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Systematic review of primary and booster COVID-19 sera
neutralizing ability against SARS-CoV-2 omicron variant
Ioannis Sitaras 1,5✉, Henning Jacobsen 2,5, Melissa M. Higdon3, William E. Dowling 4, Naor Bar-Zeev3 and Maria Deloria Knoll3

Virus neutralization data using post-vaccination sera are an important tool in informing vaccine use policy decisions, however, they
often pose interpretive challenges. We systematically reviewed the pre-print and published literature for neutralization studies
against Omicron using sera collected after both primary and booster vaccination. We found a high proportion of post-primary
vaccination sera were not responding against Omicron but boosting increased both neutralizing activity and percent of responding
sera. We recommend reporting percent of responders alongside neutralization data to portray vaccine neutralization ability more
accurately.
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INTRODUCTION
Since its initial characterization in November 2021, the SARS-CoV-2
Omicron (B.1.1.529) variant of concern (VOC) has largely displaced
the Delta variant in many parts of the world1–3. The World Health
Organization (WHO) and the Coalition for Epidemic Preparedness
Innovations (CEPI) among others use information on the
neutralizing activity of post-vaccination sera as an early sign of
vaccine performance against circulating VOCs. Since neutralization
data could inform policy-making decisions regarding vaccine
strategies, we reviewed the global evidence for current vaccines’
ability to neutralize Omicron, and stratified the results according
to primary vaccination series and booster (both of which included
homologous and heterologous regimes).

RESULTS
Included studies and number of sera
Neutralization results were extracted from 50 studies meeting our
inclusion criteria, providing data for 119 vaccine-specific observa-
tions based on 3150 sera (72 observations on 1823 sera for
primary vaccination series, and 47 observations on 1327 sera for
booster vaccination, Table 1). Details of the included studies and
raw data can be found in the Source Data file.
Most primary series and booster observations were of mRNA

vaccines (Comirnaty primary: 33/72, booster: 19/47; mRNA-1273
primary: 14/72, booster: 7/47; Table 1). Vaccines with the largest
number of sera evaluated were Comirnaty (primary: 777; booster:
438) and BBIBP-CorV (primary: 325; booster: 408). However, most
BBIBP-CorV sera originated from one large study of 292 sera4. Most
(87/119) observations evaluated sera collected 0.5–1 month post-
vaccination.

Results stratified by vaccine and regimen
Median fold decreases in Omicron neutralization post-primary
vaccination series ranged widely across the vaccines studied, from
6.2-fold (Ad26.COV2.S, IQR 3.0–10.7, 7 observations, 128 sera) to
23.1-fold and 25.5-fold (Comirnaty: IQR 18.9–34.7, 33 observations,

777 sera; mRNA-1273: IQR 15.8–42.6, 14 observations, 275 sera
Table 1, Fig. 1A). The percent of responders also ranged widely in
primary vaccination series from 0% for CoronaVac to 94% for
mRNA-1273 (Table 1 and Fig. 1C). Although the only two
heterologous vaccine regimes (Vaxzevria+Comirnaty and Vaxzev-
ria+mRNA-1273) showed 80 and 82% responders respectively,
these results were based on only one observation from the same
study5.
After a booster dose, median fold decreases in neutralization

activity were lower compared to primary vaccination series,
ranging from 2.8 (Ad26.COV2.S, 1 observation, 20 sera) and 13.4
(BBIBP-CorV+Anhui ZL heterologous boost, IQR 11.8–14.9, 2
observations, 20 sera, Table 1, Fig. 1B). The percent of responders
increased post-booster for all vaccines, with 12 of the 14 booster
regimens examined having >70% responders (8 of which showed
100% response). From the two remaining regimens, Anhui ZL had
a 56% response, but the percent response could not be extracted
for the one study describing the Vaxzevria+MVC COV1901
regimen (Table 1 and Fig. 1D). The percent of responders
correlated with the GMT against the parent strain, which was
significantly higher in booster regimes compared to primary series
(Table 1).
The median fold decreases against Omicron were generally

comparable within the same vaccine class for mRNA (23.1 and
25.5 post-primary; 5.5 and 7.4 post-booster) and for inactivated
vaccine classes (7.2 and 9.5 post-primary; 11.4 and 13.1 post-
booster) but varied within vector vaccine class (range: 6.2 to 17.5
post-primary, 2.8 and 7.1 post-booster, Table 1).

DISCUSSION
In this review of COVID-19 vaccines’ abilities to neutralize the
Omicron variant, we show that booster doses increased neutraliz-
ing activity compared to primary series vaccination, as evidenced
by lesser fold decreases and greater percent of responding sera.
The increased activity following the booster dose cannot be
explained by prior immune waning, since the vast majority (73%)
of included studies evaluated sera collected at peak immunity. We
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also demonstrate that relying only on fold decrease when the
percent of responding sera is low can mask the true neutralizing
activity of a vaccine, and, consequently, may lead to inaccurate
inference of a vaccine’s ability to protect against infection and
disease from variants, especially one as antigenically different as
Omicron.
The percent of responding sera is an overlooked but highly

important parameter in assessing post-vaccination neutralizing
activity against variants. The accuracy of fold decrease calculations
can be misleading when the majority of sera show no measurable
neutralizing activity against Omicron. This is because when serum
measurements are below the limit of detection, the general
practice is to assign them an arbitrary titer, which is usually either
one log lower than the lowest dilution, or half the level of
detection. This arbitrary value can have a large impact on the
magnitude of the apparent fold change, since it can over- or
underestimate neutralizing activity against a variant. It is thus
important to also report the percent of responding sera to provide
a more complete and accurate picture of a vaccine’s ability to elicit
neutralizing immunity against variants.

The lower limit of detection varies greatly between assays that
use live viruses versus pseudoviruses. It is important to note,
however, that although very low readings can be obtained when
using pseudoviruses, the uncertainty connected to these readings
increases proportionally the lower the reading is. This holds true
for every reading obtained that is already below the lowest
(starting) dilution used in the assay. Our suggestion to include the
percent of responding sera in the results, helps to eliminate part of
this uncertainty.
Induction of high neutralizing titers against the homologous

vaccine-seed strain is not only part of regulatory requirements, but
also an important early measure of a vaccine’s success, since
higher titers generally correspond to higher levels of protection,
including against future circulating variants as antigenically
different as Omicron. Our analysis shows that GMTs against the
parent strain are lower after the primary vaccination series than
after the booster dose and corresponded with lower percent of
responding sera against Omicron after primary vaccination
compared to post-booster dose.

Table 1. Overview of studies and results.

Primary vaccination series

No. Obs No.
of Sera

Fold decrease
(Omicron)

Median %
responders
(Omicron)

Median GMT
(Parent)

Type of
vaccination

Platform Vaccine Q1 Median Q3

Homologous Inactivated BBIBP-CorV 4 325 1.9 7.2 11.2 23 67.4

CoronaVac 4 135 5.4 9.5 14.5 0 32.5

mRNA mRNA-1273 14 275 15.8 25.5 42.6 94 1039

Comirnaty 33 777 18.9 23.1 34.7 38 347.9

Vector Vaxzevria 6 131 13.3 17.5 25 12 133

Sputnik V 2 26 7.6 7.6 7.6 44.5 66.5

Ad26.COV2.S 7 128 3.0 6.2 10.7 8.5 96

Heterologous Vector + mRNA Vaxzevria + mRNA-1273 1 11 19.5 19.5 19.5 82 671.4

Vaxzevria + Comirnaty 1 15 24.5 24.5 24.5 80 661.6

Total 72 1823

Booster

Homologous Inactivated BBIBP-CorV (3 doses) 4 408 8.6 11.4 15.8 78 361.8

CoronaVac (3 doses) 2 70 9.7 13.1 16.5 72.5 164.3

mRNA mRNA-1273 (3 doses) 7 74 4.2 5.5 15 100 3942

Comirnaty (3 doses) 19 438 4 7.4 13.1 100 1749.5

Protein subunit Anhui ZL (3 doses) 3 44 3 9.4 10.6 56 329

Vector Sputnik V+ Sputnik Light 1 6 7.1 7.1 7.1 100 359.2

Ad26.COV2.S (2 doses) 1 20 2.8 2.8 2.8 100 127.6

Heterologous Inactivated +
Protein subunit

BBIBP-CorV + Anhui ZL 2 20 11.8 13.4 14.9 90 1527.5

Inactivated
+ mRNA

CoronaVac + Comirnaty 2 85 6.1 6.7 7.3 100 320

mRNA + mRNA mRNA-1273 + Comirnaty 1 4 13.1 13.1 13.1 75 984.3

Comirnaty + mRNA-1273 1 4 9.8 9.8 9.8 100 1378.6

mRNA + Vector Comirnaty + Ad26.COV2.S 2 61 2.9 3.6 4.2 100 2456.3

Vector + mRNA Ad26.COV2.S+ Comirnaty 1 20 - - - 100 1044.9

Vector + Protein
subunit

Vaxzevria + MVC-COV1901 1 73 6.6 6.6 6.6 N/R 404.8

Total 47 1327

Results for each vaccine regimen (primary series and booster), with median fold change against Omicron, IQR, and median GMT against the parent strain
(which was chosen to be similar to the vaccine-seed strain). Results could not be extracted; N/R Not Reported. References 4–53 were used to collect the source
data used in the analysis, which can be found in the Source Data file.
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Although some vaccines and vaccine combinations appear to
perform better than others, the wide heterogeneity in responses
between studies observed for some homologous vaccines mean
these data should be considered with caution. This is even more
true for all heterologous vaccine combinations evaluated here,
where data on their neutralizing ability were available from only
1–2 studies each, and therefore these results may not represent
their true abilities. Nevertheless, such data are especially important
in the current setting, where reliable clinical effectiveness data may
not be available for all vaccines in use, and where administration of
heterologous doses can be common because of supply or logistics
issues. If meaningful appraisals of vaccine performance are to be
made in order to inform timely policy-making decisions, there is an
urgent need for more data on the vaccines currently in use. Using
the WHO international standard (IS) and reporting results in
international units (IU) could in theory allow for better comparison
between assays. However, considering that the WHO IS has largely
been depleted, and is found to have no neutralizing activity against
Omicron variants, reporting the results in IU is not feasible.
A possible limitation of our analysis may come from the

inclusion of data from pre-printed articles, which should always be
used with caution. Nevertheless, the use of these articles does not
affect the main findings and recommendations of this manuscript,
namely that neutralizing ability and % of responders against
Omicron increase post-boost compared to primary vaccination
series, and that there is a need for more data for certain vaccines
and vaccine combinations. Both findings hold true regardless of
the source of data (published or otherwise). Finally, using pre-
prints in order to inform policy-making decisions regarding
vaccine strategies has become acceptable during the pandemic,
due to urgency of the situation and the need to respond and
adjust policies as quickly and effectively as possible. Restricting
the analysis to fully published literature would have resulted in the

exclusion of relevant and useful data that could help inform our
understanding of the impact of Omicron on vaccine performance.

METHODS
Literature search, review, and exclusion criteria
This work consists of analysis of data available in the public
domain. No ethics approval is necessary.
Studies containing neutralization data against the Omicron

variant after primary series or booster vaccination were identified
by searching PubMed and pre-print servers (bioRxiv and medRxiv)
from November 1, 2021 until January 31 2022 using the following
terms: “SARS-CoV-2” AND “Omicron” AND (“neutralization” or
“neutralization”). Title and abstract were screened and those
possibly containing relevant data underwent full text review.
Relevant articles underwent data abstraction in real-time. Exclu-
sion criteria included: sera collected after partial primary series
vaccination; sera collected <7 days or ≥6 months post-vaccination;
data collected without using a strain genetically/antigenically
similar to the vaccine-seed strain as a comparison (i.e., Wuhan,
WA-1, or the D614G strain); data from subjects infected with SARS-
CoV-2 either before being vaccinated or after; data from cohorts
that included immunocompromised individuals, or individuals
with concurrent health conditions that are expected to affect
vaccination-induced immunity (for example cancer patients). In
addition, data from assays using pseudoviruses or virus-like
particles were excluded if these viruses did not contain the full
complement of mutations characteristic of the Omicron VOC spike
protein. If any studies did not contain clear information on any of
the exclusion criteria, they were not included in the analysis.
Studies were screened by three reviewers working independently
and collaborating when in doubt. A PRISMA diagram describing
the literature search and study selection process is shown in Fig. 2.
A review protocol was not prepared.

Fig. 1 Primary vaccination series and booster neutralizing ability and percent responders against Omicron. Neutralizing ability of
antibodies against Omicron variant by vaccine as measured by A: fold reduction post-primary series vaccination; B: fold reduction post-
booster vaccination; C: percent of responders post-primary; D: percent of responders post-booster. Thick lines represent median, thin lines
represent interquartile range (IQR).
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Data extraction and analysis
The fold change in neutralizing activity against Omicron (relative
to the parent strain), the geometric mean titer (GMT) of the parent
strain, and the percent of responding sera (defined as sera with a
neutralizing activity against Omicron above each study’s lower
limit of detection) were abstracted for each vaccine regimen. All
references used to collect the source data can be found in the
reference section of this manuscript4–53, as well as in the Source
Data file. Raw data can be found in the Source Data file. All
neutralization data used were reported as NT50 titers. Median and
interquartile ranges (IQR) of the fold decrease in neutralization
activity, median percent responders, and median parent strain
GMTs across all studies were calculated where possible (using the
GMTs reported in each source reference) for each unique vaccine
combination and plotted using GraphPad Prism 9 (version 9.3.1).
Meta-analyses to estimate average effect size were not performed
due to heterogeneity in the methodology of included studies.

Reporting summary
Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

DATA AVAILABILITY
All data generated or analyzed during this study and underlying Fig. 1 are included in
this published article and its Source Data file.
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