0.39

g__Petrimonas 6.26 0.01 0.16 0.74 26.00 0.43

g__Bacteroidetes vadinHA17 5.37 0.01 0.19 0.72 50.00 0.49

g__Christensenellaceae R-7 group 6.16 0.00 0.16 0.83 34.00 0.83

g__Clostridium sensu stricto 12 10.45 0.00 0.10 1.00 3.00 0.52

g__Bacteroides 6.04 0.00 0.17 0.69 24.00 0.41

g__Methanobacterium 5.14 0.01 0.19 0.66 31.00 0.39

o__Syntrophales;f__ 5.08 0.00 0.20 0.67 12.00 0.39

f__Lachnospiraceae;g__ 6.26 0.03 0.16 0.85 15.00 0.38

f__Clostridiaceae;g__ 1.60 0.00 0.63 1.00 2.00 1.00

Average of core features 5.68 0.01 0.20 0.74 26.29 0.47

Average of all genera 5.72 0.01 0.19 0.70 32.79 0.51
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Acid-producing pathways
Apart from the 2 fermentation pathways mentioned above,
another 13 pathways associated with acidogenesis were further
identified in the acidogenic samples (Fig. 4b), which in total
accounted for 3.6% of the total number of all metabolic pathways
identified. The acidogenic samples were clustered into two
groups according to the abundance of these 15 pathways
(Fig. 4b), with one group containing the high abundance of
pathways associated with “pyruvate fermentation to isobutanol
(engineered)”, “pyruvate fermentation to acetate”, “pyruvate
fermentation to acetate and lactate II”, “homolactic fermentation”,
and “acetyl-CoA fermentation to butanoate II”, and another group
only containing high abundance of pathways associated with
“pyruvate fermentation to isobutanol (engineered)”. The acido-
genic samples in these two groups, however, could not be
clearly distinguished by the category of substrates or products.

Pyruvate, which was correlated with 5 of 15 pathways, seemed to
be a key intermediate in the acidogenic process. According to the
MetaCyc database, all CO2, lactate, and components of brewery
spent grain (e.g., glucose) could be converted to pyruvate via
multiple reactions. Therefore, one strategy to promote the
targeted acid or alcohol yield is to increase the pyruvate pool
by knocking out genes that contributed to by-product formation
using pyruvate as the precursor. For example, to increase the
isobutanol production from pyruvate in engineered Escherichia
coli, the genes that regulated the by-product formation from
pyruvate were deleted and levels of pyruvate available for
isobutanol production were increased32.
As shown in Supplementary Fig. 5, four CO2 fixation pathways

were identified in the acidogenic samples investigated. Supple-
mentary Table 4 summarizes the reactants, products, and
subsequent pathways of CO2 fixation. The “Calvin Benson

Fig. 3 Characterizations of rare features. a The taxonomic composition of rare features at the genus level and their frequency of abundance
(green column), frequency of ubiquity (yellow column), and correlation with acetogenic performance and b Pearson correlation among rare
features.
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Bassham cycle” turned out to be the most abundant CO2 fixation
pathway, being responsible for generating 3-phospho-D-glyce-
rate, glycerone phosphate, or D-glyceraldehyde 3-phosphate
which could be used in the biosynthetic metabolism of
autotrophic bacteria. The “reductive tricarboxylic acid (TCA)
cycles I and II” from autotrophic eubacteria and archaea were
also found in acidogenic samples. The “reductive TCA cycles I
and II” are commonly found in autotrophic eubacteria and
archaea. The basic cycle results in the fixation of 2 molecules of
CO2 and the generation of 1 molecule of acetyl-CoA33. Another
molecule of CO2 can be fixed by the carboxylation of acetyl-CoA
to produce pyruvate34. The “reductive acetyl coenzyme A
pathway”, known as the Wood-Ljungdahl pathway, is the most
effective nonphotosynthetic CO2 fixation pathway by aceto-
gens35,36. Two molecules of CO2 can be converted to acetyl-CoA
in the Wood-Ljungdahl pathway. Acetate, ethanol, and butyrate

could be produced from CO2 through the detected Wood-
Ljungdahl pathway coupled with the acetyl-CoA reduction in
acidogenic samples9,16,20.

Roles of core features in acidogenic metabolism
To examine the contribution of core features to metabolic
pathways, genes involved in the top 40 pathways as well as the
15 fermentation pathways were further assigned to ASVs. As
shown in Supplementary Fig. 6a, 4.6–74.3% of the top 40
pathways belonged to core features, with an average of 26.2%
per pathway. The highest average percentage of core feature
assignment was found in samples producing ethanol and acetate,
accounting for an average of 45.2% per pathway, while the lowest
one was found in samples producing butyrate and acetate (20%).
Similar results were found in fermentation pathways where core

Fig. 4 Top metabolic pathways and acid-producing pathways. a Relative abundance of top 40 predicted pathways and b relative
abundance of fermentation pathways.
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features accounted for 4.9–66.1% of the fermentation-pathway
genes (Supplementary Fig. 6b), with an average of 27.0% per
pathway. This result implies that the core features participated not
only in the top 40 pathways, but also in the 15 fermentation
pathways in the acidogenic samples.

Microbial diversity
Alpha diversity indexes associated with evenness (Pielou’s
evenness and Shannon’s index) and richness (Observed ASVs
and Faith’s phylogenetic diversity) were calculated to investigate
the microbial diversity of the acidogenic samples (Fig. 5).
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When grouped by substrates, samples fed with NaHCO3 showed
the highest level of both evenness and richness, while samples
fed with H2–CO2 demonstrated the lowest diversity. Particularly,
diversity of samples fed with NaHCO3 was significantly higher
than that of samples fed with H2–CO2, CO2, and H2–CO2–NaHCO3

(p ≤ 0.05) (Supplementary Table 5). On the other hand, when
grouped by products, sludge samples producing butyrate and
acetate showed the highest level of diversity, while those with
ethanol and acetate as main products presented the lowest
diversity (Supplementary Table 6). Compared with acidogenic
samples, the diversity indexes of inoculum samples were
relatively higher, of which the observed ASVs index was
significantly different (p ≤ 0.01). This might be due to the washout
or decay of some microorganisms that were not tolerant to the
low pH in the acidogenic systems or the immigrated micro-
organisms from the substrates lead to the high microbial diversity
of the inoculum samples3.
It is generally accepted that a high diversity increases functional

resilience under stress conditions and results in better system
performance37,38. However, as shown in Fig. 6, all alpha diversity
indexes were negatively correlated with the acetogenic perfor-
mance. This may be because that acetogenesis is less dependent on
the diversity. For example, when CO2 and H2 are fed, homo-
acetogenesis occurs spontaneously without interacting with other
microbes, thus increasing the number of other microorganisms
involved. Tao et al.3 also reported that only a weak correlation
between diversity indices and performance parameters was found
in anaerobic digestion samples.
To understand community assembly patterns, PCoA was

applied to investigate the variations in community composition
(beta diversity) based on taxonomic (Jaccard distance and
Bray–Curtis distance) and phylogenetic (unweighted and
weighted UniFrac distance) diversity (Fig. 7). Considerable
variations between acidogenic samples were observed at both
the taxonomic and phylogenetic levels. Among them, the beta
diversity results based on the weighted Unifrac distance
explained the highest variation (38.36%). Microbial communities

of acidogenic samples grouped by substrate or products
exhibited significant differences (p= 0.001) (Fig. 7), suggesting
that these two parameters also affected the microbial commu-
nity composition.

Effects of environmental variables on the core microbial
community
As demonstrated by CCA (Fig. 8a), environmental variables (e.g.,
electrode potential, substrate, and pH) and acetogenic perfor-
mances had a clear impact on the core features. Together,
environmental variables and acetogenic performance explained
73.5% of the core feature variation (p ≤ 0.05) (Supplementary
Table 7). Surprisingly, the electrode potential was the key
contributing factor (p ≤ 0.01), accounting for 48.2% of the
explanation. Core features responded to these factors variously.
Many core features were located near the arrow of the
bioelectrochemical factor. This may be because extra electrons
provided by the electrodes can motivate energetically unfavor-
able reactions11, and may thus favor the growth of some
acidogenic bacteria. Specifically, the distribution of 16 core
features was significantly different (p ≤ 0.005) in samples with or
without the electrode potential (Supplementary Table 8). For
example, Clostridium sensu stricto 12, Bacteroides, Bacteroidetes
vadinHA17, and the ASV belonging to the family Lachnospir-
aceae were more abundant in samples without the electrode
potential (Supplementary Table 8). In contrast, Methanobacter-
ium, Desulfovibrio, Oscillibacter, and Caproiciproducens were
dominant in the samples with the electrode potential (Supple-
mentary Table 8). Methanobacterium species could produce
H2 instead of CH4 when confronted with an excess supply of
reducing equivalents on a cathode in an acetate-producing
bioelectrochemical system39. Furthermore, Desulfovibrio and
Pseudomonas (acetogen) are commonly recognized as electro-
active bacteria, able to accept electrons from cathodes in
microbial electrolysis cells40,41. In addition, from the subnetwork
aspect (Fig. 2 and Supplementary Table 3), all core features
located in subnetwork 8 were favored by the electrode
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potential. Environmental variables may also play a role in the
establishment of subnetworks.
On the other hand, Clostridium sensu stricto 12 and the ASV

belonging to the phylum Clostridiaceae were located far away
from other core features and near the arrow of the acetate-
production rate (Fig. 8a), confirming their dissimilarity of distribu-
tion and their important roles in maintaining acetogenic
performance. Besides, although Methanobacterium was identified
as one of the core features in acidogenic samples, the CCA result
shows that it was not closely correlated with most of the other
core features and had a distinct pH preference.

Effects of environmental variables on the metabolic pathways
The RDA further revealed that the top 40 metabolic pathways, 15
fermentation pathways, and 4 CO2 fixation pathways responded
differently to the environmental variables and gave a different
acetogenic performance (Fig. 8b) which explained a total of
65.3% of the pathway variation (p ≤ 0.05, contribution of acetate
concentration excluded). The bioelectrochemical factor was the
highest contributing variable (p ≤ 0.01), accounting for 49.3% of
the explanation, followed by pH (25.2%) (Supplementary Table 9).
Furthermore, more than half of the fermentation pathways were
positively correlated with the bioelectrochemical factor even
though the bioelectrochemical factor was negatively correlated
with acetogenic performance, implying that the electrode
potential might benefit the production of other VFAs rather than
acetate, which needs further confirmation. For example, propio-
nate generation from pyruvate (P108-PWY), which can be first
produced during lactate fermentation42, was positively correlated
with the bioelectrochemical factor. Another intriguing result is
that most of the top 40 pathways were clustered together and
had a high positive correlation with the acetate-production rate,
but were negatively correlated with the bioelectrochemical
factor. Since 33 of the top 40 pathways are related with

biosynthesis, it is also necessary to confirm in the future studies
whether the electrode potential application negatively impacts
the growth of microbes.

Effects of environmental variables on the diversity
Alpha diversity indexes of acidogenic samples were distin-
guished by their pH (p ≤ 0.01). As shown in Supplementary Fig. 7,
samples with a low pH tended to harbor low microbial diversity
and vice versa. Some samples with pH lower than 4.5 were those
producing ethanol via solventogenesis. This is in line with the
fact that solventogenesis usually occurs at a pH ranging from 4.5
to 5.59. Furthermore, these samples were fed with H2–CO2 but
not NaHCO3, consistent with the result from Dessi et al.16 that
changing carbon source from bicarbonate to CO2 reduced the
alpha diversity of acidogenic systems. This may be also because
bicarbonate was able to act as a buffer, avoiding the pH drop
and eventually retaining more microbes that are sensitive to pH.
On the other hand, the temperature which is also a key factor
affecting the microbial population8 did not show a significant
effect on diversity (p > 0.05) (Supplementary Fig. 8). Acidogenic
samples cultivated at 25 and 37 °C might share relatively
similar diversity.
Another intriguing result is that the electrode potential exerted

significant effects on the diversity (p ≤ 0.05). Sludge samples
collected from the bioelectrochemical systems showed a higher
diversity than those without the electrode potential. It is
recognized that electrochemical control affects the extracellular
and intracellular metabolism of fermentative microorganisms10.
Figure 5 further shows that the electrode potential could benefit
the diversity of acidogenic samples, which might be partially due
to the enrichment of electroactive bacteria. Moreover, when
considering beta diversity, samples classified as with or without
electrode potential showed a clear distinction that could be
observed (p= 0.001) (Supplementary Fig. 9). This may be because
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the electrode potential on the cathodes can provide a unique
microbial niche by establishing interactions either between
microorganisms or between microorganisms and the electrode
surface10, both of which can result in a shift of the community
composition.

Implications
The above results provide insights into the optimization
of acidogenic processes. A core microbial community was
identified in the studied acidogenic samples. Since most of
these core features are acidogenic bacteria and harbored a
large percentage of predicted genes involved in acid-producing
pathways, they are likely to be the main acid producers in
many acidogenic systems for anaerobic biorefinery of valuable
bioproducts. From the network aspect, the decentralized
distribution of core features in different subnetworks suggested
that many of them did not have co-occurring relationship and
tended to play different roles in the acidogenic network.
Although the exact function of each subnetwork remains

unknown, the existence of many high-density subnetworks
might imply a potential subnetwork-based regulation strategy
of the acidogenic system.
Although diversity is suggested to play important roles in

system performance37,38, in this study, all alpha diversity indexes
were negatively correlated with the acetogenic performance. This
may be because acidogenic processes are usually operated on
relatively low pH conditions which are not suitable for many
microbes. Therefore, the importance of the high microbial
diversity to acidogenic performance should be reevaluated. The
distinct differences between the inoculum network and the
acidogenic network also supported the hypothesis that microbial
diversity plays a minor role in acidogenic systems. The acclimation
did not obviously affect the number of microbes (diversity) that
have a strong positive correlation but significantly decreased their
interacting relationships. Instead, core features and their response
to environmental changes should be focused on when optimizing
the acidogenic performance.
The bioelectrochemical factor has the greatest influence on

not only core features but also the fermentation pathways. More
than half of the core features and fermentation pathways were
positively correlated with the electrode potential. Therefore,
when aiming to enrich the associated core features or produce
the associated products, microbial electrosynthesis may be a
promising approach. Since some of the core features that
positively affected by the electrode potential were located in
the same subnetwork, a hypothesis is that the bioelectrochem-
ical factor is able to regulate the microbial community at the
subnetwork level but this needs further verification. Never-
theless, it should also be noted that most of the top 40
metabolic pathways, and some other core features were
negatively correlated with the bioelectrochemical factor. Thus,
in future studies, the accurate effects of the bioelectrochemical
factor on shaping the microbial community should be further
examined as well.
This study investigated the core microbial community,

microbial network, metabolic pathways, and microbial diversity
of acidogenic samples. A total of 23 microbes were identified as
the core features, with Clostridium as the most abundant one.
The non-centralized distribution of core features in different
subnetworks and their topological parameters suggested that
they play different roles in the microbial network. On average,
27% of the predicted fermentation-pathway genes belonged to
the core microbial community, implying their important roles in
acidogenesis. Electrode potential contributed the most to the
distribution of both the core microbial community (48.2%) and
metabolic pathways (49.3%). More than half of the core features
and fermentation pathways were positively correlated with the
electrode potential. Posing an electrode potential, as e.g., in
microbial electrosynthesis, may thus be a promising tool to
shape an anaerobic digestion microbiome towards a VFAs and
alcohols one.

METHODS
Sample description
A total of 60 biomass samples were collected from four different
experiments with acidifying bioreactors conducted at National University
of Ireland Galway, Ireland. The reason to choose samples from these
experiments was that they were conducted under different environmental
variables including different inoculum, temperature, pH, substrate, and
electrode potential. The wide variety of environmental variables allowed
us to have a more general profile regarding how they affect the microbial
community. Detailed sample information is summarized in Table 2.
Specifically, twelve samples were collected from group I9. The inoculum of
group I was collected from an up-flow-anaerobic sludge bed (UASB)
reactor producing methane from dairy wastewater. Acidogenic samples
were collected from batch-test reactors operated at 25 °C or 37 °C, fed with
H2–CO2, H2, CO2, or NaHCO3 as the substrate. Samples of group I were

Fig. 8 Effects of environmental variables on core features and
predicted pathways. a Canonical correlation analysis (CCA) of core
features, environmental variables, and acetogenic performance as
well as b redundancy analysis (RDA) of predicted pathways,
environmental variables, and acetogenic performance. The full
name of each pathway can be found on MetaCyc database (https://
metacyc.org/).
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collected at the end of the batch-test incubation. The main products of
these samples were ethanol and/or acetate. Fifteen samples were
collected from group II20. The inoculum of group II was collected from
an anaerobic digester treating cheese processing wastewater (Dairygold,
Cork, Ireland). Acidogenic samples were collected from microbial
electrosynthesis reactors producing propionate and acetate from lactic
acid at 25°C and an applied cathodic potential of −1.0 V vs. Ag/AgCl.
Samples of group II were collected at the end of the electrosynthesis
experiment. Another fifteen samples were collected from group III16. The
inoculum was digested sludge from a dairy processing industry (Dairygold,
Ireland). Acidogenic samples were collected from microbial electrosynth-
esis reactors fed with CO2 or NaHCO3 at 25 °C and the applied cathodic
potential of −1.0 V vs. Ag/AgCl. Samples of group III were collected on
days 47, 183, 206, and 225 of reactor operation (total operation of
225 days). The main products of these samples were acetate and/or
butyrate. Eighteen samples were collected from group IV43. The inoculum
samples included three from rumen fluid, three from rhino manure, and
three from tiger manure. Acidogenic samples were collected on day 21
from batch-test reactors operated at 37°C degrading brewery spent grain
(total operation of 30 days)43.
DNA was extracted using DNA extraction kits following the manufac-

turer’s protocol9,16,20,43. 16S rRNA genes were amplified using the universal
primer pair 515F/806R. Library preparation and high throughput sequen-
cing were conducted on the Illumina Miseq platform.

Microbial community analysis
Amplicon sequence variants (ASVs) were constructed using the Qiime2
workflow44. Briefly, sequence merging, quality filtering, ASVs table
construction, and taxonomic assignment were performed44. Sequence
merging was conducted using PEAR with a minimum overlap of 10 bps
and a minimum assembled length of 200 bps. Data2 was applied for
sequence quality filtering and ASVs table construction45. Taxonomic
analysis was performed by comparing with the SILVA database (silva-
138-99-nb-classifier). The definition of the core microbial community was
based on Wu et al.2 with a slight modification. The criterion of “overall
abundant features” was defined as ASVs with a total relative abundance
higher than 0.1% of all acidogenic samples. The criterion of “ubiquitous
features” was defined as ASVs with an occurrence frequency in more
than 70% of all acidogenic samples. The criterion of “frequently
abundant features” was defined as ASVs abundant in at least 50% of
the acidogenic samples. ASVs fulfilling all the above three criteria were
defined as core features in acidogenic systems. The rare community was
defined similarly except that the criteria of “overall rare features” was
defined as ASVs with the total relative abundance lower than 0.1% and

the criteria of “frequently rare features” was defined as ASVs rare in at
least 50% of the samples.

Microbial metabolic pathways prediction using PICRUSt2
PICRUSt2 was used to predict the metabolic pathways of the microbial
communities based on 16S rRNA marker gene profiles46. The functional
annotation of PICRUSt2 predictions was obtained based on the MetaCyc
database47. The nearest sequenced taxon index (NSTI) was calculated to
evaluate the reference genome coverage for accurate PICRUSt predic-
tion. Estimated MetaCyc pathways related to the functional potential
involved in acidogenesis were manually classified, based on their
MetaCyc identification. Predicted pathways were assigned to ASVs for
the clarification of microbes involved in metabolic pathways.

Statistical analysis
Alpha and beta diversities were calculated by Qiime2 diversity plugin
using the extracted ASVs44. The Kruskal–Wallis test was used to examine
the significance of the alpha diversity48. The significance of the beta
diversity was evaluated by the PERMANOVA test (pairwise comparison
and 999 permuations). Principle coordinates analysis (PCoA) was applied
to investigate the beta diversity. Heatmaps of metabolic pathways were
generated using the STAMP software49. Detrended correspondence
analysis (DCA), canonical correlation analysis (CCA), and redundant
analysis (RDA) were conducted by the Canoco5 software. To normalize
the types of substrates for statistical analysis, carbon substrates were
calculated based on the molecular mass (brewery spent grain excluded).
Since the length of axis 1 of DCA is lower than 2, RDA was selected to
evaluate the correlation between the metabolic pathways and environ-
mental variables50. Pearson correlation analysis was performed using the
Origin software. Network analysis was performed in Cytoscape and
Origin software based on the Pearson correlation coefficients (Pearson
correlation coefficients >0.7, p value ≤ 0.05). Subnetworks were extracted
using the CytoCluster plugin51. A p value ≤ 0.05 was considered
statistically significant.

DATA AVAILABILITY
All treated data that support the findings of this study are included in the present
article. Raw datasets can be obtained from the corresponding author upon request.
The sequences generated were deposited in the NCBI Sequence Read Archive (SRA)
with accession number PRJNA853100.

Table 2. Details of the 60 samples collected from the four experiments.

Group Inoculum No. of
samples

No. of
temperature

No. of substrate type Electrode
potential

Experiment description Reference

I Up-flow-anaerobic
sludge bed (UASB)
reactor producing
methane from dairy
industry effluent

3
inoculums/
9
acidogenic
samples

6 25 °C/
3 37 °C

6 H2+ CO2/
3 H2+ CO2+NaHCO3

– Batch tests were conducted in 125mL
serum bottles with 50mL medium (gas:
liquid ratio of 3:2) and granular sludge
with an initial
VS concentration of 1.0 g/L.

9

II Anaerobic digester
treating cheese
processing wastewater

3
inoculums/
12
acidogenic
samples

12 25 °C 12 Lactic acid −1.0 V Bioelectrochemical reactor operated for
225 days at an applied cathode potential
of −1.0 V vs. Ag/AgCl.

20

III Anaerobic digester
treating cheese
processing wastewater

3
inoculums/
12
acidogenic
samples

12 25 °C 9 CO2/3 NaHCO3 −1.0 V Bioelectrochemical reactor operated for
25 days at an applied potential of −1 V vs.
Ag/AgCl.

16

IV 3 Rumen fluid/3 Rhino
manure/3 Tiger manure

9
inoculums/
9
acidogenic
samples

9 37 °C 9 Brewery spent grain – Batch tests were conducted in serum
bottles with VS concentration of 6.0 g/L.

43
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