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Activated sludge models at the crossroad of artificial
intelligence—A perspective on advancing process modeling
Gürkan Sin 1✉ and Resul Al 1

The introduction of Activated Sludge Models No. 1 (ASM1) in the early 1980s has led to a decade-long experience in applying these
models and demonstrating their maturity for the wastewater treatment plants’ design and operation. However, these models have
reached their limits concerning complexity and application accuracy. A case in point is that despite many extensions of the ASMs
proposed to describe N2O production dynamics in the activated sludge plants, these models remain too complicated and yet to be
validated. This perspective paper presents a new vision to advance process modeling by explicitly integrating the information
about the microbial community as measured by molecular data in activated sludge models. In this new research area, we propose
to harness the synergy between the rich molecular data from advanced gene sequencing technology with its integration through
artificial intelligence with process engineering models. This is an interdisciplinary research area enabling the two separate
disciplines, namely environmental biotechnology, to join forces and work together with the modeling and engineering community
to perform new understanding and model-based engineering for sustainable WWTPs of the future.
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INTRODUCTION
Wastewater treatment is a complex process that employs a
combination of physical, chemical, and biological unit opera-
tions to remove contaminants to sufficient quality before being
discharged into the receiving environment. WWTPs have been
around for over 100 years since the discovery of the activated
sludge process1,2, which resulted in many mature technologies
and process concepts implemented in practice. Today the
wastewater treatment sector is witnessing a growing number of
initiatives (e.g., Digital Water, Water-Energy nexus, Circular
economy, water scarcity and deteriorating water quality due
to emerging contaminants such as micro-pollutants, climate
change)3–6. These powerful initiatives are set to radically change
the baseline concept of WWTPs, e.g. wastewater is no longer
being perceived as a problem but increasingly as a potential
resource to recover water, energy, and nutrients. Moreover,
increasing sustainability awareness for more efficient use of
energy, chemicals, and process-related greenhouse gas emis-
sions (especially N2O) in WWTPs, need to be considered.
Currently, the design and operation of treatment plants rely
on best practice and heuristic approaches, which are supple-
mented by using process models to simulate and evaluate a
number of alternatives. In this regard, the introduction of
Activated Sludge Models No. 1 (ASM1) in the early 1980s has led
to a decade-long experience with calibrating and applying the
models and demonstrating their maturity for application in the
design and operation of the plants1. However, these models
have reached their limits with respect to complexity and
application accuracy and unable to comprehensively describe
process performance parameters2. This is essential to realize
model-based engineering and, consequently, the full potential
of digitalization for achieving a sustainable WWTP operation.
Therefore, we believe a steep change of foundational nature in
advancing process modeling is needed in the wastewater
treatment modeling and engineering community. The central

hypothesis of this new vision is based on the following premise:
(1) we have a strong conviction that data alone may not contain
sufficient information to achieve useful models for digital
applications. (2) Current mechanistic models alone are unable
to describe newly emerging sustainability concerns of the
plants, especially N2O dynamics, among others. Indeed unlike
social sciences/media where data is highly rich (high volume/
high veracity)7,8, data from engineering systems like WWTPs,
which are designed and operated to deliver a steady and stable
performance, has limited information (quality and quantity)
compared to the scale of the volume of data in social media.
Therefore, we need to make full use of prior scientific &
engineering knowledge as nicely summarized in mechanistic
models. Hence a multi-disciplinary approach where deep
process knowledge is combined with deep learning from
process data, is needed to generate advanced predictive models
for digital applications in WWTPs. With this research concept, we
propose, it will be possible for the first time to directly include
molecular data about the microbiological community into the
process models. Modern molecular tools measuring microbial
community (relative abundance of species, their functions, using
metagenomics and meta-transcriptomics analysis) have
advanced very much and enabled identifying diverse microbial
communities underpinning the biological transformation in the
wastewater treatment plants from filamentous bulking phenom-
ena to nitrogen removal and phosphorus removal, among
others9–11. However, these valuable data have never been used
directly in process modeling. Below we outline and expand the
evidence that points out to current challenges and limitations of
activated sludge models (ASMs), presents arguments why big-
data analytics alone will not deliver, and the need for an
interdisciplinary research area to advance the future of activated
sludge modeling.
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SCIENTIFIC PERSPECTIVES
The activated sludge process is the most commonly used
technology in wastewater treatment plants. Research into the
design and operation of activated sludge systems are supported
traditionally by two communities: (a) on the one hand, the
environmental biotechnology10 community with the advances in
gene sequencing technology and molecular probes (such as qPCR,
FISH, phylogenetic trees, operational taxonomic units (OTUs),
meta-transcriptomics, proteomics, metabolomics, etc.) studies
underpinning microbiological community (who are they and what
they do) responsible for nutrient removal in the plant, and (b)
process design, modeling and control community12–16 that works
with process models and uses traditional process data (such as
influent COD their fractions (SS, XS, SI, and XI), nitrogen (NH4, NO3,
NO2-N, TKN), PO4, TP, MLSS, VSS, BOD, etc.) to develop and
validate new models and techniques to support design and
operation of the plants. While clearly these multidimensional data
collected at different scales (micro-scale at microbial community
level versus process data at macro/full-scale at plant level) are
complementary to understand the process, to date these two
multiscale and diverse range of process data is yet to be
integrated and interpreted jointly. For example, while microbial
community underpins the biological conversions in WWTPs and
therefore key to the performance of the plant (from effluent
nitrogen, phosphorus, and COD quality to process-related GHG
emissions), they have not been explicitly/directly included in the
models. On the other hand, the in-situ techniques to identify
microbial community structure and functions in WWTPs have
advanced and matured very nicely in the last decades in parallel
to advances in gene sequencing technology17. These advance-
ments resulted in more in-depth insights into understanding the
fundamental role and functions of microbial community both at
the laboratory but also at full-scale WWTPs18 when studying novel
processes from anammox to understanding pathways responsible
for N2O emissions. However, these valuable data have not been
integrated into process engineering applications, which remains a
major gap still in the 2020s. One of the reasons is that the
currently used modeling framework is not flexible to integrate
such heterogeneous molecular data about different microbial
communities.

ASMS AS ENABLING TECHNOLOGY FOR THE DESIGN OF
WWTPS
The current process design and operation paradigm is highly
process-expert knowledge-driven and supported by commercial
process simulators, which allows evaluating and simulating a
range of process configurations. Indeed to support engineering
solutions currently, process models and simulations are indis-
pensable tools widely used by the community. For process
modeling, ASMs have been widely successful and extensively
used. These models (e.g., ADM1, ASM1, ASM2d, Biowin® model,
SUMO® model, etc.) are mechanistic and have yielded significant
benefits to design and operation problems. Moreover, there are
knowledge-based, and model-based environmental decision
support tools have been proposed19–22 to assist design engineers
for process design/retrofitting to improved operation. However,
there are still two fundamental shortcomings: (1) limit of current
mechanistic models: The process models that underpin evalua-
tions of WWTP solutions are not able to describe important
sustainability metrics/performance of the plant, namely the N2O
emissions2,19,23,24, (2) while the biological community is respon-
sible for the major transformation of contaminants and their
removal, these are not included/integrated in the process
engineering practice from operation to design tasks.

Validation and complexity issues of ASMs
In particular, in the process modeling field, the current academic
research is generating more and more complex and specialized
models1,25,26. Figure 1 shows a continued interest in studies using
these models. These models, which are mostly based on an
extension of ASM models to describe nitrogen, phosphorus, and
COD removal performance from the plant, are not fit for process
design and operation applications due to numerical complexities
and validation issues. The validation issue comes partly from the
available process data used for model parameter estimation
(which is limited) as well as the given structure of the model.
Several studies have systematically analyzed the identifiability of
such models1,27,28 including our own studies, considering typical
plant data collected from intensive measurement campaigns,
which showed that among 60 plus model parameters, only a
handful of them (6–10 parameter subsets) could be uniquely
estimated from the data. These issues has been recognized
already by calibration protocols in fact29,30. The rest of the model
parameters need to be fixed or assumed when applying these
models to simulate the activated sludge plants. While one can
account for the uncertainty in the model parameters and perform
design and operation evaluation31–33, however, the key issues
remain with respect to defining the range of uncertainties for the
model parameters, which displays a wide variability as examined
by Sin et al.34 for nitrite models.
One of the underlying reasons for this model validation and

uncertainty issues is that these models employ a Monod kinetics to
describe microbial growth. Theoretical identifiability studies35–37,
performed as early as 1982 by Holmberg35, already found out that
given perfect measurements (no noise) on a simple batch reactor
used to measure biomass activity (e.g., substrate measurements in
time), even then the unique estimation of the yield, maximum
growth rate, and biomass concentration is not possible. Later on,
Petersen et al.37 used respirometric and titrimetric measurements
of the activity of nitrifying activated sludge samples confirmed the
same conclusion. Namely, instead of unique parameters, only a
combination of the parameters is uniquely identifiable, for example
((4.57−YA)/YA*µmax*X). An important observation about this
conclusion is that X (mgCOD/L) is a lumped parameter defined
to represent an active fraction of the microbial group involved in
the experiment. For example, in nitrifying activity studies, X would
be classified as XAOO and XNOO, referring to ammonia-oxidizing
organisms and nitrite-oxidizing organisms, respectively. These
examples can be extended to other microbial groups in activated
sludge, e.g., denitrifying heterotrophic organisms, phosphorus-
accumulating organisms, glycogen accumulation organisms, all
hypothetically modeled with a unit mg COD/L as a state variable. In
the end, these different fractions of the biomass will be inferred
indirectly from a set of corresponding batch activity tests or using

Fig. 1 Activated sludge modeling studies in literature. The data
generated using Scopus database with the following specifications:
Search Date: February 2021. TITLE-ABS-KEY (“activated sludge” AND
“model”).
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full-scale measurements from steady-simulations with the model.
Notice the irony here that a biological community is represented
by a pseudo-parameter in the model, which has no direct way of
measuring it in reality. Therefore, there is no independent
experimental procedure to verify the simulated values of these
fractions of biomass responsible for different functions in the plant
without making assumptions and conversion factors (e.g. VSS to
COD ratio, etc.). Instead, these fractions of biomass are inferred
indirectly from model-based fitting to measured activity of the
biomass (e.g., through depletion of NH4-N rate during a batch test
with nitrifying activated sludge). It turns out even if you had
perfect activity measurements, the estimated values of these
fractions are still coupled to yield and maximum growth rate
parameters in the model (as discussed above by Holmberg35 and
Petersen et al.37). While the modeling community uses X and
attempts to describe corresponding activity in the WWTPs, the
biological community that studies this process uses modern
molecular probe technologies (e.g., metagenomics, qPCR, FISH,
etc.) to identify which organisms (phylogenetic tree), their relative
abundance and their activity (e.g., expression of protein genes in
meta-transcriptomics analysis) that metabolizes many of the
pollutants present in the influent (from NH4-N to COD and others).

The rise of metagenomics data and what to do about it
The research field of metagenomics investigates the genomic
analysis of microbial DNA from environmental communities, and it
has become one of the hottest fields of science by rapidly growing
over the last 5–10 years—more than 16,000 research papers
indexed in Scopus (Figs. 1 and 2)—yielding substantial advances
in microbial ecology, evolution, and diversity17. The field provides
scientists with sequencing-based metagenome examination tools
that enable them to identify microbes in a sample without a priori
knowledge of what that sample contains—opening up new doors
in many disciplines, such as medicine, environmental sciences,
microbial ecology, microbiology, and wastewater engineering (Fig.
2). Among these techniques is fluorescence in situ hybridization
(FISH), which can be used to find specific genes of interest in DNA
so as to identify specific microorganisms, but it is a low-
throughput technology9. Quantitative PCR (qPCR) is sensitive
and quantitative, and it monitors the amplification of a targeted
DNA using fluorescent dyes. Therefore, it can only evaluate a few
microorganisms at a time. On the other hand, 16S ribosomal RNA
sequencing targets 16S rRNA genes that are highly species-
specific and present in most microbes; thus it is a rapid and cheap
alternative capable of both identifying and classifying bacteria. In
addition to sequencing, the characterization of meta-

transcriptomes (using mRNA sequencing) provides an ability to
reflect the actual metabolic activity by differentiating between
expressed and non-expressed genes, thereby overcoming the
shortcomings of metagenomic DNA-based analyses. It comes with
a higher price; however, the obtained data is more information-
rich, allowing modeling of the quantified metabolic activities,
which might explain process phenomena driven by such microbial
communities.
In wastewater treatment, Seviour et al.10 pioneered the

application of these methods to activated sludge systems, inviting
the research community to understand which organisms are
present in activated sludge and what they might be doing there.
Saunders et al.18 identified a core community of microorganisms
actively present in activated sludge using 16S rRNA gene
sequencing technique along with microbial diversity analysis. By
applying these methods, highly comprehensive information about
this centuries-old activated sludge process is produced. Incorpor-
ating this new knowledge of the frequency and diversity of these
microbial communities, as well as their spatial and time-
dependent dynamic profiles, can support quantative modeling
of the underlying phenomena in wastewater treatment processes
such as the N2O emissions. One potential way of integrating such
molecular data (metagenomics) with ODE-based mathematical
models is through leveraging artificial intelligence techniques
such as deep learning. Recent applications of DNNs in diverse
fields38 from design of products/materials to property and process
modeling, have shown that neural AI excels particularly when
presented with diverse range/heterogenous source of data in the
form of textual, image, spectral data38–40.

Moving beyond: neither ASM nor AI models alone
In this new research area, we call for the study and synergistic
integration of biological data through the machine-learning (ML)
branch of AI with first-principles models of activated sludge
systems. Indeed, it is duly noted that what we propose here is not
just hybrid modeling, which in itself is nothing new and has been
extensively studied for a variety of applications. For example,
hybrid modeling in chemical engineering (crystallization, drying,
milling, polymerization) and biochemical engineering (mainly
different fermentation process modeling from fungi to bacteria,
yeast, and mammalian cell culture) as well as water treatment41.
The motivation for the earlier hybrid modeling is to improve the
predictions of the first principles models, hence correct for the
error/uncertainties present in the mass and energy balances as
calculated by mechanistic models. A variety of parametric hybrid
model designs are proposed, e.g., parallel, serial, and multiple

Fig. 2 Metagenomics studies by subject area. The data generated using Scopus database with the following specifications: Search Date:
February 2021. TITLE-ABS-KEY (“metagenomics”).
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combinations42,43. Often the hybrid models are also used to
predict complex process phenomena, which is otherwise very
difficult to mechanistically describe, e.g., cake formation on the
cross-filtration unit or formation rates/kinetics of products in
fermentation processes. In wastewater, hybrid model applications
have also been studied both for industrial44,45 and domestic
wastewater-treatment plants. For example, Anderson et al.46 has
integrated an ANN model to learn from the biological kinetic rates
from the process data in the mechanistic (ASM2d) model using a
parallel combination, while Fang et al.47 used a serial combination
in which the authors modeled the errors from a mechanistic
model (ASM3g-Eawag) with a neural network model to improve
predictions of effluent COD, NH4, and PO4

−3 similar to the
application of extended Kalman filter (EKF to learn from the errors
of the model8,48). While these models presented the potential for
improving the fit to the data (as measured by the model’s R2,
coefficient of determination), however their application, for
example, for process control and operation, proved to be
problematic as demonstrated in Anderson et al.46. More impor-
tantly, they also failed to model, for example, kinetic rates related
to more complex phenomena such as P-removal46. These previous
studies show that just using process data alone and even hybrid
modeling is not the answer by itself. We need to have
comprehensive process data to describe it.
As regards modeling N2O, which is the example we cite in this

perspective paper, a number of extensions of ASM models with
several different mechanisms (e.g., single pathway versus two
pathway models—AOB denitrification pathway and incomplete
hydroxylamine oxidation pathway—models, chemical conversion,
etc.) have been proposed49–54. These models, thanks to the many
parameters introduced, can be made to fit the N2O data collected
from a certain period during calibration (i.e., by fine-tuning or
fitting a subset of model parameters). However, these models
become easily falsified when confronted with another dataset not
used in the calibration, e.g., underestimating N2O emission rate by
as much as 42% in Mampaey et al.55, to name an example. In
Fig. 3, we present a schematics to help visualization of model
performance between calibration and validation datasets as
demonstrated in the study of Mampaey et al.55 as well as
the importance of which pathway is modeled/considered in the
model as demonstrated in Pocquet et al.56 study. Indeed the
current mathematical models do not a priori know which
metabolic pathway is dominant contributing factor and therefore
can fail to quantitatively describe the N2O emission factors in
plants. It is noted that most municipal wastewater treatment
plants operate at lower NO2 levels (much lower than 30mgN/L)
where especially the failure of the models is pronounced. In a way,
the extended models just increased the number of parameters
that need to be estimated from the same activity measurements,
hence compounding the existing identifiability issues of these
models. This makes transferability and general applicability for
process design and operation difficult and not possible as they are
not predictive. On the other hand, using ML of the process data
has also been applied, which demonstrated that PCA-based
clustering techniques57 could be used for identifying operational
situations causing N2O emissions. Using support vector machines
(SVM) as a ML technique, Vasilaki et al.58 demonstrated that N2O
emissions could be described, although the cross-validation R2

remains low even for describing a dataset from a relatively simple
pilot-scale reactor. In our own work using a DNN59, we have also
demonstrated the potential of describing N2O using a deep
learning network (DNN) with high accuracy, R2 up to 0.9 in cross-
validation test data. While these models are useful for performing
sensitivity analysis on the inputs, however, the main challenge
here is that these purely data-driven models are not useful for
process design and operation purposes. Simply on account of
these data-driven models fails again to predict changing/seasonal
variations in the N2O emissions. In short, we argue that neither

mechanistic nor AI (ML) models alone are able to predictively
describe N2O data.

Proposal of a solution: A multi-disciplinary research field to
advance process modeling in WWTPs
Therefore, our opinion is that neither data alone nor the current
mechanistic models are sufficient to develop predictive models for
emerging sustainability concerns, as argued for N2O emissions. It
is our belief that these models fail to predictively describe the
system due to the lack of incorporation of data directly related to
the composition and activity of the microbial community. One
possible strategy to solve this issue is to describe N2O emissions
with the help of ML models processing biological data (e.g.,
metagenomics) as input and other relevant process data (mass
balances for NO3, NO2, and NH4) through mechanistic process
models. This strategy is sketched in Fig. 4. Here we emphasize the
need to study different AI techniques to extract information from
such untraditional data source, for example, to parameterize the
gene sequence data and forward this as input to ML models (such
as DNN (forward neural network), CNNs, and GANs, among others).
Much research in AI techniques and graph theory has shown its
potential in extracting information from 2-D and 3-D chemical
structure (i.e., feature selection) and process in DNN to predict
some property of interest (e.g., the biodegradability of different
chemical compounds) or in synthesizing new materials such as
zeolites. Indeed, an ambitious research effort is needed to develop
such new AI-based techniques. Here we call for a community-wide
and interdisciplinary collaboration to address several open and
fundamental questions on how to achieve this thoughtful fusion
and integration of data sources and knowledge competencies.
Foremost, does integrating biological data (such as metage-
nomics, meta-transcriptomics, qPCR, FISH, etc.) through ML with
mechanistic models help achieve predictive performance (not just
calibration/training data but test data)? What is the optimal design
of the hybrid integration scheme (parallel versus serial, multi-
plicative versus embedded combination in which rates of
formation of N2O, the active fraction of biomass of different
groups at the genus level is linked with mechanistic models for
mass balances, etc.), what is the efficient integration of data, ML
and mechanistic models for digital applications, among many
others? Which particular metagenomics data is useful for which
modeling purpose? Should we use metagenomics or metabolo-
mics (protein expression data), and for which modeling purpose?
Data extracted from molecular probe techniques are highly

heterogeneous and expensive to gather, usually resulting in much
smaller datasets than those available for other ML tasks. Such
datasets often require featurization, alternatively defined as
feature engineering which is a process of using domain knowl-
edge of the data to create features that help ML algorithms to
learn better. In our proposed vision for hybrid modeling in Fig. 4,
therefore, the feature extraction will be the key step that needs to
be researched and developed to extract useful and related
features to transform molecular/metagenomic data from activated
sludge plants into a form suitable for current machine/deep
learning algorithms. In the wider literature, feature extraction
techniques are fast developing and important field which have
yielded several successful techniques already, such as extended-
connectivity fingerprints, Coulomb matrix, weave featurization,
and graph convolutions. Depending on the chosen featurization,
different types of ML models are also proposed for molecular
datasets, such as message passing neural networks (MPNN), deep
tensor neural networks (DTNN), directed acyclic graphs (DAG),
graph convolutional networks. More details of these different
molecular featurizations and models can be found elsewhere29.
The graph-based featurizations and neural networks have recently
gained significant research attention in cheminformatics and
bioinformatics due to their superior performances on molecular
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ML tasks, as found in recent literature29,30,60. For instance, a spatial
graph-based molecular representation of amino acid residue pairs
has allowed AlfaFold61, an AI program developed by DeepMind, to
perform 3D protein structure predictions far more accurately than
ever made. Similarly, the interactions and the metabolic functions
of microorganisms present in activated sludge systems and how
they affect treatment plant performance metrics, such as N2O
emissions can be studied using graph-based featurizations
extracted from their metagenomics data and thereby used in,
including but not limited to, convolutional type neural networks.
Such networks have already found uses to classify metagenomics
data using patristic distance defined on the phylogenetic tree as a
proximity measure62. Therefore these models can be explored to

establish a link between microorganisms’ cellular level metabolic
activities and the impact measured at the process plant level. Such
an effort requires combining domain specific knowledge from
activated sludge microbiology, e.g. genetic sequence for key
enzymes involved in the metabolism of different N2O production
pathways (e.g. nitrite reduction to NO (mediated by NirK enzyme),
reduction of NO to N2O (mediated by Nor enzyme), etc.) to
formulate/define unique features for the graph neural network
models (GCNN) and extract relevant features/information as input
to the hybrid activated sludge model concept given in Fig. 4.
Precisely this step is the bridge to connect the domain knowledge
and expertise of environmental biotechnology and its genomic
data with process engineering/modeling community and their

Fig. 3 Performance of some N2O models in literature. Illustrations in a and b are from Mampaey et al.55 that shows a two pathway N2O
model application to describe process data from a full-scale SHARON reactor: (top) the calibration results for gas-phase N2O measurements
using a calibration dataset and (middle) the model validation results from using a validation dataset. The illustration in c is from Pocquet et al.56,
presenting a comparison of single pathways versus two-pathway models to describe N2O and NO emission factors from a lab-scale SBR study. It
is noted that most municipal wastewater treatment plants work at lower NO2 levels (lower than 30mgN/L), where model deviations from the
measurements are significant. Figures reused with permissions from Mampaey et al.55 copyright (Elsevier, 2013), and Pocquet et al.56 copyright
(Elsevier, 2016), respectively.
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models. In addition to offering a flexible modeling framework to
include genomic data, this neural-based modeling approach
address an important limitation of the current models. Indeed
the main drawback of the current models is that they assume the
metabolic pathways a priori and formulate a corresponding model
structure, which is fixed and applied to all wastewater treatment
plants by calibrating its model parameters. While in the new
hybrid modeling approach, using metagenomics data one can
extract features that can inform about which pathways are
actually present/active and contributing to dominant microbial
activity such as N2O phenomena, which helps the model to be
valid for each wastewater treatment plant applied and aligned
with underlying microbial community composition and changes.
Future research will therefore be needed to develop customized
neural AI methodologies tailored for the needs and domain of
metagenomics data for use in activated sludge modeling field.
Given these recent advances and successful applications of

GCNN in chemical property prediction to generative adversial
networks (GANs) in materials design and GANs/reinforcement
learning for drug discovery in the wider literature, there is a rich
and ample ground to explore these and many questions in such
an interdisciplinary field to establish the foundation of a new
research area. This presents a rich intellectual basis for improving
modeling (dynamic, steady-state, and meta/surrogate models)
and develop new model-based digital applications, especially for
the sustainable operation of WWTP63. Certainly, there is a need to
join forces with fellow scientists from environmental biotechnol-
ogy (high throughput gene sequencing technology), wastewater
engineering and modeling community, as well as computer
science applications for AI/big data analytics.

CONCLUDING
ASMs have been an invaluable tool to help conceive, design and
operate many wastewater treatment plants. We argue that the
time is opportune to take the field to its next step by leveraging a
multi-disciplinary research approach: combining emerging AI
techniques to extract feature and information from non-
traditional heterogeneous sources of data, as well as increasing
availability and diversity of big data, especially metagenomics
data which is hitherto never been used in the process modeling.
However, much research is needed to exploit the ML approach for
integrating biological molecular data. Thanks to this enhanced

biological phenomena-based approach, we anticipate that the
new research area will be able to generate previously unknown
design, operation, and control solutions to meet the increasing
demand from WWTPs: climate change neutrality, sustainability,
circularity, etc.
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