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Climate change extreme and seasonal toxic metal occurrence in
Romanian freshwaters in the last two decades—case study and
critical review
Andreea Maria Iordache 1, Constantin Nechita 2✉, Cezara Voica3, Tomáš Pluháček 4 and Kevin A. Schug5

The relationship between metal levels in the Olt River ecosystem in southern Romania (measured during 2018‒2019, with
1064 sediment and water samples) and daily climate data were explored to assess the need for targeted source identification and
mitigation strategies. In 2018, there was a strong relationship between the sediment Pb, As, Cd, and Hg contents and temperature
(r > 0.8, p < 0.001). Mercury in sediments had a positive correlation with precipitation, and Hg in the water correlated with minimum
temperature in May 2018 (p < 0.01). In July 2019, heavy metals were positively correlated with precipitation and negatively
correlated with temperature. According to nonsymmetrical correspondence analysis, the four climate parameters analyzed were
linearly correlated with the frequency of metal detection (p < 0.001) in both years. The statistical analysis showed strong
relationships between heavy metal levels and climatic factors and attributed the discrepancies in elemental concentrations
between 2018 and 2019 to climate warming.
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INTRODUCTION
The IPCC Working Group II Fourth Assessment Report found that
many natural systems are already affected by regional climate
warming1. Europe experienced its warmest air temperature on
record in May‒October 2018. This resulted in increasing mean and
maximum lake surface temperatures (increases between 1.5 and
2.4 °C for over 46,557 lakes across the continent)2. In June‒July
2019, two record-breaking heatwaves that exceeded more than
1 °C (especially in Western Europe) were purported to be one of
the deadliest climate warming-related disasters in the world3. The
challenges of climate warming-induced increases in the frequency
and intensity of hydroclimatic extremes (e.g., droughts and floods)
have promoted a new framework for the consideration of
environmental stressors. Given the critical importance of fresh-
water ecosystems under a growing global population, long-term
water quality monitoring assessment is imperative to understand
regional hotspots of water scarcity4.
The global contamination of freshwater systems is one of the

critical environment-related issues associated with increased
industrialization, natural and mineral resource exploitation, and
social practices (e.g., tourism and local population growth)5. Heavy
metals (HMs) released into river ecosystems are unequally
distributed between aqueous and riverbed sediments. Metals
transfer at the sediment-water interface depends on the chemical
forms and physicochemical characteristics of water and sedi-
ment6. HMs, which are nonbiodegradable and nonthermodegrad-
able elements, gradually become enriched in river environments
and reach toxicity levels that are transferable to the biota. The
dynamic balance between HMs in sediment deposits and water
flow can be observed due to their significant remobilization and
transfer under hydroclimatic extremes7. Under climate change,
river discharges become more frequent, and riverbed elements

accumulate in the overlying waters. Therefore, deeply buried
pollutant deposits can considerably change the water composi-
tion and quality over time.
This study evaluated the extreme climate indices that explicitly

linked environmental conditions with metal levels in water and
sediments in 2018 and 2019. Our main objective was to create a
holistic representation of the drivers with outcomes that will
become common in the following years (e.g., heatwaves, water
discharges, and floods). We determined if air temperature and
rainfall are responsible for changing the temporal-spatial distribu-
tion of elemental levels in the sediments and water in Olt River
lakes. Additionally, we reviewed the most relevant literature from
Romania to reveal all hotspots polluted with HMs in the last two
decades. Furthermore, we quantified the natural and anthropo-
genic sources linked to their seasonality to highlight the future
risks that can occur once with increasing climate extremes,
especially in a hot season. Finally, we identified aspects of these
dynamics that can support policymakers and future research in
the area subjected to such hazards.

RESULTS AND DISCUSSION
Climatic framework
The daily climate parameters investigated emphasized atypical
weather conditions for the two extreme sites, #1, Cornetu Lake
(316 m altitude), and #12, the Danube River upstream of the Olt
River (27 m altitude), in 2018‒2019 (Fig. 1a, b). Contrary to the
pattern in 2018, the combined effect of summer days (SD) > 25
intervals and increased TX mean value shifted in 2019 (Fig. 1a),
which increased the variability of temperature and the occurrence
of extreme events. The historical perspective of climate recon-
struction for more than two centuries8 demonstrated significant
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changes in precipitation anomalies for many years, but the 2018‒
2019 period was not found to be extreme (Fig. 2). The summer of
2018 was the third-warmest summer recorded for the studied
areas (Fig. 2e) and belonged to the fourth warmest global record
since 18809,10. In 2018‒2019, unprecedented dry conditions from
spring/summer were reported all over Europe11,12 where positive
anomalies characterized northern and western Europe, while
south-eastern Europe was marked by negative anomalies13. We
observed significant differences (p < 0.001, two-tailed hypothesis)
between mean extreme site values for daily mean temperature
(TM), daily minimum temperature (TN), daily maximum tempera-
ture (TX), and total daily precipitation (RR) (t-values=−14.50,
−15.19, −14.89, and 6.34, respectively) in the time interval
between 1960 and 2019. Consecutive dry days (CDDs) have
decreased in Cornetu Lake since the 1980s, but no trend was
observed for the Danube River upstream of the Olt River. This
indicated that climate change effects at intramountain sites are
stronger than those at lower altitudes (Fig. 2f). Since 1980, the
extreme temperature intensity indices (TXx, TNx, TXn, and TNn)
have shown a significant positive trend, similar to those in other
geographical regions14.
The ETCCDI indices indicate changes in frequency, intensity, and

duration of extreme events responsible for flash floods in the last
two centuries. Thus, the percentile-based indices TN10p (cold
nights) and TX10p (cold days) significantly decreased after 2000,
while the frequency of warm nights (TN90p) and warm days
(TX90p) increased since 1984 (Fig. 2a–d). Further climate projec-
tions indicated fewer days of below-freezing temperatures by the
mid-21st century15. Our study area exhibited a significant
increasing trend for extreme temperatures in the past, but only
in summer and winter. Substantial changes were found during
nights rather than daytime, comparable with research observa-
tions from other geographical areas16. The warm spell duration
index (WSDI) showed a sharp increase starting at the beginning of
the 1990s, with a maximum for the Cornetu Lake (2018 indices
ranked third) and Danube River upstream of the Olt River (2019
ranked fifth) sites (Fig. 2e). The intensity of heavy precipitation
events in the former five-day events (Rx5day) has been positive

since 1960, with a divergent tendency for southern Europe17. The
highly wet days (Rx5day) index increased only at intramountain
sites. However, it did not exhibit a consistent statistically
significant trend (within the 1 SD range), instead of showing a
positive anomaly for #1 in 2018 and a negative anomaly for #1 in
2019 and negative values for #12 in both years (Fig. 2h). The
incremental tendency of extreme precipitation indices is less
spatially consistent and strongly correlated with elevation,
indicating future risk for intramountain sites. The intensification
of short-duration heavy rain is responsible for severe flash
discharges, and the Rx5day increase is associated with green-
house gas forcing regulating hydrological cycles18.
Compared with average, few extreme values were found for

precipitation in both sites in 2018‒2019. In recent decades, severe
positive anomalies (RR99p) (2014, 2008, 2005, and 1998) and
extreme adverse events (2011‒2012, 2019, 2006, 2002, and 1999)
were observed for Cornetu Lake, but only partially and with lower
intensity for the Danube River upstream of the Olt River (Fig. 2j). A
differential change in the annual cycle shows increased summer
extreme temperatures coupled with an increased winter tem-
perature at plain sites, consistent with what has been reported in
the Mediterranean Basin19. Based on climate parameters quantify-
ing spring-summer conditions, in 2018, the record drought in 2019
was exceeded, especially at sites in the intramountain area (#1‒9).
Several models and observations on the 2018 heatwave drought
indicated only a 12% probability of occurrence under our current
climate and an overhead 50% chance in the future during the
mid-21st century20. Similar drought conditions are expected to
become common according to future projections. Overall, the
2018 event will be the first with synchronal spring and summer
anomalies21.

Temporal-spatial distribution of heavy metals in sediments
and water
The national sediment background values, namely, 150, 100, 40,
35, 85, 29, 0.8, and 0.3 mg/kg for Zn, Cr, Cu, Ni, Pb, As, Cd, and Hg,
were included for this survey due to the lack of consistent data in
the study area. Extreme concentrations for analyzed elements that
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exceeded the national standards22 varied between sites and
investigated periods. The river section water was alkaline with
mean pH values of 8.1 ± 0.37 (2018) and 8.6 ± 0.77 (2019) and
maximum pH values of 9.1 (2018) and 11.99 (2019). A faster HM
release rate from sediments is expected at lower pH values23. The
temporal-spatial distribution of Cd, Hg, As, and Pb in the water
and sediments of the mainstream Olt River lakes showed
variability linked to water volume and the rate of evapotranspira-
tion during summer days (Fig. 3). The mean contents of Zn, Cr, Cu,
Ni, Pb, As, Cd and Hg were (in mg/kg) 69 ± 5.1, 23 ± 1.8, 21 ± 2.0,
37 ± 2.1, 26 ± 2.1, 94 ± 8.5, 0.36 ± 0.02, and 0.12 ± 0.01, respectively
(Supplementary Table 1). Representative studies performed in
various Romanian environments indicated that Olt River lakes are
highly polluted with HMs24–26. The measurements performed in
the present study corroborate this view.
Except for the two extreme values measured, the 2019 average

contents of Zn and Ni in the sediments were 2.8 ± 1.9 and 2.12 ±
1.7 mg/kg (Fig. 3). The extreme metal contents of Cr, Cu, Pb, As,
Cd, and Hg were significantly higher in 2018 (100, 176, 94, 240,
1.23, and 0.23 mg/kg, respectively) than in 2019 (4.4, 17, 12, 7.7,
0.38, and 0.02mg/kg, respectively). Temporal assessment could be
accomplished only for sediments from site #8 (Băbeni Lake), which
represents the area highly contaminated with Hg (44mg/kg)24.
The two-sample test for variance demonstrated that the
differences in Zn, Cu, As, Cd, and Hg contents for all sampling
sites in 2018 and 2019 were statistically significant (F= 0.28, 3.7,
18, 1095, 4.8, and 73; p < 0.001). The two-sample t-test for the
mean (p < 0.001) showed a significant difference between yearly

concentration levels only for Pb, As, Cd, and Hg (t= 8.3, 15, 7.2,
and 4.3) when equal variance was assumed. Even so, the lowest
amounts of As, Cd, Pb, and Hg were located downstream of river
and lakes sediments; they were highest in the intramountain area.
Except for sites #3, #8, #12, and #19, the soluble metal
concentration was over eight times higher in 2018 than in the
2019 seasonal profile.
In lake water, the concentrations of HMs and trace elements

usually do not exceed the national threshold values. In 2018‒2019,
the maximum HM concentrations in water were in the range of
6.9‒94 µg/L As, 0.84‒15.75 µg/L Pb, 1.3‒6.5 µg/L Cd, and 3.3‒
1.56 µg/L Hg. In the case of Hg, a very high level up to 47 µg/L was
found for site #8 (Băbeni Lake) in 2014‒2016, indicating large
metal deposits downstream of the Râmnicu Vâlcea Chemical
Industrial Platform25. The two-sample test for variance showed
significant differences (p < 0.001) between samples collected in
2018 and 2019 for As, Pb, Cd, and Hg (F= 98, 544, 0.01, and 2.86,
respectively). The two-sample t-test (with equal variances
assumed) demonstrated a significant difference between the
means only for As and Pb (t= 3.6 and 4.0; p < 0.001). Exceptional
concentrations were measured for As in March 2018, when they
reached nine times the national threshold for surface water
(94 µg/L). For Pb, Cd, and Hg, the results indicated enriched levels
in both investigated years exceeding the first degree of pollution.
The mean concentration (µg/L) and the standard deviation were
12 ± 1 (As), 2.6 ± 4 (Pb), 0.48 ± 0.1 (Cd), and 0.97 ± 0.9 (Hg) in 2018
and 2.6 ± 1.9 (As), 0.18 ± 0.1 (Pb), 0.8 ± 1.4 (Cd), and 0.94 ± 0.5 (Hg)
in 2019. The combined analysis of Fig. 3 indicates that for Cd, Hg,
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Pb, and As, the seasonal and interannual variability in trace
element contents was significant.

Climate-trace element relationships
Until the mid-century, projected variability in south-eastern
Europe revealed a sustained warming process with decreasing
precipitation amounts and increasing evapotranspiration in the
investigated study area27. Climate change interacts with the
hydrological cycle on global and regional scales. Low river
discharge (limited dilution of the chemical load from point
sources) and high temperature during summer/autumn increased
metal levels. In March/June 2018 and July/September 2019, the
highest correlation between trace elements and daily climate data
were calculated (Supplementary Table 2). The correlation was
negative with temperature and positive with rainfall in spring
(March). In June 2018 and July/September 2019, the correlation
indices were positive with temperature and negative with
precipitation. In water, temperature represents the main factor
that controls multiple chemical reactions. Significant differences
appear during the daily and diurnal conditions and, associated

factors, such as thermal mass, restrict the seasonal oscillation in
spreading temperature heatwaves in water. The exchanges in
water (vertical, lateral, and longitudinal flow)28 are fundamental in
the interaction between various chemical elements in the river
body, such as the intake and reduction of physicochemical
compounds in water and vertical redox gradients in sediments.
Dammed reservoir traps are responsible for the sedimentation of
HMs and concordance with water fluxes. The most polluted
deposits materialize in the bottom layers29, reaching up to 90% in
the case of Pb, Cd, and Cu. Differences in sediment texture, pH,
redox potential, salinity, moisture, organic matter and electrical
conductivity in 2018‒2019 compared to 2014‒2015 in the Viridi
Channel (Côte d’Ivoire, West Africa) were also found30. Thus, the
scale of climate change effects on water ecosystems has been
evident worldwide since the recent 2018‒2019 heatwaves.
The correlation matrix emphasized a weak but significant

relationship between trace elements in 2018 (narrow in June and
October) and a robust correlation in 2019, especially in May
(Fig. 4). The relationships between Zn‒Cu‒Ni‒Pb in 2018 indicated
similar effects of anthropogenic activities. At p < 0.01, Hg
(sediments) had a positive relationship with RR (r= 0.58) in May
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2018, whereas Hg (water) was correlated with TN (r= 0.68), RR
(r= 0.71), TM (r=−0.84), TX (r=−0.79), and TN (r=−0.88) in July
2019. (Supplementary Table 2). Our results demonstrated strong
relationships of As with Cr, Cu, Ni, and Pb (r= 0.94, 0.89, 0.71, and
0.99, respectively) and of Cd with Cr, Cu, Pb, and As (r= 0.91, 0.85,
0.97, and 0.99) in May 2019. Fewer associations were noted in July
(Pb vs. As and Cd; r= 0.97) and September (As vs. Cd, r= 0.99 and
Hg vs. Cu, Ni, and Cd, r= 0.76, 0.88, and 0.80). The metals
originated from anthropogenic activities, including mining, waste
plant discharge, and industrial plants26; these sources explain the
strong-significant correlations revealed in the data analysis.
The Pearson product-moment correlation coefficients indicated

that in March, there were negative, robust relationships (p < 0.001)
of lead in sediments with the mean and maximum air temperatures
(Supplementary Table 2). The positive correlation between lead in
water and precipitation (r= 0.91) found only in May 2018 can
explain the significant differences in elemental trends during 2018‒
2019. Furthermore, arsenic in May 2018 for p < 0.001 correlated
negatively with maximum temperature (r=−0.70) and positive with
precipitation (r= 0.72). A divergent relationship was noted in June
2018 and July 2019 for TX (r= 0.71/0.72) and RR (r=−0.72/−0.79).
The influence of extreme temperature on Pb and As (from water and
sediments) was strongly negative in spring (Supplementary Table 2).

Lead reductive oxide dissolution could be increased 36 times at
20 °C relative to a lower temperature of 4 °C31. A significant increase
in the As level at 25 °C was observed compared to a reference of
11 °C32. The postdepositional As mobility in lacustrine environments
were found to be correlated with the dissolution of iron-(oxy)
hydroxides and coprecipitation with sulfides. Labile organic C is
expected to increase under projected climate warming via a redox-
mediated mechanism and organic loading, which interacts with As
instability in the river system.

Intermetal relationships and factor loadings
Various multivariate techniques were used to identify and explore
HM sources and the ecological status of the Olt River ecosystem.
The hierarchical dendrogram resulting from the HCA approach
shows that trace elements were categorized into two distinct
clusters. The first homogeneous group consisted of As, Cd, Pb, and
Hg in sediments and Hg in water. The second formed a single
branch consisting of As, Pb, and Cd in water, indicating
anthropogenic drivers of the HM and trace elements analyzed.
In the plot, the y-axis shows similarity with a circular orientation
(Fig. 5a). PCA was applied, and the high Kaiser-Meyer-Olkin value
(0.68) (p < 0.001) from Bartlett’s test indicated that the results were
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representative. Two eigenvectors were superior to one, and their
components explained 60% of the total variance. Thus, the trace
elements formed three groups, with the first containing those
from sediments and Hg in water, the second containing Pb, and
the third containing the Cd in water, indicating different origins of
these elements (Fig. 5b).
NSCA revealed a linear dependence between trace elements

related to site and period data in 2018 (p < 0.001) compared to
2019 when the results were nonsignificant for the same statistical
significance test. The Goodman‒Kruskal tau index is a measure of
asymmetry for two-way contingency tables. In our case, one-way
correspondence between variables had a value of 0.004 (2018)
and 0.01 (2019). The cumulative percentage of inertia presented
by the first two factorial axes explained 94% of the variance in
2018 (Fig. 5c) and 81% in 2019 (Fig. 5d). Trace elements with a
significant contribution to the orientation of the two primary
factorial axes were Pb in sediments and As in water in 2018
(Fig. 5e, f). The contribution of those elements explained the trend
in both years. The organic forms of As typically occur in waters
highly affected by industrial activities at a pH of 6.5–8.5. The
overall conclusion is that human-derived sources are dominant in
trace element origins. The first two axes of the CCA analysis
explained 98‒95% of the trace element variance based on climate
(TM, TN, TX, and RR daily data) in 2018‒2019, corresponding to
55‒75% of the inertia. According to the permutation test (1000
random permutations), the significant (p < 0.001) effects of the
four climate parameters on the observed frequency of trace
element concentrations were assessed, and it was concluded that
the data were linearly related to site variables for both years.

Climate-induced elemental increasing trend in the last two
decades
Impressive HMs concentration in lake sediments (quasi-static
environments with a low flow velocity that progressively
accumulated deposits and pollution) were noted in the last two
decades. Investigations in eastern Romania (Prut River) revealed
concentrations of Cu (67 mg/kg), Cd (0.7 mg/kg), Pb (30 mg/kg),
and Zn (98 mg/kg) in 2001‒2010 and indicated that this water
body was without pollution risk33,34. In contrast, most studies on
western and southern Romanian rivers have shown increased
metal levels in recent decades35–37. Extreme HM concentrations
were noted in 200038–40, 200624, 200841, 201242–44, 201445, 201546,
201747, and 201926,48.
In 2000, a dam containing toxic waste was damaged27 and

released into the Lăpuș and Someș Rivers (a tributary of the Tisza
River) more than 120 tons of cyanide and 20,000 tons of
sediments containing HMs, representing over 100,000 cubic
meters of waste. The investigations revealed unusual meteorolo-
gical conditions induced by heating never recorded before during
the last century, which caused an abundance of precipitation in
December 1999. The abruptly reduced temperatures and snowfall
from the beginning until mid-January was followed by increasing
the temperature and abrupt snowmelt, causing braking dam49.
The contaminated waves affected the Tisza and Szamos Rivers,
and sediments collected in June 2000 and February 2001 showed
very high pollution, with Cu, Cd, Pb, Cr, Ni, and Zn in sediments
reaching 664, 23, 374, 159, 85, and 3095mg/kg, respectively.
Furthermore, the summer of 2006 was exceptionally hot, with the
maximum temperature at the end of June causing it to be
recorded as the warmest month since official instrumental
measurements began50. In January 2008, a freezing snap occurred,
and during July, dry climatic conditions were affected by floods
and drought in northern Europe51.
In lake sediments, during 2008‒2016 as much as 593mg/kg Pb,

82mg/kg Cd, 1784 mg/kg Zn, 143mg/kg Ni, 725mg/kg Cr, and
277mg/kg Cu were found35,52,53 (Supplementary Table 4). In
south-eastern Romania (near the Black Sea, Tasaul Lake),

sediments were investigated for HMs from 2011 to 2013, showing
values of 34, 133, 57, 103, 0.14, 17, and 83mg/kg for Pb, Zn, Ni, Cr,
Hg, As, and Cu, respectively48. In central Transylvania, the Gilău
dam on the Someș River was reported during 2008‒2011 to be
sediment enriched with Pb, Cd, Zn, Cr, Hg, As, and Cu (40, 2.97,
193, 192, 0.28, 172, and 85mg/kg, respectively)54. In river
sediment from Baiaga stream (also Transylvania) located near
two sterile mining dumps in Hunedoara County, extensive
contents of Cu, Cd, Pb, Cr, Ni, As, and Hg (298, 106, 467, 274,
386, 1197, and 1.21 mg/kg, respectively)36 were noted in April
2014, the year characterized by the warmest yearly average
temperature in Europe.
Various accidental discharges or constant HM contamination

from distinct sources have reached water bodies, where they have
been deposited in sediments or transported by floods down-
stream into the Danube River. Therefore, severe pollution of the
Danube River and the Black Sea has been recently reported55. The
HM contents measured in Danube River sediments were compar-
able in 2011‒2013 for Cu, Zn, Cr, Ni, Cd, and Pb (86, 206, 68, 93,
1.33, and 77mg/kg, respectively)56 with those in 2012‒2014 (42,
106, 46, and 38mg/kg, with Cd and Pb not included in this
study)57. Climatic records described the year 2012 as the hottest
and driest summer in south-eastern Europe58. In 2017, called the
“Lucifer” plague year in Europe, showed the most sustained
extreme heat event from January to October worldwide59, and the
contamination levels of the Danube River increased to 1570, 1049,
488, 61, 2.9, and 1315mg/kg, respectively57. Consistent with these
reports, the Olt River is not Romania’s most polluted water body,
but it has contributed significantly to maximizing HM pollution in
Danube River sediments24,26,60,61.
Water pollution in Romanian lakes appears to be less impressive

than that in sediments. The maximum metal concentration in the
Danube River water in 2011‒2014 fluctuated significantly for Cu
(9.1‒147 µg/L), Zn (79‒15 772 µg/L), Cd (0.19‒32 µg/L), and Pb
(3.18‒15.5 µg/L)44,56,57. Industrial activity and mining decreased
significantly after 1990 in Romania. Even so, various studies have
indicated considerable ecological disaster-level contamination by
metals and trace elements that have affected water ecosystems in
recent years. The mentioned reports portray the increasing
vulnerability of freshwater environments to HM contamination
due to extreme weather conditions that have advanced over the
past 20 years. Additionally, the results highlight the predisposition
of the western and southern regions of the country to the
occurrence of exceptional HM pollution events; these regions are
also expected to be exposed to increasing climate extremes
according to future projections.

Policy themes for water conservation
National long-term policy themes for clean freshwater require the
commitment of society and decision-makers to strengthen and
apply strategies. They need to promote water recovery and reduce
the factors that deteriorate the quantity and quality of water
resources. Romania is poor in freshwater resources (ranked 13th in
Europe) and is dependent on precipitation. Climate warming leads
to decreased river runoff due to increasing air temperature, which,
in turn, accelerates evapotranspiration. Changing maximum
monthly mean discharges from spring to winter have already
been demonstrated in the studied area62, which will affect the
insufficient water supply and increase the need for agricultural
practices. In addition, the stress on the water will increase
pollution frequency, reduce dissolved oxygen, and lead to
eutrophication. Far from the end, floods and flash floods will shift
from spring and summer to winter (e.g., the dam break in
Maramureș County in January 2000).
With all examples presented in this analysis, critical thematic

areas for transboundary policymakers, environmentalists, and
decision-makers are highlighted for possible discussion
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concerning future management practices and endorsement
strategies. The modern society acts through various engines to
disrupt natural ecosystems. The most evident are sediment
exploitation from the riverbed, sometimes until bedrock, or river
regularization constructions. Also, population pressure is a
paramount driver of society’s needs for wood exploitation and
processing facilities and the production of industrial waste.
Organic pollution resulting from untreated domestic waste
discharges, composites from sawdust and recycled plastics,
environmental pollution, and fertilizer runoff accentuate the river
ecosystem’s stress. Population pressure (a complex of socio-
economic dimensions), corruption, and poverty negatively impact
the sustainable use of water resources. Therefore, mitigating these
drivers’ effects will be an alternative for complex policy regulations
with long-term positive impacts. The government needs to
cooperate through financial support development programs with
water and forest management institutions to motivate and involve
skill transfer at the national level. In addition, the policies can
implement long-term monitoring programs that can offer support
in understanding future implications of climate change on aquatic
ecosystems and facilitate transparency.

METHODS
Field sampling and climate
The sampled sites were distributed along the middle and lower courses of
the Olt River. They were selected to correspond to different hydrostrati-
graphic units with varying typologies of the water drainage system. Our
model of HMs pollution in the area was based on 16 representative lakes
with different environments and geomorphologic-hydrodynamic regimes
in which HMs accumulate. The other three sampled sites were along the
riverbed, one in the Olt River before the point at which it discharges into
the Danube River and two in the Danube River upstream and downstream
of the Olt River discharge point (Supplementary Table 3). Samples were
collected during four periods in 2018 (March, May, June, and October) and
three periods in 2019 (May, July, and September) to cover the various
thermal and hydrological conditions that occur in the Olt River. Climate
data derived from the European Climate Assessment and Dataset (ECA&D)
archive were extracted for each sample site from 1950‒2019. Four
parameters, including the daily mean temperature (TM), daily minimum
temperature (TN), daily maximum temperature (TX), and total daily
precipitation (RR), were used to investigate differences in 2018–2019
climate extremes. The Expert Team on Climate Change Detection and
Indices (ETCCDI) defined a set of indices for evaluating multidecadal
changes in the extreme climate of the mid-20th century and the beginning
of the 21st century. The indices included a definition for heatwaves; they
are defined as the number of days in a year exceeding a specific threshold
with a fixed value or relative to a base period or day-count index. The
selected subset of extreme climate event indices was calculated to
describe the frequency, intensity, and duration of such events. The higher
precipitation over 5 days (Rx5day) index can indicate significant floods,
and the maximum length of a dry spell (CDD) highlights intense drought
seasons. The warm spell duration index (WSDI) calculated using a
percentile-based threshold was used to investigate the impact of
heatwaves. The closed vessel microwave acid digestion, atomic absorption
spectroscopy, and inductively coupled plasma mass spectrometry instru-
ments were used to determine total levels of HMs in environmental
samples (details are summarized in Supplementary Methods).

Data analysis
The differences between climate data from the two extreme sites (#1 and
#12) were assessed using two-sample t-tests for the difference of means.
The Shapiro-Wilk normality test was used to check the normality of the
data. The two-sample t-test and two-sample test for a variance were
applied to compare the central values of the underlying distributions of
the concentration levels between 2018 and 2019, respectively. HMs were
visualized using boxplots to identify outliers, and extreme values were
plotted as individual points. The values are presented as the mean ±
standard deviation (SD). The relationships between HMs from sediments
were investigated using Pearson correlation coefficients at a significance of
p < 0.001. Hierarchical clustering analysis (HCA) and principal component

analysis (PCA) were used to analyze the possible contamination sources of
HMs in sediments and water. The HCA approach used the squared
Euclidian distance, following the Wards method, to approximate the
distance between pollutant clusters. Principal components (PCs) were
extracted using Varimax with the Kaiser normalization and rotation
method. The accuracy of the PCA was assessed prior to using Bartlett’s
sphericity test and the Kaiser-Meyer-Olkin (KMO) adequacy test. Canonical
correspondence analysis (CCA) was applied to analyze the interaction
between the trace element distribution and daily climate data. The
nonsymmetrical correspondence analysis (NSCA) unconstrained ordination
method was used to explore variability in a dataset associated with metal
concentration using the Goodman-Kruskal tau index for two-way tables to
decompose associations. We reviewed systematic literature following the
PRISMA protocol to compare our results with those from similar studies in
Romania conducted in the last twenty years. The literature search was
performed on Web of Science, Google Scholar, and Scopus using keywords
containing “Olt River” or “Romania heavy metal pollution” or “heavy metal”,
or “trace elements”, or “freshwater metal contamination” or “water and
sediments heavy metal pollution.” Initially, no constraint was placed on the
year of the publication. The first search returned 17,700 documents; thus,
we restricted the analysis to 2000‒2021. We excluded references marked
as duplicates, erroneous records from studies with other geographical
regions, and conference abstracts and books without quantitative data,
resulting in a database with 65 studies selected for detailed review
(Supplementary Table 4).
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