
ARTICLE OPEN

Microprojection arrays applied to skin generate mechanical
stress, induce an inflammatory transcriptome and cell death,
and improve vaccine-induced immune responses
Hwee-Ing Ng 1,3,6*, Zewen K. Tuong 2,4,6, Germain J. P. Fernando 1,3, Alexandra C. I. Depelsenaire1,3, Stefano C. Meliga1,
Ian H. Frazer 2* and Mark A. F. Kendall1,5

Chemical adjuvants are typically used to improve immune responses induced by immunisation with protein antigens. Here we
demonstrate an approach to enhance immune responses that does not require chemical adjuvants. We applied microprojection
arrays to the skin, producing a range of controlled mechanical energy to invoke localised inflammation, while administering
influenza split virus protein antigen. We used validated computational modelling methods to identify links between mechanical
stress and energy generated within the skin strata and resultant cell death. We compared induced immune responses to those
induced by needle-based intradermal antigen delivery and used a systems biology approach to examine the nature of the induced
inflammatory response, and correlated this with markers of cell stress and death. Increasing the microprojection array application
energy and the addition of QS-21 adjuvant were each associated with enhanced antibody response to delivered antigen and with
induction of gene transcriptions associated with TNF and NF-κB signalling pathways. We concluded that microprojection
intradermal antigen delivery inducing controlled local cell death could potentially replace chemical adjuvants to enhance the
immune response to protein antigen.

npj Vaccines            (2019) 4:41 ; https://doi.org/10.1038/s41541-019-0134-4

INTRODUCTION
Adjuvants were first deployed in vaccines in the 1930s and have
since been included as a component of many vaccines, delivered
by needles to enhance systemic antibody responses to immunis-
ing proteins.1–3 However, only a few chemical adjuvants are
licensed for the use in human vaccines, including various Alum
compounds, Monophosphoryl Lipid A and squalene-based MF59™.
Adding adjuvant to a vaccine does not always improve the
induced protective response4 and some currently available
vaccines, such as Influenza and Tuberculosis, still induce levels
of protection less than required to be broadly effective. Improved
vaccines may come from better adjuvants and from deeper
understanding of how adjuvants induce enhanced protection
against infection.
In contrast to intramuscular immunisation, intradermal antigen

delivery accesses the high density of antigen-presenting cells in
the skin. Here we tested whether a vaccine delivery device
targeting the skin could use the energy of application to induce
localised physical inflammation that might circumvent the need
for chemical adjuvants. The idea of applying energy to the skin to
improve immune responses is not new.5 Examples of approaches
that have been investigated include acoustic (e.g., sonophor-
esis6,7), electrical (e.g., electroporation8,9) and others (e.g.,
lasers10,11). Mechanical means of delivery of vaccines, including
ballistic gene guns delivery of vaccines, have been explored since
the 1990s, although the effects of energy of application has not
been investigated.12,13 Making mechanical delivery devices

suitable for practical vaccination programmes is challenging, as
the design requirements, materials and energy sources are
constrained by issues of costs and compactness.
Here we quantify how energy delivered to the skin generates

local inflammation that leads to improved systemic immune
responses. We compare the local inflammatory response to
mechanically delivered energy with that produced by injection
of a typical subunit vaccine, using a simple, practical medical
device to deliver mechanical energy to the skin that is suitable for
widespread vaccination of people.
To evaluate the use of this mechanical energy as an adjuvant,

we used a prototype (Nanopatch™) medical device, an array
comprising of ultra-high density (20 000 cm−2) silicon micropro-
jections, 4 × 4mm in dimension (Supplementary Fig. 1), to deliver
antigen to the skin in mice. Each microprojection has a cylindrical-
shaped body and a tapered conical tip, measuring about 100 µm
in length. Precision, accuracy and repeatability of immunisation is
achieved by dynamically applying the Nanopatch™ to the skin,
using a spring-loaded applicator.14 We have previously shown that
the Nanopatch™ enhances immune responses when contrasted
with needle and syringe intradermal delivery of antigen.15

However, the mechanism of physical immune enhancement was
not investigated. The most relevant literature is based on the
adjuvanting effects of sterile inflammation and the release of
danger-associated molecular patterns (DAMPs). We hypothesise
that controlled mechanical impact during the application of the
application of the Nanopatch™ would cause limited and localised
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cell death, and the resultant innate inflammatory response would
contribute to enhanced vaccine-induced adaptive immune
responses.16

In this study, we compared conventional intradermal adminis-
tration of antigen with a needle and syringe to antigen delivery by
Nanopatch™, a device engineered to use mechanical energy to
penetrate the outermost layer of the skin, and evaluated the
response to vaccine delivered into the skin. Using a systems
vaccinology approach, we examined how the mechanical
response induced by the Nanopatch™ is associated with gene
and pathway transcription changes that may contribute to the
improved antibody response.

RESULTS
Determining the stress distribution and cell death invoked in the
skin by the application of vaccine delivery devices
To examine how mechanical application of stress/energy to the
skin is transmitted and how it is linked with skin cell death, we
applied a skin deformation and fracture model17 to estimate the
consequences of static or dynamic application of flat plate, pillar
or cylindrical–conical microprojection array (Supplementary Figs 2
and 3). Using choices of energy and penetration data from
previous work, we compared the spatial distribution of stress
calculated by simulation with experimentally measured cell death
in mouse ear skin. The modelled stress distribution of both the
static and dynamic application of the flat plate (Fig. 1a, b) was
qualitatively consistent with observed cell death (Fig. 2a, b). The
corners and edges of the application area induced localised cell
death in all skin layers, in agreement with the higher stress
predicted by the model in these regions (1–5 MPa). However, in
the dermis, experimentally measured distribution of cell death
upon static application was discrepant with the numerical model.
This is likely due to the difficulty of the model capturing small-
scale stress response including edge stress when simulating large-
scale mechanical interaction with a flat plate (Figs 1 and 2; viable

epidermis (VE) and dermis marked with *). Dynamic application of
a pillar array generated cell death tightly localised around the
pillar heads in the VE, whereas the dead cell distribution expanded
to cover most volume in the top and mid-dermis (Fig. 2c). This is
consistent with the stress distributions calculated by the model
(Fig. 1c, d), which shows stresses extending to a larger diameter in
the dermis than in the VE.
Skin cell death was observed following static flat array loading

above ~0.34 N (Fig. 2a) and for all dynamic impact conditions
tested (>3500 J/m2). Comparing data from in silico modelling with
observed cell death in ear tissue across the range of applied
pressure and energy, we consistently observed that cell death was
associated with local stresses above ~5MPa (Figs 1 and 2).
The methods used to test skin cell mechanical tolerance for the

flat plate and the pillar array were next used with a
cylindrical–conical microprojection array, tested across a range
of dynamic application energies (3500, 5800 and 11,200 J/m2;
Supplementary Table 1). Cell death was closely localised around
each microprojection in the VE, top- and mid-dermis (Fig. 3). This
is in agreement with the calculated stress distribution, which
peaked close to the microprojection tip-skin contact surface
(Fig. 3). By comparing the co-localisation of stress magnitude
along the stress contours with the observed cell death, we derived
a stress threshold for cell death between 5 and 15MPa, similar to
the value deduced from the flat plate and pillar array with static
and dynamic loading (>5 MPa). The average modelled and cell
death imaging validated stresses dynamic application were
30MPa in the VE and 3MPa in the dermis with the inclusion of
edge stresses in the 16mm2 area.

Adjuvant-like gene transcription changes following mechanical
impact into the skin with or without antigen and adjuvant
Having assessed by theoretical modelling the stress distribution in
the skin induced by mechanical stress, and compared this with
imaged experimental cell death, we next use a systems approach
to determine the transcription changes induced by mechanical
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Fig. 1 Mathematical modelling of stress in the skin (VE viable epidermis, D dermis) following application of a flat plate surface or a pillar array
statically with a weight, or dynamically with a constant energy. a Flat plate surface applied with static weights of (i) 0.34 N, (ii) 5.89 N,
(iii) 19.62 N or (iv) 68.67 N, showing distribution of maximum principal stress. b Flat plate array applied with dynamic energies of (i) 3500 J/m2,
(ii) 5800 J/m2 or (iii) 11,200 J/m2, showing distribution of maximum principal stress. c Pillar array applied with dynamic energies of (i) 3500 J/m2

or (ii) 5800 J/m2, showing distribution of Von Mises stress. Red represents high stress and blue represents low or no stress. Limitation of model
capturing small-scale stress response including edge stress marked with * in a demonstrated by cell death assay in Fig. 2
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stress to the skin. To do this, we use whole tissue RNA-sequencing
(RNA-seq) to analyse changes in local gene expression, comparing
untreated skin with intradermal antigen delivery using a
cylindrical–conical microprojection array (a Nanopatch™ proto-
type) at 3500 and 11,200 J/m2, or needle and syringe antigen
delivery, which delivers ~50 J/m2.
Application of microprojection arrays coated with influenza

vaccine and purified Quillaja saponin adjuvant (QS-21) induced
the highest numbers of differentially expressed genes (DEGs; 4591
DEGs) shown in Fig. 4a. Application of influenza vaccine-coated
microprojection array at 3500 J/m2 (2195 DEGs) or at 11,200 J/m2

with vaccine protein (2200 DEGs) induced more DEGs than
application of a microprojection array without vaccine (1354
DEGs). Needle and syringe intradermal injection of saline induced
the lowest numbers of DEGs (711 DEGs), whereas needle and
syringe intradermal delivery of vaccine protein induced a higher
number of DEGs (3670 DEGs). These results suggest that QS-21,
influenza vaccine and the physical impact of a microprojection
array could each contribute substantially to the induction of gene
expression in the skin.
To contextualise our findings, we aligned our DEG data with

those from a study by Mosca et al.,18 in which a ‘core adjuvant’
response gene signature was observed with their intramuscular
administration of chemical adjuvants (Alum, CpG and MF59™) in
comparison with phosphate-buffered saline (PBS) control. DEGs
that were found to be shared between the Mosca et al.18 dataset
and our dataset were highlighted, revealing many DEGs that are
common to both datasets (Fig. 4b). We expanded this analysis to
perform a systematic comparison between our RNA-seq DEG
datasets and several vaccination studies with microarray data
(Supplementary Table 2),18–22 using pre-ranked gene set enrich-
ment analysis (prGSEA; Fig. 5a). Genes were ranked in our study by
signed t-statistic values, to generate the ranked list of DEGs.
Mouse genes sets were curated from Mosca et al.18 and Caproni
et al.,19 whereas human genes sets were curated from Kazmin

et al.,22 Li et al.20 and Nakaya et al.23 (Supplementary Table 3).
Ranked DEG list following Nanopatch™ application without
antigen at 3500 J/m2 displayed significant overlap with Mosca
et al.18 gene signatures (IM, Alum/CpG/MF59 vs. PBS and CpG vs.
PBS) and all 3500 and 11,200 J/m2 application groups displayed
significant enrichment of the gene sets of Caproni et al.19 (IM,
Alum/CpG/MF59 vs. PBS and Alum vs. PBS; Fig. 5b). Importantly,
the upregulation of these genes was not observed following
intradermal delivery of antigen by needle and syringe (Fig. 5b).
Enrichment of the analogous human genes sets was also observed
in Kazmin et al.,22 using malaria vaccine, and Li et al.,20 using the
meningococcal polysaccharide quadrivalent vaccine (MPSV4/
MPSV) in Fig. 5. However, there was little overlap between the
downregulated gene sets in the various studies (Fig. 5c). Changes
in gene expression in peripheral blood mononuclear cells
following immunisation were not seen in our datasets. We provide
a summary table for all the gene sets tested for the prGSEA in
Supplementary Table 3. Overall, greater enrichment was generally
seen with the 3500 and 11,200 J/m2 application groups than the
needle and syringe intradermal 50 J/m2 energy application to the
other microarray studies.

Molecular pathway analysis of mechanical stresses and cell death
revealed clustering of highly correlated genes associated with
immunogenic roles
Next, to further investigate whether distinct gene networks were
correlated with cell death or application energy, we applied a
weighted gene co-expression network analysis (WGCNA; Fig. 6
and Supplementary Fig. 4). Figure 6b shows there are 27 distinct
modules of highly correlated genes identified with WCGNA. Of
these, seven gene modules in Fig. 6c were significantly positively
correlated with cell death (Supplementary Table 4) or with
application energy (Supplementary Table 1). These seven gene
modules were further analysed. The blue module was upregulated
significantly and correlated with increased cell death. This
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Fig. 2 Cell death profile of skin (VE viable epidermis, D dermis) following application of a flat plate surface or a pillar array statically with a
weight, or dynamically with a constant energy. a Flat plate array applied with static weights of (i) 5.89 N, (ii) 19.62 N or (iii) 68.67 N. b Flat plate
array applied with dynamic energies of (i) 3500 J/m2, (ii) 5800 J/m2 or (iii) 11,200 J/m2. c Pillar microprojection array applied with dynamic
energies of (i) 3500 J/m2, (ii) 5800 J/m2 or (iii) 11,200 J/m2. Green represents viable cells and magenta represents dead cells. Limitation of
model capturing small-scale stress response including edge stress marked with * in Fig. 1a demonstrated by cell death assay in a
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suggests a role for the genes in the blue module in immune
enhancement from mechanical stimuli, as the difference was
based on the energy applied during vaccination. Pathway
enrichment using the Consensus Pathway Database (CPDB)
showed that the top five enriched pathways in the blue module
were tumour necrosis factor (TNF) signalling, apoptosis, Toll-like
receptor (TLR) signalling, induction of interferon (IFN) α/β and
nuclear factor (NF) κB signalling pathways. The top ten pathways
of the seven significant gene modules of interest are shown in
Supplementary Fig. 6 and all pathways for all colour modules are
provided in Supplementary Data 1.
Complementary to the pathway analysis, ClueGO24 was used to

visualise the most important/highly connected non-redundant
biological functions enriched by the seven gene modules
positively (black, blue, brown, cyan; Supplementary Fig. 7) and
negatively (green–yellow, light cyan and magenta; Supplementary
Fig. 8) correlated with cell death. The enriched pathways in these
gene modules were similar to those demonstrated by CPDB
analysis (Fig. 6c and Supplementary Fig. 8) and included pathways
associated with immune signalling, cell death and antibody
response. Pathways displaying module specificity (>60% genes
from a single gene module) are highlighted. Several Gene
Ontology (GO), Kyoto Encyclopaedia Genes and Genomes (KEGG)
and Reactome pathways were consititued of genes found
specifically in the blue or brown modules and not the black and
cyan modules (Supplementary Fig. 7). The blue module showed
specificity for TLR signalling, cytokines and chemokines (i.e.,
interleukin (IL) 6, IL-17 and TNF) signalling, T-cell receptor
signalling and apoptosis, while the brown module displayed
module specificity for microglial activation, antigen presentation,
extracellular matrix pathways and B-cell-related antibody response
(Supplementary Fig. 7). The brown module was significantly
correlated to cell death measurement and the correlation was
most prominent and statistically significant with 3500 J/m2+
vaccine+QS-21 vaccination, and with 11,200 J/m2+ vaccine (Fig.
6b). Pathways enriched by negatively correlated modules
(green–yellow, light cyan and magenta; Supplementary Fig. 8)
were also analysed, which showed that GO functions related to
immune cell migration, cell death and stress response (Supple-
mentary Fig. 7A), whereas there was limited enrichment of the
canonical KEGG and Reactome pathways (Supplementary Figs 8B

and 8C). However, we noted that the three negatively correlated
gene modules were common to all comparisons (Fig. 6b), which
could be a physiological function, and there were too few clusters
for further analysis (Supplementary Fig. 8). Hence, we conclude
that they do not reveal specific changes that may pertain to
physical adjuvantation.
Finally, genes enriched in the top three pathways in the blue

module (Fig. 6c) were plotted into an expression heatmap in Fig. 7.
Inspection of enriched genes from the immune-related pathways
of the blue module showed a clear trend of gene expression, with
the highest expression by Nanopatch™ vaccination with QS-21
(Fig. 7). Similar induction of genes was observed in Nanopatch™
vaccination at the highest application energy at 11,200 J/m2 and
this trend of gene induction was observed to gradually decrease
as the application energy reduces (Fig. 7). In contrast, the same
genes in the needle and syringe intradermal vaccination groups at
50 J/m2 were closer to baseline levels presented in the unim-
munised control (Fig. 7). Interestingly, without vaccine co-
administered, Nanopatch™ at 3500 J/m2 enriched more of these
genes than the needle and syringe intradermal 50 J/m2 with
vaccine, which suggests that the vaccine is a poor inducer of
physical immune enhancement and potentially induce immune
response using different mechanisms.

Relating delivery to the skin, with distinct levels of mechanical
energy application, to invoke local differential expression in genes
and resultant systemic antibody responses
The overarching requirement of vaccines is that they generate
effective systemic immune responses. Therefore, we compared
the antibody response to the immunisation strategies to assess
whether the changes in local gene expression were correlated
with the magnitude of the antibody response following immuni-
sation with influenza vaccine. Hemagglutinin (HA)-induced anti-
body responses 21 days post immunisation were compared after
intradermal administration by needle and syringe or by the
Nanopatch™ at three application energies. With increasing
application energy, the specific antibody responses increased
significantly (one-way analysis of variance (ANOVA) p < 0.001; Fig.
8 and Supplementary Fig. 9). The antibody response to influenza
vaccine when administered by the Nanopatch™ with
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QS-21 at 3500 J/m2 was similar to that following intradermal
administration by the needle and syringe of vaccine with QS-21,
and significantly higher than following administration by the
Nanopatch™ at 3500 J/m2 but without QS-21 (one-way ANOVA p <
0.001; Supplementary Fig. 9). Increasing the application energy for
the intradermal delivery device from 3500 to 11,200 J/m2 gave a
similar increase in antibody response to the use of QS-21 (two-
tailed t-test, p= 0.008).
Thus, delivering vaccine to the skin with increased application

energy without chemical adjuvant induced similar improvements
to antibody response to those achieved using a chemical
adjuvant. This correlated with the pathway analysis (Fig. 6) and
gene changes (Fig. 7) observed. The data support a hypothesis
that enhancing physical adjuvantation by the use of a skin delivery
device can increase the magnitude of a humoral immune
response to a similar extent to those achieved by traditional
chemical-based adjuvants.

DISCUSSION
This study demonstrated that a skin delivery device (Nanopatch™)
applying mechanical energy could potentially replace the use of
chemical adjuvant to improve vaccine-induced antibody response.
Mathematical models simulating interaction of mechanical
energy, applied by delivery devices to the skin resulting in spatial
stress distribution in various skin layers, correlate consistently with
cell death, with an estimated threshold of 30 MPa in the VE and
3MPa in the dermis. Using a systems biology approach,
investigation of the mechanism of vaccine-induced immune
response associated with varying mechanical energies applied
by the Nanopatch™ demonstrated the enrichment of immunolo-
gically relevant DEGs and pathways, and shown similar profiles to
chemical adjuvants. Therefore, it is likely to be that the use of
mechanical energy enhances immune response through the
release of endogenous/native damage response molecules at
the site of antigen delivery, creating local inflammation. Although

this concept is not new, we have, in this study, quantified the
relation between mechanical stimuli to the skin cell death,
transcriptomic changes, and the resultant systemic antibody
response.
Specifically, we correlated experimental cell death imaging with

simulation of a theoretical skin deformation model in skin stress
distribution of a vaccine delivery device. Macro- and micro-level
analyses were performed using the whole array (Figs 1a, b and 2)
and single projection (Figs 1c and 3). In all tested conditions, the
stress-induced cell death was consistently observed at an average
of 30 MPa in the VE and 3MPa in the dermis (Figs 1 and 2).
However, certain limitations apply. Calculated stress in the VE was
likely affected by errors due to the large size of the finite elements
used in modelling, and required to avoid element distortion and
also to the interaction of skin model with the array base. Cell
death in the deep dermis was not examined because of the likely
effects on cell viability of split ear preparation. The agreement
between the observed stress thresholds for cell death across the
various models was otherwise consistent, even though skin
viscoelasticity and size-dependent mechanical response cause
an effective change in the elastic modulus from ~103 Pa, when
loaded statically by flat plate, to ~106 Pa when loaded dynamically
with the microprojection array. In particular, this ~1000-fold
change in modulus causes an approximate directly proportional to
~1000-fold change of the stress magnitude generated by an
equivalent deformation. This test conducted using dynamic
microprojection thus effectively validates the stress-induced cell
death model trained on static and dynamic flat plates and pillars,
providing confidence that we can rationally engineer device
designs and application conditions to achieve tailored cell death
amounts and spatial distributions.
With the understanding of the interaction between the skin and

mechanical energy, we reasoned that the magnitude of cell death
should reflect the increased energy applied using the skin delivery
device, which was observed to increase measured systemic
immune response. This hypothesis was supported by the
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increased number of DEGs found in the site of vaccination (Figs 4a
and 7). Transcriptomic profiling revealed an enhanced local
immune response involving interactions in extracellular matrix,
and triggering the IL-6, IL-17 and TNF signalling pathways and
antigen presenting through TLR signalling to activate B-cell
receptor signalling (Fig. 6 and Supplementary Figs 6 and 7). These
changes correlated with improvements in antibody response with
higher mechanical energy application of antigen and were
comparable to those induced by chemical adjuvants (Fig. 8).
Thus, skin delivery by Nanopatch™ induced localised cell death as
a result of controlled micro-trauma caused by application and
acted as a ‘physical immune enhancement’ to prime immune cells
for antigen uptake and induced response.
The Nanopatch™ is designed to be a practical, needle-free way

of delivering vaccine to the skin with adjustable mechanical
energy for improved immune responses. However, there are other
ways the energy has been transmitted for vaccine delivery.

Previous studies have shown that laser illumination vaccination, at
a dose of ~90 J/cm2 of application energy, demonstrated an
improvement of antigen uptake and antigen-specific antibody
response.10,25–27 This improvement possibly reflected application
energy from a mixture of sources, including mechanical and
thermal emission. A prior study from our group (Charkraborty
et al.28) demonstrated that heat-induced sterile inflammation
enhanced CD8+ T-cell responses. We have also demonstrated
similar enhancement of CD8+ T-cell responses27,29 and antibody
response16,30 in previous studies using 80- to 250-fold lower
application energy than the laser illumination. An earlier delivery
system, the ballistic gun uses mechanical energy to power DNA or
protein antigens formulated in microparticles into the skin at high
speed (200–800m/s).31 Despite having a velocity of about 30
times higher than the Nanopatch™, systemic immune response
were regularly equivalent to conventional delivery methods.32,33

Most of these technologies, and in particular microneedle/
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microprojection cutaneous delivery,34–37 have demonstrated
equivalent or better responses to antigen than traditional needle
and syringe. Gene gun and laser illumination deliver enhanced
responses to antigen but require an additional complex entity to
power the delivery (e.g., pressurised helium gas or motorised by
electronics), potentially increasing the cost of vaccination and the
size of the delivery device.
Thus, microprojection arrays (such as the Nanopatch™) may be a

preferred mode of skin delivery of antigen, using simple
application by mechanical means to target skin layers with high
abundance of antigen-presenting cells. The improved immune
response with higher mechanical application energy enhances
TNF signalling, apoptosis, TLR signalling and induction of IFN-α/β
and NF-ΚB signalling (Figs 6 and 7, and Supplementary Fig. 7).
Activation of these pathways at the transcriptome level is likely a

reflection of an overall enhanced localised response to antigen
delivery.
We acknowledge that RNA transcript changes do not necessa-

rily translate to changes at the protein level. Other studies have
used post-vaccination sera for the detection of cytokines and
chemokines to identify transcriptomic changes induced by their
delivery systems, however it was largely restricted to selected
immune related protein responses (e.g., IgG response, IL-6, IL-12,
IL5 and CCL5).18,29,38 The published literature covers transcrip-
tomic data from mice and humans, at different tissue sites
including peripheral blood, skin and muscle biopsy, and has
employed different analytic methods, including microarray or
RNA-seq and at time points day 0, day 3 or day 7 post vaccination
with one to three vaccine doses. Despite these analytic variables,
comparison of the currently presented transcriptome data with
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the curated gene sets from publicly available vaccinology datasets
highlighted similarities in the transcriptomic changes induced by
physical immune enhancements to those induced by chemical
adjuvants (i.e., Alum, CpG and MF59). The mechanical impact
applied by the Nanopatch™ is thus likely to induce similar
biological effects to chemical adjuvants18,19 and should result in
the induction of an equivalent or better vaccination response.
Future studies of physical immune enhancements in humans

are warranted. Due to genetic dissimilarity and skin differences,
the translation of physical immune enhancers in a different
species might change. Even though there are homologous genes
in mice and human, the mechanical properties of human skin
require further understanding, e.g., skin thickness,39 viscoelasti-
city40 or diseases in the skin can potentially affect the interaction
between the skin and delivery devices; hence, this changes the

systemic immune response invoked. Further understanding of
stress-induced cell death in the skin should advance the rational
design of next-generation vaccine and skin delivery technology. In
summary, our findings support adoption of mechanical delivery
systems such as the Nanopatch™ as a safe and effective
vaccination approach that capitalises on the use of controlled
mechanical energy to stress the skin cells and induce native/
endogenous physical immune enhancements from the skin as a
mode for enhancing vaccine-induced immunogenicity.
The microneedle technology has attracted considerable interest

as a vaccine delivery and the ability to mitigate risks associated
with conventional vaccination method with the needle and
syringe. Two recent human clinical trials by Rouphael et al.41

and Fernando et al.42 demonstrated the potential of the
microneedle technology as a vaccine delivery system. Both
studies demonstrated well-tolerated reactions on the skin and at
least an equivalent immune response compared with the
conventional vaccination method. Furthermore, Rouphael et al.41

has shown that the microneedle technology can be self-
administered, which could potentially remove the need of
healthcare workers during vaccination.
However, these microneedles are slightly different to the ones

used in this study (mouse prototype), in terms of projection
density, length, morphology, array dimensions, application speed
and material of the patch (dissolving vs. silicon), this affects the
interaction between microprojection tip-skin contact (i.e., skin
stress distribution, skin fracture/cell death threshold, vaccine
dissolution in the skin, immune regulation from mechanical stress,
to name a few). To add on to the complexity, preclinical studies in
naive animals showed superior immunogenicity and vaccine
efficacy post patch vaccination, whereas human volunteers are
likely to have pre-existing immunity from previous exposure,
making it harder to measure the improvement due to the
application of a microneedle/patch.
Although there are challenges to overcome, the logistical and

administration aspect of the vaccination using microneedle/patch
are attractive. Within the next few years, microneedle technology
is likely to play a vital role in vaccine delivery technology and
could replace the needle and syringe.

METHODS
Animals
All methods performed in this study were carried out in accordance with
National Health and Medical Research Council (NHMRC) guidelines and
were approved by The University of Queensland Animal Ethics Committee.
All animal care and experiments were conducted in accordance with
NHMRC (Australia) guidelines and with the approval of The University of
Queensland animal ethics committee under AIBN/556/12/ARC/NHMRC/
SMART or AIBN/043/16/ARC/NHMRC/SMART/WHO. Female C57BL/6J mice
of 6–8 weeks were used per condition and they were maintained under
specific pathogen-free condition with food ad libitum in the animal facility
of the Australian Institute of Bioengineering and Nanotechnology, The
University of Queensland.

Vaccine formulation
Intanza®2013 (Sanofi Pasteur, Lyon, France) is a trivalent influenza subunit
protein vaccine containing 90 µg/ml HA proteins from each influenza
strains, A/California/7/2009 (H1N1) pdm09-like strain, A/Victoria/361/2011
(H3N2)-like strain and B/Wisconsin/1/2010-like strain. The formulations
were calculated to deliver 30 ng of Intanza®2013, with or without 1.5 µg of
QS-21 (Desert King International, San Diego, CA, USA) to each of the mouse
model based on Supplementary Fig. 1, with Dulbecco’s PBS (dPBS; Gibco/
Life Technologies) as the diluent.

Transcutaneous immunisation
ID injections were prepared by diluting Intanza ®2013 in dPBS to the
appropriate dose (30 ng) and administered to the ventral side of murine
right ears.
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To induce physical immune enhancements while vaccinating into the
skin, the Nanopatch™ was used. These Nanopatch™ were manufactured as
described elsewhere,43 measuring 4 × 4mm with a density of 20,000
microprojections per cm2 and microprojections were 110 µm long. The
Nanopatch™ were cleaned with 70% ethanol, rinsed with MilliQ water and
air dried. The Nanopatch™ vaccine formulation consisted of 1%
methylcellulose (Methocel 60 HG; Fluka/Sigma-Aldrich), Intanza®2013
and dPBS as the diluent. Vaccine formulation was dry coated on to the
Nanopatch™ by a 70° and 20° angle nitrogen gas jet as described
previously.44 One patch per mouse was used to vaccinate mice with a
spring-loaded applicator at a constant velocity as specified in Supplemen-
tary Table 1, to penetrate microprojections into the ear skin of mice, left for
2 min to allow the reconstitution and diffusion of the dry-coated vaccine.
The amount of vaccine delivered into the skin was quantified using a
radioactive tracer and calculated as delivery efficiency (Supplementary
Fig. 1). Vaccinations using the Nanopatch™ were calculated accordingly
and no radioactive tracer was included.

Mathematical modelling of mechanical induction of stress on to
the skin
Briefly, static application allows the array (with mass of 0.035, 0.6, 2 or 7 kg,
inducing 0.34, 5.89, 19.62 and 68.67 N, respectively) to rest on the skin for
2 min.
Dynamic application requires an applicator to fire the array at a constant

energy (3500, 5800 or 11,200 J/m2) and the arrays are rested on the skin for
2 min, similar to the transcutaneous immunisation. The stress distributions
were computed using the finite element model of the skin developed in
Meliga et al.17 and were solved using Abaqus (Abaqus 6.11; Dassault
Systemes Simulia, Corp., Providence, RI, USA). Specifically, the mouse ear
was represented as a seven-layer material constituted by a 70 μm-thick
cartilage layer sandwiched between the ventral and dorsal skin tissues
having the following geometry: a 5 μm-thick stratum corneum (SC), a
15 μm-thick VE and a 60 μm-thick Dermis (D). The viscoelastic skin
behaviour was simulated using the Ogden model; hence, hyperelastic
parameters varied with the skin-probe contact area and deformation
velocity according to Crichton et al.45 measurements. For example, the
11,200 J/m2 microprojection application was simulated using respectively
the following Young’s moduli and stretch exponents: 187 MPa and 5.77 for
the SC, 2.7 MPa and 162 for the VE, 401MPa and 15.5 for the D, 0.02 MPa
and 115 for the Cartilage. The complete set of rate and size-dependent
moduli and exponents is summarised in Meliga et al.17 Similar to that in
our previous work,17 we used the following properties for SC, VE, D and
Cartilage: mass densities were 1.3, 1.1, 1.27 and 1.3 g cm−3, respectively.
Poisson’s ratio was set to 0.45. For the microprojection simulations,
penetration was simulated using a ductile failure model with critical
stresses at the onset of fracture of 70, 2 and 12 pJ μm2, and damage
dissipation energies of 35, 1 and 6 pJ/µm2 for the SC, VE and D,
respectively. The probes were assumed to be rigid and have a friction
coefficient of 0.4.

Sample collection
Ear skin samples were obtained 4 h post vaccination and was snapped
frozen using liquid nitrogen. All biopsies were weighted and kept at−80 °C
for further RNA-seq analysis.
Blood was collected by retro-orbital bleeds on day 21. Blood was kept at

room temperature for 2 h for clotting before centrifugation at 10,000 × g
for 5 min to separate sera from whole blood. Sera were kept at −80 °C for
further serological analysis.

Cell viability staining using multi-photon microscopy
Skin samples were prepared and cellular viability was assessed similar to a
previous study,15 using ×10 and ×20 air objectives (Zeiss, Germany). Briefly,
the ear skin was split, cartilage was carefully removed and stained using a
mixture of acridine orange (0.03 mg/ml) and ethidium bromide (0.1 mg/
ml), labelling live (green) and dead (magenta) cells, respectively. Positive
controls were pre-treated with ice-cold methanol before staining. Multi-
photon microscopy (MPM) images were taken from four to six ear skin
sample from different mouse per condition, except for naive condition
(n= 2; from different mouse). MPM images taken (one ×10 overview
image, one ×20 edge image and one ×20 centre image, unless otherwise
specified) using software LSM510 and image acquisition using ZEN (both
from Zeiss, Germany). A representative image was used.

Serological analysis—antigen-specific antibody response using
enzyme-linked immunosorbent assay
ntigen-specific antibody (day 21 sera) was measured by enzyme-linked
immunosorbent assay (ELISA) similar to previous study.16 Briefly, 3 µg/ml of
antigen (Intanza 2013) was diluted and used to coat ELISA plates (Nunc
Maxisorp, ThermoFisher) overnight at 4 °C. The plates were blocked with
0.4% bovine serum albumin (BSA) in PBS and were used to determine the
antigen-specific antibody titres. Sera were diluted to 1:100 with 0.4% BSA
in PBS, then serially diluted and incubated for 2 h in room temperature.
Washing of plates were done five times using 0.02% Phosphate-Buffered
Saline, Tween-20 0.05% (PBST) and secondary antibody; anti-mouse IgG
HRP (G-21040, Invitrogen/ThermoFisher) were diluted 1:1000 with 0.4%
BSA in PBS to obtain a final concentration of 1 µg/ml and this was added
and incubated for 1.5 h. Colour development was performed using ABTS
(2,29-azino-bis3-ethylbenzthiazoline-6-sulfonic acid; A-1888, Sigma-
Aldrich) as the substrate and measured at absorbance of 405 and
490 nm. Endpoint titres were calculated as described elsewhere.46

According to Frey et al.,46 endpoint is defined as the reciprocal of the
highest dilution of a serum that gives a reading above the cutoff. This
cutoff is established by the control sera from mock immunisation or
unimmunised (true negative controls), ran at similar serial dilution of the
same ELISA plate, and expressed as the SD multiplied by a factor based on
the number of negative controls.
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Statistical analysis
Statistical analyses were performed using GraphPad Prism version 7.02 for
Windows (GraphPad Software, La Jolla, CA, USA, www.graphpad.com). All
data represented were expressed as the mean ± SEM, for trend observa-
tions. The ANOVA was performed for multiple group comparison and two-
tailed unpaired Student’s t-test was performed as appropriate with single
comparison. A difference was considered statistically significant when p <
0.05.

RNA extraction, purification and sequencing
Ear skin samples were collected and stored at −80 °C until being
processed. TissueRuptor® (9001274; Qiagen) was used to disrupt and
homogenise skin in 1 ml of QIAzol Lysis Reagent. Total RNA were extracted
using Qiagen RNeasy® Microarray Tissue Kit (73304; Qiagen) with an
additional genomic DNA removal step (RNase-free DNAse set; 79254;
Qiagen) according to manufacturer’s protocol. Purity and quality of RNA
were validated by Nanodrop 1000 (ThermoScientific) and 2100 Bioanalyser
(Agilent Technologies). RNA samples were stored at −80 °C until being
processed. Complementary DNA libraries were made using TruSeq RNA
Sample Preparation kit (RS122-2001/2; Illumina) and sequencing was run as
a 50 bp single-end lane with at least 10 million read per sample on Illumina
HiSeq 2000 instrument performed by Australia Genome Research facility.
The sequencing data described in this study are deposited in ArrayExpress
accession E-MTAB-7482.

Sequence alignment, gene clustering and differential gene
expression analysis
Sequences were processed using Galaxy server, Genome Virtual Lab.47

Quality control of raw sequence data was determined using the Phred
Score obtained from Fast QC package. Reads were above a Phred Score of
25. Read alignment and transcript quantification was performed using
Salmon.48 DESeq2 was used for differential gene expression analysis.
Genes considered significantly regulated when p < 0.05.

Gene set enrichment analysis
Pre-ranked GSEA was performed following a standard procedure.49 The
gene signatures of Mosca et al. (E-TABM-506),18 Caproni et al. (E-MATB-
942),19 Li et al. (GSE52245),20 Nakaya et al. (GSE29614 and GSE29615-
GSE29617)23 and Qurec et al. (GSE 13485)50 were curated from publicly
available microarray data. The top ~200 up or downregulated genes in
each condition (vs. unimmunised, unless otherwise specified) were
identified by differential gene expression using GEOquery and Limma R
packages from the Bioconductor project. Mice Entrez Gene IDs were
mapped to Human Entrez Gene IDs for analysis, using the HGNC
Comparison of Orthology Predictions (downloaded 07/09/2017). However,
the comparison with Pearton et al.21 could not be performed due to the
lack of microarray data.

Weighed gene co-expression network analysis
Regularised log-normalised expression data from RNA-seq experiments
were generated using the DESeq2 and batch correction was performed
using the ComBat package embedded within the surrogate variable
analysis package from the Bioconductor R project.51 A weighted gene
network was generated from the data by following the standard procedure
of the WGCNA package.52 WGCNA provides a mean of identifying
correlation patterns of genes across microarray or RNA-seq samples and
subsequently finding modules of highly correlated genes/nodes via a
hierarchical clustering approach coupled with topology overlap matrix-
based dissimilarity measure. WGCNA constructs networks using a scale-
free topology criterion where connectivity of genes/nodes follows a power
law distribution where strongly connected gene–gene pairs are high-
lighted, whereas weakly connected pairs are penalised. This was found to
be useful for the identification of intrinsic biologically meaningful modules
of co-ordinately expressed genes.53 Briefly, the similarity (concordance)
between gene expression profiles across the samples was measured using
Pearson’s correlations. The co-expression similarities are converted into
connection strengths and used to define the distance (dissimilarity)
between genes (or nodes). The WGCNA package uses the topological
overlap dissimilarity measure, as it was found to result in biologically
meaningful modules.53 Genes with coherent expression profiles were
grouped into modules using average linkage hierarchical clustering
coupled with the topological overlap dissimilarity measure. The gene

modules correspond to the branches of the resulting dendrogram. To
identify modules that are significantly associated with external traits, the
summary profile (eigengene) of each module was correlated with
predefined external traits and looked for the most significant associations.
According to the WGCNA package, the module eigengene is the
representative value for a module and is defined as the first principal
component of a module; the normalised linear combination of genes with
the maximum possible variability in a module. To facilitate biological
interpretation, pathway overrepresentation analysis for each gene module
was performed using ConsensusPathDB (http://cpdb.molgen.mpg.de/
MCPDB).54 The top five processes from KEGG and GO biological processes
were reported. Top ten pathways hits from KEGG were plotted onto
GraphPad Prism.

Heatmap
Log2 normalised gene expression values for the respective genes were
extracted from the expression matrix used for WGCNA analysis. The
expression data were centred and scaled to a z-scale, which represents the
expression values as SDs from the centre. The data were then converted to
a colour scale from blue to white, to red, where blue indicates low
expression and red indicates high expression. The heatmap was generated
using the pheatmap R package.

Reporting summary
Further information on research design is available in the Nature Research
Reporting Summary linked to this article.

DATA AVAILABILITY
Sequencing data that support the findings of this study have been deposited in
ArrayExpress with accession code E-MTAB-7482.

Received: 12 May 2019; Accepted: 11 September 2019;

REFERENCES
1. Korsholm, K. S. One does not fit all: new adjuvants are needed and vaccine

formulation is critical. Expert Rev. Vaccines 10, 45–48 (2011).
2. Reed, S. G., Orr, M. T. & Fox, C. B. Key roles of adjuvants in modern vaccines. Nat.

Med. 19, 1597–1608 (2013).
3. Coffman, R. L., Sher, A. & Seder, R. A. Vaccine adjuvants: putting innate immunity

to work. Immunity 33, 492–503 (2010).
4. Marty-Roix, R. et al. Identification of QS-21 as an inflammasome-activating

molecular component of saponin adjuvants. J. Biol. Chem. 291, 1123–1136 (2016).
5. Engelke, L., Winter, G., Hook, S. & Engert, J. Recent insights into cutaneous

immunization: how to vaccinate via the skin. Vaccine 33, 4663–4674 (2015).
6. Ogura, M., Paliwal, S. & Mitragotri, S. Low-frequency sonophoresis: current status

and future prospects. Adv. Drug Deliv. Rev. 60, 1218–1223 (2008).
7. Cobo Labarca, C. et al. The adjuvant effect of low frequency ultrasound when

applied with an inactivated Aeromonas salmonicida vaccine to rainbow trout
(Oncorhynchus mykiss). Vaccine 33, 1369–1374 (2015).

8. Sardesai, N. Y. & Weiner, D. B. Electroporation delivery of DNA vaccines: prospects
for success. Curr. Opin. Immunol. 23, 421–429 (2011).

9. Lin, F. et al. A novel prototype device for electroporation-enhanced DNA vaccine
delivery simultaneously to both skin and muscle. Vaccine 29, 6771–6780 (2011).

10. Chen, X. & Wu, M. X. Laser vaccine adjuvant for cutaneous immunization. Expert
Rev. Vaccines 10, 1397–1403 (2011).

11. Weiss, R. et al. Transcutaneous vaccination via laser microporation. J. Control.
Release 162, 391–399 (2012).

12. Raju, P. A., McSloy, N., Truong, N. K. & Kendall, M. A. F. Assessment of epidermal
cell viability by near infrared multi-photon microscopy following ballistic delivery
of gold micro-particles. Vaccine 24, 4644–4647 (2006).

13. Liu, Y. & Kendall, M. A. F. Optimization of a jet-propelled particle injection system
for the uniform transdermal delivery of drug/vaccine. Biotechnol. Bioeng. 97,
1300–1308 (2007).

14. Crichton, M. L. et al. The effect of strain rate on the precision of penetration of
short densely-packed microprojection array patches coated with vaccine. Bio-
materials 31, 4562–4572 (2010).

15. Depelsenaire, A. C. I. et al. Co-localization of cell death with antigen deposition in
skin enhances vaccine immunogenicity. J. Invest. Dermatol. 134, 2361–2370
(2014).

H.-I. Ng et al.

10

npj Vaccines (2019)    41 Published in partnership with the Sealy Center for Vaccine Development

http://www.graphpad.com
http://cpdb.molgen.mpg.de/MCPDB
http://cpdb.molgen.mpg.de/MCPDB
https://www.ebi.ac.uk/arrayexpress/experiments/E-MTAB-7482


16. Fernando, G. J. P. et al. Potent immunity to low doses of influenza vaccine by
probabilistic guided micro-targeted skin delivery in a mouse model. PLoS ONE 5,
e10266 (2010).

17. Meliga, S. C. et al. The hyperelastic and failure behaviors of skin in relation to the
dynamic application of microscopic penetrators in a murine model. Acta Bio-
mater. 48, 341–356 (2017).

18. Mosca, F. et al. Molecular and cellular signatures of human vaccine adjuvants.
Proc. Natl Acad. Sci. USA 105, 10501–10506 (2008).

19. Caproni, E. et al. MF59 and Pam3CSK4 boost adaptive responses to influenza
subunit vaccine through an IFN type I-independent mechanism of action. J.
Immunol. 188, 3088–3098 (2012).

20. Li, S. et al. Molecular signatures of antibody responses derived from a systems
biology study of five human vaccines. Nat. Immunol. 15, 195–204 (2014).

21. Pearton, M., Pirri, D., Kang, S.-M., Compans, R. W. & Birchall, J. C. Host responses in
human skin after conventional intradermal injection or microneedle adminis-
tration of virus-like-particle influenza vaccine. Adv. Healthc. Mater. 2, 1401–1410
(2013).

22. Kazmin, D. et al. Systems analysis of protective immune responses to RTS,S
malaria vaccination in humans. Proc. Natl Acad. Sci. USA 114, 2425–2430
(2017).

23. Nakaya, H. I. et al. Systems biology of vaccination for seasonal influenza in
humans. Nat. Immunol. 12, 786–795 (2011).

24. Bindea, G. et al. ClueGO: a Cytoscape plug-in to decipher functionally grouped
gene ontology and pathway annotation networks. Bioinformatics 25, 1091–1093
(2009).

25. Chen, X. et al. A novel laser vaccine adjuvant increases the motility of antigen
presenting cells. PLoS ONE 5, e13776 (2010).

26. Sengupta, A. et al. Energy transfer mechanisms during molecular delivery to cells
by laser-activated carbon nanoparticles. Biophys. J. 112, 1258–1269 (2017).

27. Wang, J., Shah, D., Chen, X., Anderson, R. R. & Wu, M. X. A micro-sterile inflam-
mation array as an adjuvant for influenza vaccines. Nat. Commun. 5, 4447
(2014).

28. Chakraborty, R. et al. CD8+ lineage dendritic cells determine adaptive immune
responses to inflammasome activation upon sterile skin injury. Exp. Dermatol. 27,
71–79 (2017).

29. Ng, H.-I., Fernando, G. J. P. & Kendall, M. A. F. Induction of potent CD8+ T cell
responses through the delivery of subunit protein vaccines to skin antigen-
presenting cells using densely packed microprojection arrays. J. Control. Release
162, 477–484 (2012).

30. Fernando, G. J. P. et al. Nanopatch targeted delivery of both antigen and adjuvant
to skin synergistically drives enhanced antibody responses. J. Control. Release
159, 215–221 (2012).

31. Kendall, M. A., Mitchell, T. & Wrighton-Smith, P. Intradermal ballistic delivery of
micro-particles into excised human skin for pharmaceutical applications. J. Bio-
mech. 37, 1733–1741 (2004).

32. Jones, S. et al. DNA vaccination protects against an influenza challenge in a
double-blind randomised placebo-controlled phase 1b clinical trial. Vaccine 27,
2506–2512 (2009).

33. Drape, R. J. et al. Epidermal DNA vaccine for influenza is immunogenic in humans.
Vaccine 24, 4475–4481 (2006).

34. Marshall, S., Sahm, L. J. & Moore, A. C. The success of microneedle-mediated
vaccine delivery into skin. Hum. Vaccin. Immunother. 12, 2975–2983 (2016).

35. Larrañeta, E., McCrudden, M. T. C., Courtenay, A. J. & Donnelly, R. F. Microneedles:
a new frontier in nanomedicine delivery. Pharm. Res. 33, 1055–1073 (2016).

36. Rejinold, N. S., Shin, J.-H., Seok, H. Y. & Kim, Y.-C. Biomedical applications of
microneedles in therapeutics: recent advancements and implications in drug
delivery. Expert Opin. Drug Deliv. 13, 1–23 (2015).

37. Arya, J. & Prausnitz, M. R. Microneedle patches for vaccination in developing
countries. J. Control. Release 240, 135–141 (2015).

38. Koutsonanos, D. G. et al. Delivery of subunit influenza vaccine to skin with
microneedles improves immunogenicity and long-lived protection. Sci. Rep. 2,
357 (2012).

39. Wei, J. C. J. et al. Allometric scaling of skin thickness, elasticity, viscoelasticity to
mass for micro-medical device translation: from mice, rats, rabbits, pigs to
humans. Sci. Rep. 7, 15885 (2017).

40. Ezure, T. & Amano, S. Increased subcutaneous adipose tissue impairs dermal
function in diet-induced obese mice. Exp. Dermatol. 19, 878–882 (2010).

41. Rouphael, N. G. et al. The safety, immunogenicity, and acceptability of
inactivated influenza vaccine delivered by microneedle patch (TIV-MNP
2015): a randomised, partly blinded, placebo-controlled, phase 1 trial. Lancet
390, 649–658 (2017).

42. Fernando, G. J. P. et al. Safety, tolerability, acceptability and immunogencity of an
influenza vaccine delivered to human skin by a novel high-density micorpro-
jection array patch (Nanopatch TM). Vaccine 18, 3779–3788 (2018).

43. Jenkins, D., Corrie, S., Flaim, C. & Kendall, M. A. High density and high aspect ratio
solid micro-nanoprojection arrays for targeted skin vaccine delivery and specific
antibody extraction. RSC Adv. 2, 3490–3495 (2012).

44. Chen, X., Prow, T. W., Crichton, M. L., Fernando, G. J. P. & Kendall, M. A. F. In
International Conference On Nanoscience and Nanotechnology 2008 105–108
(Melbourne, Victoria, 2008).

45. Crichton, M. L. et al. The viscoelastic, hyperelastic and scale dependent behaviour
of freshly excised individual skin layers. Biomaterials 32, 4670–4681 (2011).

46. Frey, A., Di Canzio, J. & Zurakowski, D. A statistically defined endpoint titer deter-
mination method for immunoassays. J. Immunol. Methods 221, 35–41 (1998).

47. Galaxy/GVL-QLD. “Galaxy Queensland”. Retrieved 02 Jan 2017. http://galaxy-qld.
genome.edu.au/.

48. Patro, R., Duggal, G., Love, M. I., Irizarry, R. A. & Kingsford, C. Salmon provides fast
and bias-aware quantification of transcript expression. Nat. Methods 14, 417–419
(2017).

49. Subramanian, A. et al. Gene set enrichment analysis: a knowledge-based
approach for interpreting genome-wide expression profiles. Proc. Natl Acad. Sci.
USA 102, 15545–15550 (2005).

50. Querec, T. D. et al. Systems biology approach predicts immunogenicity of the
yellow fever vaccine in humans. Nat. Immunol. 10, 116–125 (2009).

51. Leek, J. T. & Storey, J. D. Capturing heterogeneity in gene expression studies by
surrogate variable analysis. PLoS Genet. 3, e161 (2007).

52. Zhang, B. & Horvath, S. A general framework for weighted gene co-expression
network analysis. Stat. Appl. Genet. Mol. Biol. 4, Article17 (2005).

53. Ravasz, E., Somera, A. L., Mongru, D. A., Oltvai, Z. N. & Barabási, A.-L. Hierarchical
organization of modularity in metabolic networks. Science 297, 1551–1555
(2002).

54. Kamburov, A. et al. ConsensusPathDB: toward a more complete picture of cell
biology. Nucleic Acids Res. 39, D712–D717 (2011).

ACKNOWLEDGEMENTS
This work was supported by Australian Research Council (ARC) Linkage grant
LP130100882, with industry partner Vaxxas Pty, Ltd, Brisbane, Australia, and ARC
Centre of Excellence CE140100036. H.-I.N. is a recipient of University of Queensland
International Scholarship (UQI) and Australian Institute for Bioengineering and
Nanotechnology (AIBN) top-up PhD scholarship. We show appreciation to H.-I.N.’s
PhD assessor team, Professor Philip Hugenholtz and Associate Professor Nicholas
Saunders, for their constructive criticisms and valuable feedback to this project. Z.K.T.
is supported by an Advance Queensland Research Fellowship. We thank Ms. Chelsea
Stewart and others at the AIBN animal facility for excellent animal care, and Ms. Sally
Yukiko and Dr. Jin Zhang for providing technical assistance. Nanopatches™ were
manufactured at the Melbourne Centre for Nanofabrication (MCN), Melbourne, and
Australian National Fabrication Facility (ANFF) provided by Vaxxas Pty Ltd.
Manufacturing of Nanopatch™ was also performed in part at the Brisbane node of
the Australian National Fabrication Facility (ANFF-Q), a company established under
the National Collaborative Research Infrastructure Strategy to provide nano- and
micro-fabrication facilities for Australia’s researchers. We thank Queensland Facility of
Advanced Bioinformatics (QFAB), Australian Genome Research Facility (AGRF)
Melbourne and Dr Igor Makunin (Galaxy Australia) for the initial bioinformatics
training and assistance. Finally, we thank the members of the Kendall laboratory,
Frazer laboratory and Vaxxas Pty Ltd for the critical scientific discussions and
feedback.

AUTHOR CONTRIBUTIONS
H.-I.N., G.J.F., A.C.I.D. and S.C.M. conceived and designed the experiments. I.H.F. and
M.A.F.K. provided scientific oversight. This work was part of H.-I.N. PhD thesis, G.J.F.
and M.A.F.K. were her PhD advisors. H.-I.N. and A.C.I.D. ran animal experiments. H.-I.N.,
Z.K.T., A.C.I.D. and S.C.M. collected data and performed analysis. H.-I.N. wrote the
manuscript and Z.K.T, G.J.F., A.C.I.D., S.C.M., I.H.F. and M.A.F.K. critically reviewed and
approved the final manuscript.

COMPETING INTERESTS
M.A.F.K. declares a financial interest as the founder of Vaxxas Pty Ltd and is the
inventor on several patents currently licensed by Vaxxas Pty Ltd. While a significant
component of this research was being conducted, in addition to his Professorial role
at The University of Queensland, M.A.F.K. served as a Vaxxas Director, Chief
Technology Officer and Chair of the Vaxxas Advisory Board. H.-I.N., A.C.I.D. and G.J.P.F.
were all in the Kendall laboratory for most of this research—funded by the ARC and
UQ sources. H.-I.N. and A.C.I.D. are now employed by Vaxxas Pty Ltd. G.J.P.F. is an
inventor on some Nanopatch™ patents and is now a consultant for Vaxxas Pty Ltd.

H.-I. Ng et al.

11

Published in partnership with the Sealy Center for Vaccine Development npj Vaccines (2019)    41 

http://galaxy-qld.genome.edu.au/
http://galaxy-qld.genome.edu.au/


Vaxxas Pty Ltd is a commercial company developing the Nanopatch™ for vaccine
delivery in humans. All other authors delcare no competing interests.

ADDITIONAL INFORMATION
Supplementary information is available for this paper at https://doi.org/10.1038/
s41541-019-0134-4.

Correspondence and requests for materials should be addressed to H.-I.N. or I. H.F.

Reprints and permission information is available at http://www.nature.com/
reprints

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims
in published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing,

adaptation, distribution and reproduction in anymedium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative
Commons license, and indicate if changes were made. The images or other third party
material in this article are included in the article’s Creative Commons license, unless
indicated otherwise in a credit line to the material. If material is not included in the
article’s Creative Commons license and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly
from the copyright holder. To view a copy of this license, visit http://creativecommons.
org/licenses/by/4.0/.

© The Author(s) 2019

H.-I. Ng et al.

12

npj Vaccines (2019)    41 Published in partnership with the Sealy Center for Vaccine Development

https://doi.org/10.1038/s41541-019-0134-4
https://doi.org/10.1038/s41541-019-0134-4
http://www.nature.com/reprints
http://www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

	Microprojection arrays applied to skin generate mechanical stress, induce an inflammatory transcriptome and cell death, and improve vaccine-induced immune responses
	Introduction
	Results
	Determining the stress distribution and cell death invoked in the skin by the application of vaccine delivery devices
	Adjuvant-like gene transcription changes following mechanical impact into the skin with or without antigen and adjuvant
	Molecular pathway analysis of mechanical stresses and cell death revealed clustering of highly correlated genes associated with immunogenic roles
	Relating delivery to the skin, with distinct levels of mechanical energy application, to invoke local differential expression in genes and resultant systemic antibody responses

	Discussion
	Methods
	Animals
	Vaccine formulation
	Transcutaneous immunisation
	Mathematical modelling of mechanical induction of stress on to the skin
	Sample collection
	Cell viability staining using multi-photon microscopy
	Serological analysis&#x02014;antigen-specific antibody response using enzyme-linked immunosorbent assay
	Statistical analysis
	RNA extraction, purification and sequencing
	Sequence alignment, gene clustering and differential gene expression analysis
	Gene set enrichment analysis
	Weighed gene co-expression network analysis
	Heatmap
	Reporting summary

	References
	References
	Acknowledgements
	Author contributions
	Competing interests
	ADDITIONAL INFORMATION




