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Development and use of machine learning algorithms in
vaccine target selection
Barbara Bravi 1✉

Computer-aided discovery of vaccine targets has become a cornerstone of rational vaccine design. In this article, I discuss how
Machine Learning (ML) can inform and guide key computational steps in rational vaccine design concerned with the identification
of B and T cell epitopes and correlates of protection. I provide examples of ML models, as well as types of data and predictions for
which they are built. I argue that interpretable ML has the potential to improve the identification of immunogens also as a tool for
scientific discovery, by helping elucidate the molecular processes underlying vaccine-induced immune responses. I outline the
limitations and challenges in terms of data availability and method development that need to be addressed to bridge the gap
between advances in ML predictions and their translational application to vaccine design.
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INTRODUCTION
Vaccine design is rapidly progressing from empirical to more
systematic, rational strategies that benefit from computational
predictions to assist the identification of pathogen regions
targeted by the immune system (epitopes)1. Examples are reverse
vaccinology approaches for the design of protein subunit
vaccines2, which start from the genetic sequence of the pathogen
and screen the possible antigens by their potential immunogenic
and protective efficacy to select a few main targets. An accurate
selection of targets is essential to imparting specific yet sufficiently
immunogenic stimuli, while potentially avoiding antigens that do
not elicit protective immunity. Since identifying epitope regions
experimentally is resource and time-consuming, predictions in
silico play the fundamental role of narrowing down the number of
candidate targets to carry forward to in vitro and in vivo testing.
As such, they will be key to rapid and cost-effective manufacturing
of next-generation viral vectored or nucleic acid-based vaccines,
first commercially developed during the recent Sars-Cov-2
pandemic3.
Computational screening of putative targets can be performed

via several bioinformatic tools (see for example refs. 4,5), made
available on the Immune Epitope Data Base (IEDB)6 and other web
servers7–9. The methods primarily gaining momentum and
prominence among these tools are the ones from Machine
Learning (ML), the ensemble of algorithms and model architec-
tures to learn from data in such a way as to better analyze them
and make new predictions (see Box 1 for the basic ML
terminology). Several ML-based reverse vaccinology pipelines
have been developed7–15, with promising applications to the
prediction of bacterial protective antigens7,10–12 and Sars-Cov-2
antigens8,13–15. ML can assist several stages of vaccine design16,
but its application is particularly key to a fast and accurate target
selection during the initial phase (Fig. 1a). Here ML algorithms
serve for the identification and optimization of B and T cell
epitopes, and can inform the study of correlates of protection by
helping assess quality and specificity of vaccine-induced cellular
and humoral responses. Important questions in this regard
concern which antibodies and T Cell Receptors (TCRs) bind to
epitopes and trigger specific and high-magnitude responses, but

also which of them can confer cross-variant immunity, a crucial
question to formulate broadly protective vaccines for viruses
undergoing fast antigenic drift like coronaviruses17. ML algorithms
for epitope discovery, immunogen design, and prediction of
epitope-paratope interactions have witnessed massive progress in
recent years, spurred by fast-growing data availability and the
latest developments in ML for protein modeling, standing out as
illustrative examples of the potential advantages of ML in rational
vaccine design.
Despite the success of conventional vaccination strategies, the

molecular and cellular processes contributing to the efficacy and
long-term protection of several vaccines are still not fully
understood. In this regard, ML is emerging also as a tool for
scientific discovery that, while delivering useful predictions for
rational vaccine design, provides new methods for investigation in
systems immunology and proteomics and can thus improve our
understanding of immune responses across individuals.
In this article, I describe the current trends in ML methods for

the discovery of B and T cell epitopes and for characterizing the
response by the adaptive immune system to those epitopes at the
molecular level. While comprehensive reviews of such methods
are provided elsewhere18–24, my aim here is to describe the basic
ideas, model architectures, and types of data involved in recent
developments of ML in this context, as well as to discuss the
prediction tasks and the biological insights made possible by
them. I conclude with a brief overview of other ML predictions
that are relevant to vaccine design (in vaccine construction and
preclinical validation of selected vaccine targets), and with an
outlook on current challenges and important directions for future
work.

MACHINE LEARNING IN IMMUNOLOGY
The development of ML methods for immunology has been
fueled by the production of large-scale immune repertoire and
immunopeptidomic datasets, and their systematic collection and
annotation in specialized databases6,25,26. These data provide
information on the central proteins involved in immune responses
(antibodies, TCRs, antigens), represented in terms of their
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sequence and/or structure (see Box 2 for a description of protein
representations that are relevant to modeling immune
protein data).
Computational techniques of ML applied to large immunologi-

cal datasets can detect statistical patterns reflecting structural and
functional properties, and can leverage them to learn models of
the mapping between a given input (like a protein sequence) to
the structural or functional property (like the protein’s binding
specificity). Learning (or training) a model consists of iteratively
adjusting its parameter values on the available training data (Box
1) in such a way as to achieve a certain prediction task, a
procedure which is typically expressed mathematically as the
optimization of an appropriately defined objective function. Once
trained, the model can be evaluated on new data, enabling novel
predictions and insights fully in silico.
Model training can be performed in a supervised way (Box 1),

like for classification tasks (e.g., classifying epitope vs non-epitope
protein sites) and regression tasks (e.g., predicting the antigen-
antibody binding affinity); or in an unsupervised way, like for
clustering tasks (e.g., grouping TCR sequences with similar binding
motifs). Hence ML is appealing for its predictive and exploratory
power, which helps build accurate prediction models and
facilitates the inspection and discovery of biologically meaningful
features.
The ML predictions related to epitope discovery, immunogen

design, and prediction of epitope-paratope interactions are
typically formulated in terms of ‘scores’, quantifying for example
the probability that a given residue belongs to a conformational
epitope (Fig. 1b) or the probability of peptide presentation and
immunogenicity (Fig. 1d). Assigning these scores enables a fast
ranking of candidate targets and the subsequent prioritization of a
few. It also accelerates additional in silico studies relying on more
computationally intensive methods, like molecular dynamics.
Several ML architectures have been applied in this context (Box

3), which differ by mode of learning supported (e.g., supervised vs
unsupervised), type of prediction (e.g., regression vs clustering),

Fig. 1 ML in vaccine target selection. Schematic of the rational vaccine design process (a) and machine learning applications to key tasks in
vaccine target selection: B and T cell epitope discovery and immunogen design (b, d); characterization of correlates of protection through
quantitative modeling of epitope-paratope interactions (c, e). Structures' images obtained with Mol*199.

Box 1 ML basic terminology

Training set: data used for training the model, i.e., to learn its parameters from the
data. This learning procedure typically consists of finding the parameters that
optimize (e.g., minimize) an ‘objective’ function (e.g., the error of classification or
regression), and can be realized through a variety of algorithms (e.g., gradient
descent algorithms).
Test set: data unseen during training used to evaluate the model’s performance.
Supervised learning: type of learning aimed at modeling an input-output
mapping, where given output values for each input (labels) are used during
training. Example tasks: regression and classification.
Regression: supervised learning task consisting in modeling the relationship
between a (real-valued) outcome variable and some inputs, used to make
predictions on the outcome variable.
Classification: supervised learning task consisting in the assignment of input data
to their class (e.g., the class of positives or negatives in a binary classification
task). Often classification methods predict probabilistic scores of class assign-
ment, and classification performance in this case is typically measured by
the AUROC.
AUROC: Area Under the Receiver Operating Characteristic curve. In a binary
classification task, the receiver operating characteristic curve plots the fraction of
false positives vs the fraction of true positives varying the threshold in the
predicted scores used to discriminate positives from negatives. The area under
this curve (AUROC) is often taken as a summary metric of classification
performance, as it gives the probability by which positive hits are well predicted
by assigning to them higher scores than to negatives (AUROC=1 stands for
perfect prediction, AUROC=0.5 stands for the random expectation).
Unsupervised learning: type of learning where no given labels are used during
training, aimed at analyzing structure and properties of the data. Example tasks:
clustering and dimensionality reduction.
Clustering: unsupervised learning task of sorting data points into different groups
based on intra-group similarities.
Dimensionality reduction: unsupervised learning task where correlations and
patterns in high-dimensional data are used to find a representation of data
points in a low-dimensional space (i.e., specified by a small number of
coordinates).
Semi-supervised learning: type of learning where labels are given only for a
portion of the training set.
Overfitting: outcome of training whereby the model reproduces well the features
of the training set but lacks generalization power, i.e., the power to predict well
unseen data in the test set.
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expressive power (the ability to capture non-linear relationships
and correlations in the data) and interpretability of the predictions
obtained. In general, the choice of a certain ML architecture (e.g., a
transformer vs a convolutional neural network) and of its specific
structure (e.g., the number of its internal layers, setting the
number of parameters to learn) is motivated by the specific
prediction task to achieve and by the type and quantity of data
available for training (for example, more parameters increase the
model’s expressive power but may lead to overfitting). I will
provide an illustration of these model selection aspects while
introducing ML approaches to predicting B and T cell epitopes
and epitope-paratope interactions.

B AND T CELL EPITOPE DISCOVERY
Prediction of B cell epitopes
Broadly speaking, the ML methods used for linear and conforma-
tional B cell epitope prediction are trained in a supervised way to
discriminate epitope sites from generic ones that are typically not
targeted by B cells, outputting an epitope likelihood score for each
site27–36 (Fig. 1b). B cell epitopes are predominantly

conformational, hence their prediction is better supported by
methods trained on protein structures (Box 2), which can exploit
information on the antigen surface topology in addition to the
biochemical composition provided by the sequence.
In general, ML for B cell epitope discovery builds upon feature-

based ML, which performs a key preliminary step of feature
selection and engineering (Box 2). The intuition behind this is that
only a few sequence and structure properties contribute to
determine whether a residue is an antibody binding site. Indeed,
residues’ physico-chemical properties have been suggested to
favor the maturation of high-affinity antibodies, and have been

Box 2 Protein representations

The way in which we represent input data for modeling purposes has a crucial
impact on the information we are able to extract from them. Protein modeling
approaches are mainly divided into sequence-based and structure-based,
depending on whether the protein data are represented by the set of the
protein’s constitutive amino acids (sequence), each of them being denoted by a
letter, or by the spatial coordinates of the amino acids’ atomic constituents
(protein structure). The sequence representation is typically useful for the
retrieval and analysis of sequence motifs, given by recurring groups of amino
acids bearing functional significance (e.g., epitope-paratope binding sites, see
Fig. 1e). The structure representation provides access to multiple potential levels
of description, e.g., the global topological organization of the protein fold,
structural motifs (like α-helices and β-sheets), protein surface characteristics, and
residue-residue connectivity. Structure-based representations concentrating on
residue-residue connectivity are often informative enough for functional
characterization of protein sites while being more parsimonious (hence
computationally less demanding), because connectivity encodes information
related to molecular shape and flexibility, local residue motions upon ligand
binding and allostery. Representations of this type are graph-based representa-
tions, which model atoms or residues as nodes of a graph, while edges between
nodes recapitulate closeness in space and chemical bonds. As such, they are also
well-suited to build ML models that can capture local symmetries and generate
predictions that are invariant under geometrical transformations like rotations51.
The choice of a representation depends on reasons of data availability,
computational expediency, and is informed by domain knowledge, which can
suggest the data characteristics (‘features’) or the level of approximation most
adequate to a given prediction task. The main idea behind feature-based ML is to
select and design sets of features to use as data representations that are fed into
a ML method as inputs. Features to describe protein regions of interest typically
summarize their biochemical (for example, hydrophobicity, polarity) and
geometrical (for example, surface area, accessibility) properties. A heuristic,
hence approximate, choice of features can be however labor-intensive and has
inevitably limited predictive power. A novel approach enabled by ML is the one
of learning data representations that are discriminative for prediction.
‘Representation’ in this context is meant as the outcome of learnable
transformations applied by the ML model to each data point, ahead of
computing the final output. It consists of a vector of numerical values specifying
the data coordinates in the model’s representation space (it is usually referred to
also as ‘vector embedding’). Examples are: the low-dimensional representations
used by RBMs (Box 3) for dimensionality reduction, which has been leveraged to
predict antigen-HLA specificity89 (Fig. 2b); the high-dimensional vector embed-
dings of language tokens learnt by language models (Box 3) to capture fine-
grained contextual information, which has been leveraged to predict B cell
epitope residues36. The key advantage of mapping data onto a representation
space is that vicinity in this space reflects similarities between data points, for
example, for proteins, similarity in sequence composition or in the structural
arrangement. As such, the organization of protein data in this space is
informative about shared structural and functional properties and phylogenetic
relationships, facilitating subsequent prediction tasks as well as data exploration
and interpretation152.
There is a subfield of ML, ‘representation learning’200, concerned precisely with
the design of ML strategies to learn informative, useful, and meaningful data
representations, hosting active research on representation learning for
proteins201.

Box 3 ML architectures

Feed-forward neural network: a neural network is a ML model consisting of: an
input layer (a set of units representing the single components of the input data,
e.g., for protein sequences, the residues’ identities or physico-chemical proper-
ties); an output layer (a layer where each of its units stands for a model’s
prediction); usually an additional stack of intermediate layers of units (called
hidden layers). A feed-forward neural network is one of the most common neural
networks, where the units in each layer are connected only to the units of the
following layer through a set of parameters (weights) learnable during the
model’s training, in such a way that the information flows only in the forward
direction (from the input to the output through the hidden layers), see for
example Fig. 2c. Each hidden layer implements a transformation of the output
from the previous layer through a typically non-linear learnable function; the
non-linearity of such transformations is key to their ability to learn complex
input-output functions.
Restricted Boltzmann Machine (RBM): generative ML model whose architecture
consists of an input layer connected to only one hidden layer, see for example
Fig. 4d. This architecture parametrizes a probability distribution over the input
data and the hidden units (from which the probability of the data can be
retrieved by marginalization over the hidden units). The hidden layer is useful for
increasing the model’s expressive power and for dimensionality reduction, see
for example Fig. 2b.
Deep learning: ML methods relying on neural network architectures with multiple
hidden layers.
Convolutional Neural Networks (CNNs): neural networks containing convolutional
layers, firstly developed for applications in computer vision. A convolutional layer
implements a transformation called convolution between a region of the input
and a small matrix of learnable weights (filter), which is progressively swept
across the input. The use of the same small filter enables the detection of
localized features and the equivariance of predictions (i.e., when input features
are translated the output of the convolutional layer is translated consistently),
which ensures that feature detection is robust to its exact position.
Decision tree: ML algorithm generating a tree-like structure through a series of
decisions based on the input features, which serve to obtain the final
classification or regression prediction, see for example Fig. 4a. One of the most
popular applications is within methods that train ensembles of decision trees and
combine their predictions to gain robustness and generalization power, like
random forests.
Language models: ML architectures developed to model relationships in language
data, like sentences, used for language processing tasks such as machine
translation, keyword recognition and text generation. Language models are
currently widely adopted in protein modeling, where protein sequences are
treated in analogy to sequences of text symbols. One of the most powerful
language model architectures is the transformer, a neural network which
processes sequences of symbols by alternating attention-mechanism layers and
non-linear transformations. The transformer is increasingly preferred to other
established language models, like Recurrent Neural Networks (RNNs) and Long
Short-Term Memory (LSTM) networks, due to its ability to effectively capture
long-range dependencies between symbols and hence to produce fully
contextual representations.
Attention mechanism: after its introduction in the transformer architecture, it has
become a key building block of language models and other deep learning
architectures. The attention mechanism assigns to each input component (like a
text symbol) a score quantifying its relevance to the context of the other input
components, based on the statistical dependencies detected. The set of these
scores for the different input components forms an attention map (see for
example Fig. 4c).
Generative models: models that perform density estimation, i.e., they reconstruct
the probability distribution from which the data have been generated,
supporting the design of synthetic data by sampling from the learnt distribution.
For sequence data, generative models range from probability distributions
obtained simply from the frequencies of symbols at each position (independent-
site models, see for example Fig. 2a), to probability distributions specified by
shallow ML architectures like RBMs or by deep generative language models
based on transformers, RNNs and LSTMs. Other generative ML architectures
increasingly employed in protein modeling are variational autoencoders202,
generative adversarial networks203, and diffusion models204.
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used for epitope identification also before the advent of ML37,38,
along with conformational properties such as flexibility39, residue
protrusion40,41, and surface accessibility42. Feature selection
enables as well to reduce the dimensionality of the input data
(otherwise specified by thousands of atomic coordinates), with
gains in computational efficiency. In conformational epitope
discovery, these features typically consist of physico-chemical
attributes (e.g., hydrophobicity and electrostatic potential28,33),
high-level geometric properties (e.g., type of secondary struc-
ture28,33, solvent accessibility and average curvature of the
molecular surface28), evolutionary information (e.g., conserva-
tion28,33), and specific combinations of amino acids in pairs or
triplets29.
Graph-based representations (Box 2) of epitope regions have

also been used in this context along with residue physico-
chemical properties29,33. ML approaches based on graph-
theoretical descriptors have been successful at protein design43,44,
identifying interaction sites45–49, and predicting the effect of
mutations50: all these works provide additional examples of
feature selection and learning strategies that could be adapted to
the epitope identification problem as this field progresses and
new data become available. The motivation for developing graph-
based approaches to epitope identification is that epitope regions
exhibit distinctive signatures (in terms of residue packing as well
as type and topological arrangement of bonds) that can be
conveniently summarized by a graph representation29,33. An
advantage of graph-based ML is that it can leverage efficient
algorithms from the well-established field of graph theory51. The
challenge however remains of determining the appropriate scale
for constructing the graph (e.g., atom vs residue level), and the
information to embed in the definition of graph links (e.g.,
whether weighting them by geometrical characteristics of the
modeled protein region29). The design of graph-based descriptors,
and more generally feature engineering, depend on our under-
standing of the most relevant features, which can render the
predictions prone to bias due to over-reliance on certain
properties commonly associated to the functional behavior of
interest (e.g., a protrusive instead of planar surface for epitopes29).
Even if correlations of epitope propensity to chemical and
geometrical features have been established, an open question is
how they should be combined when used as inputs of ML
algorithms to achieve an accurate epitope prediction. At present,
there are no general guiding principles to address this problem,
which is mainly dealt with by careful and potentially very time-
consuming work of systematic feature elimination and search over
feature combinations.
A new approach that has led to substantial gains in

performance at B cell epitope identification is the one of learning
protein representations tailored to the B cell epitope prediction
task (Box 2). Ref. 35 has pioneered this approach, using deep
learning to build representations of spatio-chemical arrangements
of residues’ neighborhoods that are informative about protein-
protein binding and epitope recognition (see also section
Interpretable machine learning approaches). Another approach
recently proposed36 is to appeal to residue-specific representa-
tions extracted by protein language models (Box 2), learnt in such
a way as to embed contextual information (the rest of the
sequence and the backbone structure52), and use them as
information-rich inputs to train a ML epitope predictor. The key
idea behind this approach is that the unsupervised learning of
language models from massive protein datasets discovers inter-
residue dependencies that are not captured by handcrafted
features, and that can be leveraged for the downstream task of B
cell epitope prediction, reaching a performance AUROC ~ 0.8 36

(Box 1).
In general, efforts of structural characterization of the targeted

protein, already pursued through comparative protein structure
modeling53 and protein-protein docking54–57, can serve to

optimize the antigen-antibody interaction surface1,58 (Fig. 1b),
and to identify amino acid substitutions conferring enhanced
conformational stability and expression (for example the 2 proline
mutations at positions 986 and 987 for the Sars-Cov-2 spike
protein, included in several COVID-19 vaccines59). ML has the
potential to assist this task by identifying residues most involved
in conformational variation60, whose mutations can be further
studied via molecular dynamics, or by predicting free energy
changes upon residue mutations61–63. While the performance of
the later approaches seems stagnating63, recent progress in deep
learning-based protein design holds promise to be useful at
proposing expression and stability-enhancing mutations64.
On the other hand, ML predictors of B cell epitopes that are

sequence-based27,30–32 (Box 2) are more convenient than
structure-based ones, due to their higher computational speed.
Despite having typically lower performance compared to
structure-based ones (AUROC slightly above 0.75 for the example
of state-of-the-art method of ref. 31), they enjoy a wider and more
flexible scope of application given the large number of protein
sequences available compared to structures. They are better-
suited for linear B cell epitopes, but they are potentially useful also
for conformational ones by capturing, thanks to the context-aware
representations from protein language models (Box 2–3), func-
tional dependencies between amino acids far apart along the
sequence but proximal in the 3D structure31.
ML methods like AlphaFold65–67, trRosetta68, and RoseTTAFold69

can bridge this scale gap between sequence and structure data
availability by enabling predictions of protein structure from
sequence alone with unprecedented accuracy. Predictors of
protein structure have huge potential still to be fully explored
for the design of immunogens guided by structural insights59,70,
as well as for antibody and TCR engineering. Antibody-specific
predictors have been proposed71–74 based on deep learning
architectures similar to AlphaFold, TrRosetta and RoseTTAFold. A
specialized version of AlphaFold has been developed to study the
structural interactions of the molecular complexes antigen-TCR75.
In addition, ML-predicted structures are used for the complemen-
tary task of data augmentation, i.e., to enlarge the available
training and test sets36,74,76. However, paratope, epitope, and in
general functional site identification remains challenging even
with the availability of these methods; for instance, the prediction
of epitope-paratope binding sites by Alphafold-Multimer67 (the
AlphaFold method tailored to protein complexes) was found to be
inaccurate35,67.

Prediction of antigen presentation
Protein targets of T cells are presented on the cell surface as short
linear epitopes by the Human Leukocyte Antigen (HLA) com-
plexes, with the epitopes of killer T cells presented in the context
of HLA class I (HLA-I) molecules and the ones of helper T cells
presented by HLA class II (HLA-II). Antigen presentation is the most
selective step determining what pathogenic protein regions are
likely to be targeted by T cells, hence its computational prediction
is key to filtering effectively candidate targets for vaccine design
(Fig. 1d). For example, the proteome of SARS-CoV-2 harbors ~ 104

potential 9-mer HLA-I antigens. Bioinformatic analyses typically
seek for ~ 1% of these peptides as predicted presented antigens
per HLA allele77, corresponding to general estimates of the viral
peptidome fraction that binds to HLAs78.
Figure 2 illustrates how the different ML concepts and methods

in Box 1 and Box 3 have been adapted to the prediction of HLA-I
antigen presentation (see also refs. 18,19 for comprehensive
reviews). Existing ML predictors range from unsupervised cluster-
ing methods to perform binding motif deconvolution from
unannotated eluted ligand data, like MixMHCp and
MixMHCpred79–81 (Fig. 2a), to feed-forward neural networks
trained in a supervised way to predict peptide presentation from
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known peptide-HLA pairs, like MHCflurry82,83 and the NetMHC and
NetMHCpan suites84–88 (Fig. 2c). An alternative approach is RBM-
MHC89, which addresses the problem of assigning antigens to
their respective HLA-I molecule in newly produced or custom
immunopeptidomic samples by resorting to a semi-supervised
strategy (Box 1). The ML architecture here (a Restricted Boltzmann
Machine, RBM, see Box 3) internally transforms sequence data
onto a lower-dimensional representation, which facilitates the task
of annotating antigens by their HLA-I type, since in this
representation space antigens cluster by their HLA-binding motifs.
Such a cluster structure enables to build an accurate predictor of
HLA specificity using only a small amount of HLA-annotated
antigen data from public databases (Fig. 2b). In addition,
MixMHCp and RBM-MHC (Fig. 2a, b) learn generative models
(Box 3), i.e., they estimate the probability distribution describing
the immunopeptidomic data, assuming a different parametric
form for such a distribution (respectively, a mixture of probabilistic
independent-site models and an RBM). This peptide sequence
probability can be used as a probabilistic score of presentation to
distinguish presentable from generic non presentable sequences.
The data used to train these methods are HLA-antigen binding

assays and eluted peptidomic data obtained via mass spectro-
metry, to a large extent publicly available in the database IEDB6.
Recently there has been a shift towards an increasing use of
eluted data from mass spectrometry83,88,90–94, which allow one to
machine-learn information about all the steps of HLA-mediated
processing and presentation83,92,94, and not only peptide binding
affinity to the presenting HLA. For instance, the most recent
versions of NetMHCpan have been tailored to integrate both data
types to boost performance87,88 (Fig. 2c).
Currently, HLA polymorphism remains an unmet challenge for

HLA-I presentation prediction. Most of the methods achieve near-
perfect prediction for common HLA alleles, but perform poorly for
rarer alleles. Improving the accuracy of predictors across all HLAs is
key to ensuring high HLA coverage of vaccines across human
populations. This problem has motivated the development of
methods that use information on the HLA sequence to deliver HLA

pan-specific predictions, like MHCflurry 2.083 and NetMHCpan
methods87,88 (Fig. 2c), and methods that can be easily re-trained
by the user on newly available HLA-specific datasets89.
Predicting the presentation by HLA-II is much more challenging

due to limited data availability and the diversity of allele-specific
binding motifs. The data used for training the predictors are still
limited to a few alleles (mainly from the genetic locus HLA-DR),
and precisely the increased quantity of data on HLA-II presented
peptides has been key to the latest improvements in prediction
performance91,93,95–97, especially for less well-characterized
alleles97. Binding-motif diversity is two-fold: first, alternative
binding modes for the same HLA allele, including binding in the
reverse peptide orientation, have been documented96; second,
HLA-II presented peptides exhibit substantial variability in length
(12-25 amino acids, compared to 8-14 for HLA-I), with multiple
peptides of different length sharing a similar binding core at a
variable starting position. To deal with this difficulty, state-of-the-
art methods91,93,95 implement a dynamical search for the binding
core within each peptide, either by scoring different sliding motifs
along peptides93,95, or by appealing to the ability of Convolutional
Neural Networks (CNNs, Box 3) to detect features regardless of
their exact location91. Currently positive hits are distinguished
from negative ones with AUROC in the range 0.8-0.85 at best,
indicating that there is still room for improvement in performance.

Prediction of antigen immunogenicity
Only a subset of HLA-presented antigens is immunogenic, so a
few computational and ML methods have been proposed to
predict which presented antigens tend to promote a T cell
response and are likely to be immunodominant. Predictors of T
cell epitope immunogenicity typically compare presented anti-
gens that are immunogenic to non-immunogenic ones to
estimate scores of immunogenicity, both for HLA-I98–104 and
HLA-II peptides101,105. Such scores can be predicted based on the
single-site amino acid enrichment in immunogenic vs non-
immunogenic antigens98,99 or by supervised ML methods that

Fig. 2 Antigen presentation prediction. Examples of predictors of HLA class I antigen presentation that are based on different types of ML
methods: a MixMHCp79,81 is an unsupervised method using a mixture of probabilistic independent-site models to perform clustering of
peptides and binding motif deconvolution; b RBM-MHC89 is a semi-supervised method relying on a dimensionality reduction step (performed
through an RBM model) to leverage small amounts of antigens labeled by their HLA specificity to train an HLA-type classifier;
c NetMHCpan87,88 is based on a supervised feed-forward neural network trained on antigen and HLA sequences to predict peptide binding
affinity (from affinity data) and a score of peptide elution (from mass spectrometry eluted data).
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are trained to discriminate them, using only sequence informa-
tion100,101,103–105 or including also the peptide-HLA complex
structure102. In these studies, the propensity to TCR binding has
been correlated to physico-chemical properties of the peptide’s
side chains facing out from HLA binding groove, such as
hydrophobicity and aromaticity, and based on this observation
some predictors select a priori peptide positions98,99,103,104 or
amino acid properties100 deemed to be important to immuno-
genicity. The ML approach we have recently proposed106 models
immunogenicity by learning the statistical differences in amino
acid composition between immunogenic and presented-only
antigens, avoiding the need for data validated as non-immuno-
genic, and recovering, instead of assuming a priori, the peptide
positions and properties more frequently involved in TCR
response.

The prediction of T cell epitope immunogenicity is of particular
interest in pipelines of neoantigen discovery for the design of T
cell-based anti-cancer vaccines107–109. Prediction methods here
need to take into account immunogenicity-determining factors
specific to immunity in cancer, such as low cross-reactivity with
self-antigens and clonality of mutations. A recent large-scale
validation of existing predictors used for neoantigen discovery has
highlighted the need for substantial improvement in their
performance110.
Indeed, in general, immunogenicity prediction methods have

maximal AUROCs ~ 0.7103,106 (hence lower than for B cell epitope
prediction), and in particular the performance becomes poor
beyond a few immunodominant epitopes presented by com-
mon HLAs21. A main shortcoming is that the biological
parameters determining immunogenicity, and hence to account
for in a ML model, remain to be understood. For example, there

Fig. 3 Epitope-paratope interaction prediction. Scheme of ML methods to predict epitope-paratope interactions for B and T cells, organized
in terms of type of input: applicable to TCR/antibody sets only (a, b) vs TCR/antibody-antigen pairs (c, d); sequence (a, c) vs structure-based
(b, d). Structures' images obtained with Mol*199.
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is no consensus regarding whether high affinity and stability of
binding to the HLA is correlated to high immunogenicity111,
observed in some settings112,113 but not in others114. A
paratope-agnostic identification of epitope sites, which side-
steps the details of specific epitope-paratope interactions, has
clear advantages in a translational setting of vaccine or therapy
design but has also limited predictive power, because sequence
and structure of the target protein are not the only determinants
of a positive immune response. Modeling epitope-paratope
interactions is hence crucial to improve epitope prediction, as
well as to characterize more globally correlates of immune
response upon vaccination (Fig. 1c, e).

EPITOPE-PARATOPE INTERACTIONS
Another area relevant to rational vaccine design is modeling
through ML the specificity of epitope recognition both by TCRs (as
reviewed in refs. 22,115), and antibodies (as reviewed in refs. 23,24).
These ML models are trained on: (i) sets of TCR/antibody only (Fig.
3a, b); (ii) TCR/antibody-antigen binding pairs (Fig. 3c, d).
Examples of ML models of type (i) are the ones built for in silico

paratope identification in antibodies, based on the assumption
that the position of the paratope is largely antigen-independent.
ML methods here are trained to classify an antibody residue as
part or not of the paratope, estimating for each residue a
probabilistic score of belonging to it76,116–118; their performance is
currently quite high (AUROC above 0.9, see one of the latest
comparisons in ref. 76). In silico paratope identification is relevant
especially to antibody design, since it helps propose putatively
binding-improving mutations72. Other main examples of ML
models of type (i) are generative models (Box 3) learnt from
TCR/antibody sequences (Fig. 3a), which estimate a sequence
probability distribution119–126. Generative models are generally of
great interest to the field of molecular design: sampling from the
learnt distribution allows one to generate putatively functional
synthetic data, for instance antibodies with optimized binding
properties124–126. Several ML models of type (i) are trained on sets
of TCR sequences binding to the same antigen, predicting scores
to classify new TCRs as specific or unspecific to the corresponding
antigen119–122,127–130 (Fig. 3a). Some of these approaches can also
detect recurrent amino acid motifs in TCRs that are the statistical
signature of antigen-binding specificity120,122,128, similarly to the
clustering methods designed for binding motif discovery131–133

(Fig. 1e).
Models of type (ii) attempt to model the specific interactions

involved in epitope-paratope binding. They can typically predict
binding scores, that are able to discriminate epitope-paratope
binding pairs from non-binders134–143. These predictions are
useful to characterize antigen specificity of unseen
TCRs134–140,143–146, to identify paratope and epitope sites147, and
to accelerate further analyses through docking algorithms, e.g. by
improving the selection of docking poses142,148. Such binding
predictions can inform vaccine design, because they enable the
screening in silico of putative antigen targets against large sets of
TCRs and antibodies, thus helping characterize them in terms of
elicited response, dominance and prevalence.
Similarly to conformational epitope discovery, structure-based

methods for epitope-paratope interactions (Fig. 3b, d, Box 2)
generally rely on a first step of feature selection, which extracts
and embeds into feature variables their physico-chemical and
geometrical properties118,143,147–149, including graph-based repre-
sentations of the interface regions76,147,148; ML predictors of
epitope-paratope binding are then trained on these features.
Epitope-paratope interactions are mediated by binding motifs

that vary position and composition-wise across antibody-antigen
pairs, as a consequence also of the variability in length of the
Complementarity Determining Regions (CDRs). Identifying such
motifs calls for prediction tools that are able to leverage

information from residue neighborhoods and detect spatially
localized features independently of their exact position. This type
of prediction resembles the object recognition task in computer
vision, where the state-of-the-art ML tools are CNNs (Box 3). CNNs
have become a main trend in ML architectures for structure-based
epitope-paratope binding142,147 along with neural networks
designed to process graph-shaped inputs76,148. The richness of
structural information enables the prediction of antigen specificity
in TCRs with a performance comparable to sequence-based
methods, despite the smaller training datasets143. It enables also
to model the mapping between the antibody-antigen complex
structure and its binding affinity148,149 (Fig. 3d), with a perfor-
mance, estimated through the correlation coefficient between
true and predicted affinity values, of up to 0.79149.
Sequence-based methods (Fig. 3a, c, Box 2) appeal as well to

deep CNNs116,117,128,134,135,137,138,140,141,144,145, while in general
spanning a variety of ML architectures, from decision trees and
random forests129,150,151 to networks based on the attention
mechanism122,134,139,140 (Box 3). Most recently, sequence-based
methods have benefitted from the breakthroughs in ML for
natural language processing, with several methods for epitope-
paratope interactions and paratope prediction directly using
language model ML architectures116,121,123–126,130,136,137,146 (Box
3). These architectures capture potentially long-range dependen-
cies between residues along the sequence, resulting in represen-
tations of each protein site capable of incorporating the effect of
the physico-chemical context152,153.
A recent public benchmark of sequence-based methods to

predict TCR-epitope specificity has flagged up a few important
trends115. Firstly, data set the performance to a larger extent than
the particular model architecture. Indeed, the generalization
power of different methods is consistent across antigens, with
typical AUROCs in the range 0.7–0.9, and is correlated to the
heterogeneity in sequence composition of TCRs binding to the
same antigen. Secondly, predicting antigen specificity based on
the TCR sequence similarity provides already a good baseline
performance, in line with the observation of enriched sequence
motifs in TCR sets with a given antigen specificity. Finally, the gain
of deep learning over simpler models seems modest with the
available data. Given that training deep learning models is data-
demanding, tests on larger datasets are needed to clarify
this point.

INTERPRETABLE MACHINE LEARNING APPROACHES
The need to better understand the molecular basis of epitope
immunogenicity and epitope-paratope binding specificity high-
lights the importance to be able to extract biological insights from
ML models. ML approaches that are explainable in terms of
biological modes of action are increasingly recognized as a priority
in immunology154,155, and more generally for ML applications of
biomedical and clinical relevance156. Figure 4 introduces, in the
form of graphical sketches, examples of ways in which the
predictions from ML models can be made biologically inter-
pretable, and how they have been employed in epitope discovery
and epitope-paratope interaction studies.
Decision trees (Box 3) have been used for a variety of

predictions relevant to immunology30,101,149,157, including classify-
ing TCRs into specific binders of an epitope or non-
binders129,150,151. The model ‘decides’ whether a TCR is binder or
non-binder through a series of splits in the space of sequence
features (e.g., average and positional physico-chemical properties),
which are determined by whether a given feature is higher or
lower than a threshold. Such decision rules take into account one
feature at a time, hence the importance of each feature to the final
prediction can be evaluated (Fig. 4a). Based on this analysis, ref. 150

finds that the average basicity of the CDR3 (on the β chain), as well
as basicity and hydrophobicity of the amino acids in the CDR3β
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center, play an important role at discriminating epitope-specific
from unspecific sequences.
Explainable predictions can be obtained in a model-agnostic

fashion by applying interpretability pipelines, for example the one
estimating ‘anchors’158. An anchor is an explanation that ‘anchors’
the model’s prediction locally to specific data attributes and
formulated as an if-then rule. Once applied to models for
classification of TCRs by epitope specificity159, anchors recapitu-
late the presence of specific amino acids in certain positions of
epitope-specific TCR sequences (Fig. 4b), for example polar amino
acids like serine (S) in the CDR3β binding to the peptide
KLGGALQAK159.

The attention mechanism typical of transformers has been
increasingly explored as tool to gain interpretability in protein
language models160 (Fig. 4c, Box 3). For each sequence, an
attention map describes how relevant each residue on the
horizontal axis is in the prediction of all the other residues
(vertical axis), detecting in this way structurally and functionally
important residues that exhibit correlations with the other ones. In
transformer models of antibody sequences, attention concen-
trates on sites in contact or belonging to the paratope123 (Fig. 4c).
ML architectures with a limited amount of parameters are more

amenable to the inspection of the biological information learnt,
for instance by direct visualization of their parameters. A point in

Fig. 4 Strategies of ML model interpretability. a Feature importance; b interpretability pipelines; c attention maps; d weights visualization;
e learnable spatio-chemical filters.
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case is the RBM architecture used to predict antigen presentation
in ref. 89, whose main parameters are the sets of weights
connecting the input layer to the only hidden layer (Box 3, Fig.
4d). The visualization of weights entering one hidden unit
highlighted the existence of two distinct binding motifs within
antigens of the same HLA type89, which correspond to two
alternative and structurally validated HLA-binding modes81.
Antigens bearing the different binding motifs can be readily
distinguished via the projection of the data onto this set of
weights (it is indeed this projection onto one or more sets of
weights that defines the coordinates of the model’s representa-
tion space, where antigens cluster by sequence motifs connected
to their HLA binding properties, see Fig. 2b).
Finally, so-called ‘geometric’ deep learning161 is another

approach with potential for interpretability, as it models the
underlying regularities of the data and leverages them for
prediction. The protein binding site prediction method in ref. 35

implements this approach through the convolution (Box 3) of
geometric representations of protein regions at the atomic and
amino acid scale with learnable filters. Visualizing the parts of
these representations that most contribute to each filter’s output
results in interpretable spatio-chemical patterns, defined by sets of
biochemical attributes (like specific amino acids and their degree
of solvent exposure) along with their spatial coordinate (Fig. 4e).
Such patterns highlight co-determinants of protein-protein bind-
ing like coordination number and electrostatic potential, generat-
ing insight also into the physico-chemical principles underlying
antibody-epitope binding. For instance, ref. 35 detects a pattern at
the amino acid scale positively correlated with epitope probability
consisting of an exposed, charged amino acid close to a disulfide
bond: this is a structural motif that confers stability, and hence
plausibly facilitates high-affinity antibody binding.
These examples show that there exist interpretability strategies

that are model-specific, relying on specific building blocks of a
given ML architecture (like attention maps, Fig. 4c), and model-
agnostic ones (like anchors, Fig. 4b), which are more broadly
applicable to ML models to explain their output. In all cases,
domain expertise has been essential to assess the biological
relevance of the patterns learnt from immunological data.
Strategies like the ones discussed, combined to domain expertise,
point towards the feasibility of intepretable ML for molecular
biology, and provide the basis for further work in this direction.

COMPUTATIONAL AND ML TOOLS IN VACCINE DESIGN
BEYOND EPITOPE PREDICTION
Epitope identification is the most important prediction in rational
vaccine design, yet it is only the starting point of the elaborate
and challenging process of vaccine design (Fig. 1a). After epitope
prediction has returned a set of vaccine candidates, additional
computational methods and analyses are needed, first of all for
the evaluation of structural and functional features of the
candidate targets. This might further inform their selection and
optimization along with the ML-enabled prediction of epitope-
paratope interactions already discussed. Such evaluation steps
(see refs. 13,15,162–164 for examples) consist of: structural modeling
(e.g. with the tool165), to ensure surface accessibility of the
predicted epitopes; molecular docking and molecular dynamics
(e.g. with the tool166), to probe the stability and affinity of the
binding between vaccine targets and immune receptors; screen-
ing of the targets’ similarity to the host proteome and of
allergenicity (e.g. with the tools167,168), to discard the targets that
can potentially trigger auto-immune reactions and side effects;
evaluation of population coverage of the selected epitopes (e.g.
with the tool169), as well as their degree of conservation, since
targeting conserved regions might increase cross-variant protec-
tion; an assessment of biochemical properties such as solubility
(e.g. with the tools170,171) that are key to the delivery and

molecular mode of action of the selected targets; computer
simulations of the immune response elicitable (e.g. with the
tool172), to optimize vaccine dosage, formulation, and schedule.
(The analysis resource section of IEDB6 makes available a number
of computational tools for these tasks). ML is emerging as a
technology that can assist also several of the evaluation steps,
starting from structural characterization through the ground-
breaking new ML methods for protein structure prediction65–69, as
mentioned above. ML is increasingly used in drug design to
predict computationally a number of molecular properties (for
example solubility173,174); as such, it can guide the selection of
adjuvants in vaccine construction164,175 or help predict mRNA
stability to optimize mRNA-based vaccines’ intracellular
delivery176.
Immune simulation approaches are moving toward combining

the digital twins technology with ML177, an arena where ML can
serve to incorporate proficiently pharmacokinetic and molecular
binding data in the digital twin’s parameters to calibrate. In silico
clinical trials178 are another set of computational models and
simulation techniques to assist the assessment of safety and
efficacy profiles in vaccine design. It is increasingly recognized
that in silico clinical trials can be empowered by ML for tasks like:
data augmentation (by generating synthetic patients to comple-
ment small-size cohorts178); outcome and response prediction156

(by detecting patterns in electronic records on previous trials and
harnessing them for prediction); automation and optimization of
participant recruitment, data collection and management, and
trial monitoring156,179,180. These example tasks illustrate how ML
could inform the design and planning of actual clinical trials to
help improve their feasibility, efficiency, and success rate, albeit
more work is needed for the large-scale deployment of such
techniques.
Finally, a complementary and much needed scope of use for ML

is to predict regions of the viral genome prone to harbor
mutations, in such a way as to anticipate new variants before they
emerge and design vaccine strategies robust to them. Approaches
combining mathematical modeling and statistical learning have
been developed to detect high-mutability regions181,182 and to
model the fitness gain and potential for immune evasion
conferred by mutations183,184. ML will contribute to boost their
accuracy and applicability, by enhancing our understanding of
epitope determinants in protein structure and sequence space
and of the impact of mutations on epitope-paratope interactions.

LIMITATIONS, CHALLENGES, AND PERSPECTIVES
In this perspective, I have discussed the type of predictions and
methods by which ML can inform and guide vaccine target
selection, mainly the tasks of B and T cell epitope discovery and
the prediction of epitope-paratope interactions. There is a series of
limitations and challenges, both at the level of datasets and
methodology, that, once overcome, could pave the way to the
wide application in rational vaccine design of the latest
developments in this field.

Data availability and quality
A key aspect to consider is that type, quality, and quantity of
training data are crucial to the predictive power of any ML
approach.
The main bottleneck preventing major leaps forward in the

predictive performance of both structure- and sequence-based
epitope-paratope interaction models is the scarcity of data to use
as training sets. Training data should be seen as realizing a
sampling of the full space of sequences and structures to model,
and this sampling should be ideally exhaustive, or at least
representative, of the modeled space and consistent. Major
challenges are the extreme diversity of both the epitope and
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paratope sequence spaces to sample185,186, the cross-reactivity of
epitope-paratope interactions, especially for T cells187,188, and
their conformational diversity, with multiple binding modes even
for the same target189. Assays sampling epitope-paratope binding
pairs in a high-throughput fashion are lacking, already at the
sequence level, and the available sequence data often consist only
of a single chain. Available structural data, as mentioned, are even
sparser. By way of example, solved structures of antibodies to date
amount to a few thousands (7967 on the SabDab database26) and
the ones of TCRs to a few hundreds (605 on the STCRDab
database190). Ad hoc ML strategies can mitigate in part the
problem of scarcity of data on epitope-paratope interactions by
modeling them as particular instances of general protein-protein
interactions, for which more data are available. Based on this
assumption, a ML strategy pursued is to pre-train a model on
these data, and next to fine-tune the model’s parameters on the
epitope-paratope datasets134,147.
In addition to the limited amount of data, there is the problem

that the aggregation of data from heterogeneous experimental
assays can become a noise source, and the one of sampling
biases. Antigens of biomedical interest that give rise to positive
responses tend to be over-represented111,191, making it difficult to
label with confidence ‘negative’ examples36,192; such a redun-
dancy at the antigen level leads to models that are prone to
overfitting and with imbalanced performance across epitopes
(and concomitantly HLA types). Biases in the data can further
propagate when new targets tested are chosen based on
predictors trained on biased data, as it has been discussed in
relation to peptide-HLA binding affinity assays193. On the other
hand, mass spectrometry techniques used to map HLA-bound
peptides suffer from technical biases in the detection of some
amino acids, e.g. cysteine19,193.
An area requiring a concerted effort of the immunology

community is thus the production, curation, and dissemination
to ML experts of high-quality and internally consistent datasets.
Efforts of method development need as well to be cognizant of
existing biases, for example by including corrections for biased
amino acid detection by mass spectrometry to improve perfor-
mance for cystein-containing peptides89. Another promising
avenue to resolve the lack of truly negative examples is to rely
on ML approaches trained on positives vs unlabeled examples36 or
positives only106,119,120,146. Bayesian inference has also been
proposed to take into account biases and uncertainty in database
annotation on T cell epitope immunogenicity and include
systematically information on the number of responders to a
given epitope194. Given the importance of the training data in
setting performance, methods should be designed in such a way
as to make re-training on newly produced data feasible and
straightforward.

Prediction performance and method integration
The advent of ML algorithms for the tasks discussed has led to
better performance compared to more traditional bioinformatic
approaches, yet there is still substantial room for improvement.
Controlled comparisons carried out in the literature are helping

elucidate the entity of the improvements brought along by ML
over bioinformatic approaches based on motifs, sequence
similarity, or selected biophysical properties. The rather simple,
linear motifs describing peptide-HLA-I binding preferences are
well characterized by matrix-based models scoring independently
every peptide position79,81, which have then comparable perfor-
mance to neural network methods at scoring HLA-I presenta-
tion18,19,88; relatedly, the later methods tend to rely on shallow
networks (typically limited to one hidden layer). To predict the
immunogenicity of HLA-I-presented epitopes, we found that ML
tools perform better than matrix-based ones, but also in this case
the optimal predictor of immunogenicity is given by a shallow, as

opposed to a deep, network106. ML methods give the best
performance at predicting TCR specificity to HLA-I epitopes, but
the difference compared to predictions based on TCR sequence
similarity alone is rather modest115. On the other hand, a deep
architecture is seen to have evident advantage over shallow and
matrix-based models when predicting scores for HLA-II-presented
epitopes195. Also for conformational B cell epitope prediction,
large gains have been reported recently thanks to deep
learning35,36, for instance compared to naive predictors scoring
residues based on relative surface accessibility36. Hence, the need
for training deep architectures, which enable to model highly non-
linear input-output relationships but are data-demanding, is more
or less clear depending on the prediction task. To bring clarity in
this regard, regular, systematic benchmarks of the available
methods on independent datasets and according to uniform
assessment criteria are pivotal (see for example ref. 115), to
recognize strengths and limitations in performance and to
formulate recommendations for the next developments. IEDB
performs automatic benchmarks of new predictors of HLA-I and II
antigen presentation on the data that become available, in order
to recommend methods and metrics for prediction, a procedure
that, despite its pitfalls19, could serve as an example to follow.
One of the crucial problems performance-wise is the low

precision of the final epitope identification, due to false positives,
which can slow down and hamper the downstream steps of in
silico, in vitro, and in vivo validation. For B cell epitopes, state-of-
the-art methods35,36 assign to epitopes on average a score higher
than ~ 70% of the scores for the same protein, indicating that
many false positives do occur among the highest-ranked epitope
residues. For class I T cell epitopes with well-characterized HLAs,
with the best performing methods88 one has > 99% chance of
identifying a presented antigen taking the top scoring peptide
among all the possible ones from the proteome of interest; it is
rather the subsequent prediction of immunogenic antigens
among the presented ones that suffers from low precision, as
reported in benchmarks with experimentally tested targets21.
The prediction of immunogenicity of candidate targets is

particularly challenging, and ultimately can be validated only by
experimental tests and clinical trials, being it an intrinsically
multifactorial and multiscale effect. Firstly, protein-protein inter-
actions are dynamic and susceptible to the cellular environment; a
first step to account for these aspects is to complement ML
predictions by molecular docking simulations of the interactions
mediating the adaptive response (peptide docking to the
HLA57,196, docking of TCRs to the peptide-HLA complex56,
antigen-antibody docking54,55). Furthermore, immune activation
and effector function are dependent on co-stimulatory signals,
and more generally on the context at the cell and tissue level. For
example, high antigen expression levels have been suggested to
compensate for weak HLA-antigen binding, thus including cell
type and tissue-specific information on antigen abundance has
resulted in improved predictions of T cell epitopes92,195,197.
Protection eventually depends on many factors, like innate
control, infective dose, as well as the genetic and environmental
factors that shape the individual immune repertoires (age,
previous exposure, etc.). ML predictions should be therefore
interpreted as inherently probabilistic, i.e., they come with an
uncertainty stemming from the variety of factors that contribute
to a positive response and are not included in the models.
Suboptimal precision implies more permissive prediction

thresholds to ensure that a sufficient number of true epitopes is
recovered, hence epitope prediction can result in hundreds of
candidates to analyze and test, while only 10-30 subunits are
necessary for the final construction of a multi-epitope vaccine13,15.
Post-epitope prediction evaluations can be time-consuming for
this reason, and because usually their steps are not integrated and
automated. A strategy for higher-efficiency vaccine design
recently proposed15 compresses epitope identification and
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property evaluation in one step by training a deep neural network
to directly predict vaccine subunits with the desired properties,
which results in fewer candidates to further evaluate. Indeed,
more rapid screening of possible targets requires the develop-
ment of frameworks that can perform and combine multiple
predictions, similarly to approaches in drug discovery integrating
ML models and docking simulations198. The design of such target
selection pipelines integrating different prediction steps will
benefit from ML methods that are clearly documented in terms
of scope, modes, and optimal conditions of use. Working with
standardized input formats and output metrics would be also
important to save efforts of data pre-processing and post-
processing and to facilitate method integration. For the future
development of rational vaccine technologies, two of the most
pressing needs are hence: increased precision of epitope
prediction, to reliably narrow down target selection to fewer
candidates; integrated frameworks connecting the bioinformatic
and ML software necessary for ML-assisted epitope prediction and
the subsequent evaluations, possibly developed within a user-
friendly infrastructure that is easy to access and implement either
as a web server or a downloadable package. Such improvements
are essential to reducing the time, manual work, and resources
involved in vaccine target selection and validation, thus they are
prerequisites to the flexibility and scalability sought-after in
personalized neoantigen discovery and in the adaptation of
vaccines to newly-emerged viral strains.
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