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A pilot metabolomic study of drug interaction with the
immune response to seasonal influenza vaccination
Amnah Siddiqa1, Yating Wang1, Maheshwor Thapa1, Dominique E. Martin2, Andreia N. Cadar2, Jenna M. Bartley 2✉ and
Shuzhao Li 1,2✉

Many human diseases, including metabolic diseases, are intertwined with the immune system. The understanding of how the
human immune system interacts with pharmaceutical drugs is still limited, and epidemiological studies only start to emerge. As the
metabolomics technology matures, both drug metabolites and biological responses can be measured in the same global profiling
data. Therefore, a new opportunity presents itself to study the interactions between pharmaceutical drugs and immune system in
the high-resolution mass spectrometry data. We report here a double-blinded pilot study of seasonal influenza vaccination, where
half of the participants received daily metformin administration. Global metabolomics was measured in the plasma samples at six
timepoints. Metformin signatures were successfully identified in the metabolomics data. Statistically significant metabolite features
were found both for the vaccination effect and for the drug-vaccine interactions. This study demonstrates the concept of using
metabolomics to investigate drug interaction with the immune response in human samples directly at molecular levels.
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INTRODUCTION
The human immune system is our defense against infectious
agents and malignancy, but also susceptible to many signaling
cues1–6. The dysfunction of immune system often underlies a large
number of autoimmune, metabolic and inflammatory condi-
tions1,7–9. The health burden is significantly greater in the ageing
population10, which commonly live under pharmaceutical medi-
cations, and respond poorly to many vaccines11. It is clearly
important to understand how pharmaceutical drugs interact with
the immune system, but it is not an easy task given that human
immunology is still a rapidly evolving science12,13. In recent years,
much progress in human immunology was achieved via vaccine
studies, as vaccines are an excellent tool to probe human immune
system providing an opportunity to learn about immunological
molecular perturbations over time from days to years14.
Limited epidemiological studies have reported evidence of

small molecular drugs impacting human immune responses, e.g.,
administration of statins has a minor detrimental but significant
effect on influenza vaccination15–17. Using hospital records, Kidd
et al. showed that a number of small molecular drugs influence
the numbers of white blood cell subsets18. These hospital records
are not easy to match to immunological studies, and they are not
meant to be comprehensive. Furthermore, direct measurement of
concentration of small molecular drugs and their metabolites,
similar to the tests on professional athletes for prohibited drugs, is
the most important information. Because it reflects the ongoing
biological state and varying metabolic rate among individuals. In
this regard, the advancement of mass spectrometry based
metabolomics is potentially a game changer.
Metabolomics is the global measurement of small molecules in

a biological system, which includes biological metabolites, dietary
intake, microbial contributions, environmental pollutants, and
often pharmaceutical drugs19–22. Liu et al. recently showed
successful identification of nicotine (tobacco), naphthol sulfate
(industrial chemical), omeprazole (medication) and piperine (food)

and their derivatives in routine metabolomics analysis of human
samples23. With both the environmental factors and biological
responses in the same data, a new paradigm of gene-
metabolome-environment interaction is emerging24,25. Thus, in a
controlled study of vaccine induced immune responses, metabo-
lomics offers the opportunity to examine both the drug response
and vaccine response, and test for potential interactions.
The application of metabolomics to vaccinology is still in a

nascent stage. Previous metabolomic analyses showed that
systemic metabolites were perturbed by seasonal influenza
vaccine26 and by herpes zoster vaccine27, with broad interactions
with cellular and gene programs. A significant observation in the
integrative analysis of human transcriptome and metabolome in Li
et al. (2017)27 was that baseline SREBF1 (Sterol regulatory
element-binding protein 1) activity was associated with B cell
responses to vaccination, and the finding was recently confirmed
in a detailed mouse study28.
Here, we have conducted a pilot study of seasonal inactivated

influenza vaccine (IIV) in older adults, where half of the
participants received metformin, a common drug for controlling
diabetes, for a total of 20 weeks. The study was double-blinded
and placebo-controlled, enrolling nondiabetic/nonprediabetic
men and women over the age of 65 years. Ultrahigh-resolution
metabolomics was performed on the plasma samples from 15
participants over six timepoints. The study was motivated by the
effects of metformin in improving mitochondrial functions,
reducing chronic pro-inflammatory signaling29, and targeting
multiple hallmarks of aging30. Given the prominent role of
metformin in aging studies and its geroprotective potential at
molecular level31, it becomes an important question if metformin
enhances the immune responses to vaccines. Research in this
direction is urgent because better vaccine efficacy is needed for
the older population and how to optimize their immunity has
broad health impacts. In this report, we focus on how the
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metabolomics data manifest the biological responses to metfor-
min, IIV vaccine and their interaction.

RESULTS
Fifteen volunteers were recruited at the University of Connecticut
Health Center, and randomly double-blinded assigned into two
groups for either placebo (n= 7) or metformin (n= 8) treatment.
The cohort was between 67 to 89 years old, with 8 males and 7
females and no significant differences in basic characteristics at
baseline (placebo: 74.71 ± 2.45 years old, 3 males, BMI:
27.31 ± 1.68; metformin: 74.13 ± 2.42 years old, 5 males, BMI:
26.43 ± 1.47). The metformin group received Metformin Hydro-
chloride Extended-Release, 1500mg/day (three 500 mg ER tablets
once a day, starting at 500mg ER/day and progressed per current
recommendations). High dose trivalent inactivated influenza
vaccine (Fluzone, Sanofi Pasteur Inc) was administered via
intramuscular injection to all participants at approximately day
70 (Fig. 1).
The antibody and T cell responses in this cohort are published

elsewhere32. Briefly, similar increase of antibody titers was
observed post vaccination in both the metformin and control
groups. Decreased CD57 expression was observed in CD4 T cells
but not in CD8 T cells. Overall, the immunological data showed
some trending improvements with metformin for flu vaccine
responses, including circulating T follicular helper cells, but the
cohort was underpowered for full conclusions. However, the
adaptive responses are only part of our highly complex immune
system. Therefore, in order to gain in-depth molecular insights, we
analyzed the metabolomic profiles in this cohort.

Untargeted metabolomics measured metformin and its
abundance in the plasma of study participants
The plasma samples collected from the participants were analyzed
by ultrahigh-resolution metabolomics. We applied four untargeted
LC-MS (liquid chromatography-mass spectrometry) methods to
increase the coverage of assays: hydrophilic interaction chroma-
tography (HILIC) with positive electrospray ionization (ESI+ ) and
with negative electrospray ionization (ESI-), reversed phase (RP)
chromatography with ESI+ and ESI−. The numbers of metabolite
features in each method are reported in Table 1, after filtering of
background peaks and by signal-to-noise ratio (SNR).

As a first step, the global metabolomics data enabled us to
investigate the metabolic impact by metformin administration.
This was analyzed by the time course in the metformin treated
participants, using the three timepoints prior to vaccination (days
0, 35 and 70 as depicted in Fig. 1). Since metabolomics not only
measures biological metabolites but small molecules in general, it
is not surprising to find metformin itself in the metabolomics data.
Indeed, the most significant two features were metformin and its
13C isotopologue (Fig. 2a). The isotopologue was from the
naturally occurring stable 13C carbon atoms and eluted at the
same time as the more abundant 12C form in chromatography.
The LC-MS spectra of metformin and its identification via MS/MS
are shown in Fig. 2b. The feature intensity values (peak area in LC-
MS) in metabolomics are a proxy of the concentration in biological
samples. With metformin identified, its abundance in the study
participants was plotted in Fig. 2c, where the metformin group
show a persistent level of metformin through the course of this
study and the placebo group have no detected level. Individual
variation is also seen in Fig. 2c, which reflects the heterogenicity of
human populations, including the different metabolic rates
among individuals. It cannot be ruled out that individuals might
have different compliance to the study regimen. These data prove
that valuable pharmacological information can be directly
obtained from metabolomics without clinical records.

Metformin induced broad metabolomic changes, including
fatty acid biosynthesis
The metabolomic analysis of participants after metformin adminis-
tration revealed a number of significantly altered features (58 in HILIC
ESI+ in Fig. 2a; 179 in HILIC ESI−, 83 in RP ESI+, 176 in RP ESI−, Table
1), with a stringent threshold of false discovery rate (FDR) < 0.05 and
fold change >1.5. The group average of the HILIC ESI+ features is
shown in Fig. 3a as a heatmap. Among them, 37 metabolite features
were increased and 21 decreased consistently in post metformin
visits. Examples of individual metabolites from Fig. 3a are shown as
box and whisker plots in Fig. 3b. These include urea cycle metabolites
citruline and N-acetyl arginine, and bile acids, such as glycocheno-
deoxycholic acid and chenodeoxycholic acid. Significant pathways
impacted by metformin are summarized in Fig. 3c. Several
metabolites in de novo fatty acid biosynthesis showed consistent
decrease in plasma post metformin treatment (e.g. linolenic acid in
Fig. 3b). Decrease of N-acetyl arginine, citrulline and several short-
chain and long-chain carnitines (Supplementary Fig. S1) is similar to
the observations made by previous metabolomic studies of
metformin33,34.

0
 

Days

Treatment Metformin 
(n=8)

Model 1: Metformin Effect 

Model 2: Metformin Vaccine 
Interaction

IIV vaccine
(n=15)

35 70 77 105 140

Fig. 1 A double blinded clinical study of metformin in influenza
vaccination in the elderly. A total of 15 study participants over the
age of 65 years were randomly assigned to metformin or placebo
treatment for 20 weeks. All participants were vaccinated with high-
dose trivalent inactivated influenza vaccine after 10 weeks of
treatment of metformin or placebo. Blood samples were collected
over six timepoints, on days 0, 35, 70, 77, 105 and 140
approximately. Metformin administration started on day 0, and
vaccine was administered on day 70. Our statistical analysis used
two models to focus on the metformin effect (Model 1 using first
three timepoints), and on the vaccine effect and interaction (Model
2 using two timepoints before and after vaccination).

Table 1. Summary of significant metabolite features in statistical
models.

HILIC ESI+ HILIC ESI− RP ESI+ RP ESI−
Total # Features 5987 4245 3284 8546

Model1 Drug Response 58 179 83 176

Model2 Vaccine Response 19 07 46 46

Drug Response 06 02 03 02

Drug Response *
Vaccine Response

02 0 0 01

Significance is defined by FDR < 5% and absolute fold change response
>1.5 in both post-metformin visits compared to baseline in Model 1 or
after and before vaccination in Model 2. See Method for detail of the
statistical models.
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Metabolomic impacts by the seasonal trivalent inactivated
influenza vaccine
To analyze the effect of IIV vaccine administration, we focused on
the two timepoints before and after vaccination (days 70 and 77
as depicted in Fig. 1), as IIV induces a recall immune response that
peaks around one week after vaccination35. The day 70 served as
vaccination baseline. This was fitted to a mixed effect statistical
model with metformin status as a covariate and considering
metformin and vaccine interaction (Model 2, described in

Methods). With FDR < 0.05 and fold change >1.5, the numbers
of significant features are shown in Table 1 for all four LC-MS
methods. Of note, Model 2 identified fewer significant features
associated with metformin response, because the data points here
are cross-sectional comparison with the placebo group, while
Model 1 was able to use three time points before vaccination that
were matched to the same individuals.
The significant metabolite features associated with vaccine

response in the HILIC ESI+ data are shown in Fig. 4a. One of those
is glyceric acid (Fig. 4b), a common intermediate of multiple
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Fig. 2 Identification of metformin and measured kinetics in study cohort. a Metabolite features that are different between the metformin
group and placebo group, analyzed using Model 1, a mixed effect model where visit was modeled as fixed effect and participants were
modeled as random effect. Significance is shown as -log10(adjusted p-value) on Y-axis. The two most significant features correspond to
metformin and its 13C isotopologue. Features with false discovery rate (FDR) under 0.05 are colored in red. b Metformin is identified by
accurate mass and fragmentation in MS/MS. Reference MS/MS spectrum of metformin is from MassBank (id: EA255011; red color), precursor
ion m/z 130.1089. c Kinetics of metformin in all study participants. No metformin is detected in the placebo group (red). Each participant in
the metformin group is plotted in light blue, and their mean values are in dark blue. All data in this figure are based on ESI+ mass
spectrometry coupled with a HILIC column.
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Fig. 3 Metabolomic response to metformin in study cohort. a Metabolite features significantly different after metformin administration in
the plasma samples of participants. Heatmap shows group mean values, for 58 features with FDR < 0.05 and absolute fold change response
>1.5 in both post-metformin visits (i.e. day 70 and day 77). b Selected significant features, all significant as in (a) but also marked by paired t-
test p-values (*p < 0.05, **p < 0.01). The annotation of 2-hydroxypyridine sulfate was based on MS1 and MS2 spectra matches (level 2). The
other metabolites were identified with authentic standards (level 1). All of the box plots show the median (center line), first and third quantiles
(box limits), and max 1.5 × interquartile range (IQR) from box limits in each direction (upper and lower whiskers). c Pathway enrichment of top
metabolite features using mummichog software (across all modes). Only top ten pathways enriched at p < 0.05 and >3 overlapping empirical
compounds are shown.
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pathways, especially in energy metabolism. It was previously
reported to be elevated in autoimmune diseases36,37. It’s increase
here correlates with the timing of major expansion of antibody
secreting cells. Energy metabolism, such as fructose and mannose
metabolism and TCA cycle, is indeed enriched in our pathway
analysis (Fig. 4c). Pathway analysis also revealed multiple path-
ways on inflammatory lipid mediators in response to IIV, including
leukotriene, arachidonic acids and glycosphingolipids (Fig. 4c). The
remaining metabolites in Fig. 4b have a lower-confidence
annotation, which may get updated when further information is
obtained on these compounds. But they have relatively high
abundance in these plasma samples, and their LC-MS peaks are
easily verifiable (Supplementary Fig. S2). Therefore, our data
indicate that they are true chemical compounds that were
elevated after vaccination. Using the same statistical criteria, no
significant metabolite was found at days 105 and 140 in
comparison to day 70. This was not surprising because most
immunological events after IIV occur within the first two
weeks26,38–41.

Statistically significant interaction between metformin and IIV
was found in metabolomic features
The above analyses showed that specific metabolic features were
impacted by the drug metformin or by the IIV vaccine. To
understand if a drug has a positive or negative effect on the
vaccination, it is important to know if metabolites are impacted by
both. This global metabolomics dataset provides the opportunity

to test the statistical interaction between metformin and IIV. This
was included as an interaction term in our Model 2. Among four
LC-MS methods, 2 in HILIC ESI+ and 1 feature in RP ESI− were
found to be significant, using a stringent FDR < 0.05 (Table 1). As
shown in Fig. 5, the vaccine responses of these three features are
clearly different between the metformin and placebo groups. The
m/z values of these features match to a large number of
compounds in metabolite databases. The feature
512.1714@164.48 (ESI−) also showed a proper isotopologue
pattern. Unfortunately, we failed to identify these three metabo-
lites, but believe they are real compounds because they all passed
our filter of background peaks and SNR, and their LC-MS peaks are
distinct (Supplementary Fig. S3). Metabolite identification is a
common challenge in metabolomics today. Alternatively, func-
tional insight of an unknown metabolite can be gained from
metabolome-wide association studies (MWAS)42,43.
The MWAS profile of the feature 147.0847@65.03 is shown in

Fig. 5b, showing strikingly significant associations to a cluster of
compounds that are eluted at 161 s. To validate this in an
independent cohort, we retrieved a large dataset of 1172 samples
that were analyzed using a similar platform at Broad Institute
(Orbitrap mass spectrometer with HILIC ESI+,44). Our feature
147.0847@65.03 was matched to 147.0843@354.85 in the Broad
study, which has a highly significant association pattern to a
cluster of compounds at 556 s (Fig. 5c). Between the two studies,
the liquid chromatography had different length, but the retention
times were comparable after realignment using known com-
pounds (Fig. 5d). The trendline in Fig. 5d indicates that 65 and
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161 s in our study are matched to 354 and 555 s in the Broad
study. Therefore, these results indicate that the MWAS pattern of
147.0847@65.03 in our study is reproduced in the Broad data.
Indeed, the cluster at 161 s in Fig. 5b and the cluster at 555 s in Fig.
5c share at least five same m/z values. Both clusters, however,
have few matches in HMDB, suggesting that the compounds are
probably part of the exposome; the feature at 147.0847 is likely to
be part of their biological response. These two clusters do not

contribute to pathway enrichment tests statistically, because they
do not match to known pathways. Yet, the pathway patterns
underlying the two overall MWAS results share the same top two
pathways (Fig. 5e). Taken together, our feature
147.0847@65.03 showed significant association with urea cycle
and aspartate and asparagine metabolism (Fig. 5e); it correlates
intriguingly but reproducibly with a group of unknown com-
pounds that warrant future investigation. The other feature
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160.0801@23.09 eluted too early to be found in the Broad data
(while other major peaks of this m/z match perfectly between two
studies).

DISCUSSION
The metabolic responses to metformin here are consistent with
previous reports. The glucose lowering potential of metformin has
been largely attributed to its ability to suppress hepatic
gluconeogenesis through both AMPK dependent and indepen-
dent pathways (reviewed in45). Interest are also growing in its anti-
aging, anti-inflammatory and anti-proliferative roles46–51. Metfor-
min reduces pro-inflammatory cytokines and inhibits NF-κB
signaling29,52,53, both contributing to increased basal inflamma-
tion with aging. Overall, metformin regulates several aspects of
nutrient sensing and energy homeostasis in various metabolically
active organs leading to improved blood glucose and lipid
profiles54,55. Our data revealed that several lipids and amino acids
related pathways were altered by metformin administration. De
novo fatty acid biosynthesis was the most significantly altered
pathway (Fig. 3b) upon metformin administration in our data.
AMPK is one of the key targets of metformin under pharmaco-
logical concentrations in liver and have been reported for its role
in improved blood glucose and lipid profiles56,57. AMPK is also a
master regulator of whole-body energy homeostasis and main-
tains the balance between nutrients supply and energy demand.
Liver mediated AMPK phosphorylation of SREBP1 (master
regulator of lipogenesis) and ACC1/2 (a rate-limiting enzyme for
fatty acid synthesis) inhibits hepatic de-novo lipogenesis45,58–60.
Moreover, ACC1/2 phosphorylation leads to a decreased produc-
tion of malonyl-CoA (which is an inhibitor of mitochondrial
carnitine palmitoyl transferase 1 (CPT1)) and subsequent
enhanced hepatic fatty acid oxidation45. Our results showed a
decrease of abundance in several metabolites in pathways
responsible for synthesis of lipids and their derivatives including
de novo fatty acid biosynthesis pathway, arachadonic acid
metabolism, glycerophosopholipid metabolism and prostaglandin
formation from arachidonate. These results are in line with the
previous reports where many lipids and lipid derivatives including
poly unsaturated fatty acids (PUFAs), eiconsaids, glyceropho-
spholipds were observed to show decreased plasma abundance
upon metformin administration in healthy volunteers33,34, and
alterations in de-novo fatty acids synthesis and inflammatory lipid
derivatives in different pathological conditions61–66.
Metformin has been reported to alter the composition of gut

microbiota67–69, which is expected to change the profile of
metabolites of microbial origin. Dahabiyeh et al. showed two
microbial metabolites following a similar abundance pattern to
metformin administration in healthy volunteers34. Our data
revealed an increased trend of the plasma metabolites related
to bile acids over post metformin visits (Fig. 3c). This is consistent
with the report by Hao et al. on an overall increase of plsama bile
acids (total, primary, secondary, and unconjugated), along with
altered microbiota composition in metformin administered treat-
ment-naïve recently diagnosed diabetic partcipants67.
So far, metabolomics has been applied to only few vaccine

studies26,27,39,70. Thus, the current knowledge of vaccine induced
responses was mainly learnt from serological, cellular and
transcriptional data27,38,71,72. Previous studies of seasonal influenza
vaccination in humans revealed common gene signatures of type
1 interferons (between days 1–3) and plasma cells (between days
7–11) corresponding to the induction of innate and adaptive
responses, respectively. Many of these studies have highlighted
the age dependent differences in vaccine immunogenicity, and
our cohort is considered as older adults. Our data revealed several
perturbed pathways on carbohydrate and amino acid metabolism
1 week post vaccination. They are in line with previous studies
where serine metabolism was shown to be associated with

vaccine response38,39. Mitochondrial biogenesis and oxidative
phosphorylation processes were observed to be impacted by
immune responses induced by influenza vaccine in ours and
previous reports40,41.
In this study, we have focused on day 7 after vaccination. In

future opportunities, it will be informative to analyze more time
points, including the early ones. The field of immunometabolo-
mics is in its infancy, and it will take time to gain fuller
understanding of the vaccine responses in terms of metabolic
phenotypes. More and more immunological and vaccine studies
take a systems or holistic approach, by collection high throughput
multi-omics data, which shall contribute to useful insights on how
small molecules, biological or abiological, interact with the
immune system. Advantages of metabolomics also include that
it’s easy to use biobanked materials, and that it can become very
economical in the near future.
We reported the annotation confidence according to the MSI

standards73. Metabolite identification, however, is still challenging
in metabolomics, especially for low-abundance or less common
metabolites. This is similar to the early days of genomics, when
genes were deposited as unknown sequence but annotation
improved over time. The ultrahigh mass resolution of our data also
means that people can reuse the data from public repository, and
the unknown metabolites, like unknown genes, can gain
annotation in the future. This is already demonstrated in our
reuse of the Broad dataset44: the MWAS of our feature
147.0847@65.03, significant in the interaction between IIV and
metformin, is reproduced in the larger study in Fig. 5.
This pilot study was designed to test the interaction between

metformin and IIV in a small cohort. Nonetheless, with highly
stringent statistical analysis, ultrahigh-resolution metabolomics
prove to be powerful to identify (i) metformin and its metabolic
signatures in untargeted metabolomics data, (ii) significant
metabolic responses to IIV, and (iii) significant metabolites as a
result of the interaction between metformin and vaccination. The
proof-of-principle is important, demonstrating the feasibility of
studying the interaction of drugs and immune responses in
human populations.

METHODS
Clinical study design
This pilot study is a double-blinded placebo-controlled trial in men
and women over the age of 65 years. Subjects were screened
rigorously for eligibility. Study exclusion criteria included the
following: any unstable medical conditions or severe co-
morbidities (severe COPD, severe congestive heart failure,
advanced neurological disorders, etc), contraindications for
metformin (severe renal or liver impairment), contraindication
for flu vaccine (history of Guillain-Barre syndrome post vaccination
or allergic to component of vaccine), immunosuppressive
disorders, immunosuppressive medications, and active cancer.
Importantly, participants were excluded if they were prediabetic
or diabetic (HbA1c ≥ 5.7%) to avoid any confounding impact of
metformin on diabetes status. Eligible participants were rando-
mized to metformin (final dose 1500mg extended release
(ER)/day) or placebo treatment. To limit gastrointestinal issues
per current metformin label recommendations, participants
started with 1 tablet a day for week 1 (500 mg metformin ER/
day or placebo), then 2 tablets a day for week 2 (1000mg
metformin ER or placebo), and finally 3 tablets a day for week 3
until the completion of the study (1500 mg metformin ER or
placebo). Fifteen subjects (n= 8 metformin, n= 7 placebo) were
randomized and completed the study on treatment with no
differences in basic characteristics at baseline (placebo:
74.71 ± 2.45 years old, 3 males, BMI: 27.31 ± 1.68; metformin:
74.13 ± 2.42 years old, 5 males, BMI: 26.43 ± 1.47).
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All participants were vaccinated with Fluzone high-dose
trivalent flu vaccine (Sanofi Pasteur Inc., Swiftwater, PA) after
~70 days of treatment. Blood was drawn via standard venipunc-
ture into EDTA-treated vacutainers prior to treatment (Day 0), prior
to vaccination (~day 35 and ~day 70), and 7, ~35, and ~70 days
post vaccination. The study protocol was approved by the
Institutional Review Board at the University of Connecticut Health
Center (UCHC) and registered at ClinicalTrials.gov (NCT03996538).
All study participants provided written informed consent to
participate in the study.

Plasma sample collection and preparation
EDTA-treated whole blood was immediately centrifuged and the
resultant plasma was stored at −80 °C until analyses. Plasma
metabolites extraction was carried out by protein precipitation
technique using extraction solvent, acetonitrile:methanol (8:1, v/v)
containing 0.1% formic acid and isotope labelled [Trimethyl-
13C3]-caffeine, [13C5]-L-glutamic acid, [15 N2]-Uracil, [15 N,13C5]-
L-methionine, [13C6]-D-glucose and [15N]-L-tyrosine as spike-in
controls. 30 μl of plasma was taken and 60 μl of extraction solvent
was added. Extraction blanks were also prepared to remove
features of non-biological origins. All samples were vortexed and
incubated with shaking at 1000 rpm for 10 min at 4 °C followed by
centrifugation at 4 °C for 15 min at 20,817 × g. The supernatant
was transferred into mass spec vials and 2 μl injected into UHPLC-
MS.

LC-MS metabolomics and LC-MS/MS analysis
The chromatographic separations were performed using Thermo
ScientificTM TranscendTM Duo LX-2 UHPLC system interfaced with
high resolution Thermo ScientificTM Orbitrap ID-XTM TribidTM mass
spectrometer with a HESI ionization source, using positive and
negative ionization modes. All samples were maintained at 4 °C in
the autosampler. Data were acquired using hydrophilic interaction
liquid chromatography (HILIC) and reversed phase (RP) column in
parallel both in positive and negative polarities in full scan mode
with mass resolution of 120,000. An AccucoreTM−150-Amide HILIC
column (2.6 μm, 2.1 mm× 50mm) and a Hypersil GOLDTM RP
column (3 μm, 2.1 mm × 50mm) maintained at 45 °C were used
for chromatographic separation. 10mM ammonium acetate in
acetonitrile:water (95:5, v/v) with 0.1% acetic acid as mobile phase
A and 10mM ammonium acetate in acetonitrile:water (50:50, v/v)
with 0.1% acetic acid as mobile phase B were used for HILIC
method. 0.1% formic acid in water and 0.1% formic acid in
acetonitrile were used as mobile phase A and B respectively for RP
acquisition. For HILIC acquisition, following gradient was applied
at a flow rate of 0.55 ml/min: 0–0.1 min: 0% B, 0.10–5.0 min: 98% B,
and 5min for cleaning and equilibration of column. For RP
column, following gradient was applied at a flow rate of 0.4 ml/
min: 0–0.1 min: 0% B, 0.10–1.9 min: 60% B, 1.9–5.0 min: 98% B, and
5min cleaning and column equilibration. This way the mass spec
data for each sample was collected consecutively, carrying only
one (either HILIC or RP) eluent to the MS for 5 min, while the other
eluent was directed to the waste during washing and re-
equilibration.
Mass spectrometry data were collected with the following MS

settings: mass range, 80–1000 m/z; spray voltage, 3500 V (ESI+ ),
2800 V (ESI−); sheath gas, 45 Arb; auxiliary gas, 20 Arb; sweep gas,
1 Arb; ion transfer tube temperature, 325 °C; vaporizer tempera-
ture, 325 °C; full scan mass resolution, 120,000 (MS1); normalized
AGC target (%), 25; maximum injection time, 100 ms. Data
dependent fragmentation (dd-MS/MS) parameters for each
polarity as follows: isolation window (m/z), 1.2; stepped HCD
collision energy (%), 20,40,80; dd-MS/MS resolution, 30,000;
normalized AGC target (%), 20; maximum injection time (ms),
54; microscan, 1; cycle time (sec), 1.2. A full scan data-dependent

MS2 (ddMS2) method was utilized to collect MS2 spectra for
identification of compounds.

Metabolomics data processing
All samples were analyzed in a single batch after randomization.
Raw LC-MS data was converted to mzML format using Thermo-
RawFileParser74. Asari (version 1.9.2), an open source Python
software was used for m/z and retention time (rt) alignment, peak
detection, feature quantification, and empirical compound based
putative identification (level 4 annotation using HMDB)75 using
the default parameters. Level 1 annotation of compounds were
obtained by matching retention times and accurate masses from
in-house authentic compound libraries. Level 2 annotation of
compounds were obtained by matching acquired MS2 spectra of
accurate precursor masses from pooled plasma sample against
public spectral databases (MassBank, MoNA)73,76 using R package
Spectra with >=0.7 cosine similarity score. Matching of MS1
features with precursor ion’s accurate masses and retention times
was performed using within 10 ppm tolerance and 10 s, respec-
tively. All the metabolite annotation levels adhere to Metabolo-
mics Standard Initiative (MSI) guidelines73.
Features were filtered using two criteria. First, the features with

three times greater intensity in biological samples than in blanks
samples were retained. Second, the features with signal to noise
ratio (SNR) greater than 100 were retained (noise in asari is
defined by the mean of all non-peak data points in an extracted
ion chromatogram). Two different quality control samples (a
commercial pooled plasma sample and pooled study samples)
were used to verify the chromatography and signal reproduci-
bility. Visual inspection of outliers through PCA plots and Total ion
count (TIC) was conducted. Data were log2 transformed and mean
normalized using top ten percent of high abundance features.
Features below detection limit were imputed using half of the
minimum intensity value. After QC filtering, 5987, 4245, 3284, 8546
features were retained for downstream data analysis, in each HILIC
ESI+, HILIC ESI−, RP ESI+ and RP ESI− modes respectively.

Statistical analysis
We constructed two linear mixed effect models using the lme477

package in R to assess the metformin response on plasma
metabolome, inactivated influenza vaccine response on plasma
metabolome and the interaction responses of metformin and
vaccine in concert on plasma metabolome.
Model 1: For each metabolite feature, temporal variation due to

metformin administration was assessed using linear mixed effects
model:

Metabolite Feature � dayþ ð1jparticipantÞ (1)

The variable ‘day‘ is a categorical variable that indicates discrete
time points, including day 0, day 35, and day 70, where day
0 serves as the baseline for metformin administration and day 35
and day 70 represent time points after treatment with metformin.
The term (1|participant) controls for repeated measurements on
the same participant. The significance of timepoints was assessed
with ANOVA and p-values were adjusted for multiple-testing
based on Storey FDR method78,79.
Model 2: In order to quantify the vaccine response and the

interaction of metformin and vaccine, we constructed a mixed
effect model utilizing a pre-vaccination time point (day 70,
vaccination baseline) and a post-vaccination time point (day 77) as
follows:

Metabolite Feature � dayþmetforminþ day�metforminþ ð1jparticipantÞ
(2)

The ‘day‘ and ‘metformin‘ are used as proxy for vaccine
treatment and drug treatment, respectively and modeled as fixed
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effects. We assessed the differentially abundant metabolite
features between pre- (day 70) and post-vaccination (day 77)
visits using the p value of coefficient term of the variable ‘day‘. The
interaction term day*metformin was used to quantify statistically
the response as a function of both vaccine and drug administra-
tion. The term (1|participant) controls for repeated measurements
on the same participant. P values assessed using ANOVA were
adjusted for multiple-testing based on Storey FDR method78,79.
All the above statistical analyses were performed using R

version 4.2.0. Pathway enrichment analysis was performed using
mummichog (version 2.6.1)80 using top metabolite features with
p value < 0.05.

Metabolome wide association analysis
Spearman correlation was performed between the features of
interest and the remaining features in the same dataset,
generating p-values for MWAS. FDR was calculated using the
Benjamini-Hochberg method. The sample number in this study
was 90, in the Broad study 1172. The Broad dataset was retrieved
from Metabolomics Workbench (accession number ST001237).
The m/z and retention time of identified compounds in the Broad
study were obtained from the authors. Known compounds from
both studies were compared, then the uniquely matched
compounds (same name and m/z within 5 ppm) were used for
realigning the retention time.

Reporting summary
Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

DATA AVAILABILITY
The metabolomics data have been submitted to Metabolomics Workbench and
publicly available under study id ST002432.
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