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In vertical inhibition treatment strategies, multiple components of an intracellular pathway are
simultaneously inhibited. Vertical inhibition of the BRAFV600E–MEK-ERK signalling pathway is a
standard of care for treating BRAFV600E-mutated melanoma where two targeted cancer drugs, a
BRAFV600E-inhibitor, and aMEK inhibitor, are administered in combination. Targeted therapies have
been linked to early onsets of drug resistance, and thus treatment strategies of higher complexities
and lower doses have been proposed as alternatives to current clinical strategies. However, finding
optimal complex, low-dose treatment strategies is a challenge, as it is possible to design more
treatment strategies than are feasibly testable in experimental settings. To quantitatively address this
challenge, we develop a mathematical model of BRAFV600E–MEK-ERK signalling dynamics in
response to combinations of the BRAFV600E-inhibitor dabrafenib (DBF), the MEK inhibitor trametinib
(TMT), and the ERK-inhibitor SCH772984 (SCH). From a model of the BRAFV600E–MEK–ERK
pathway, and a set of molecular-level drug–protein interactions, we extract a system of chemical
reactions that is parameterised by in vitro data and converted to a system of ordinary differential
equations (ODEs) using the law of mass action. The ODEs are solved numerically to produce
simulations of how pathway-component concentrations change over time in response to different
treatment strategies, i.e., inhibitor combinations and doses. The model can thus be used to limit the
search space for effective treatment strategies that target the BRAFV600E–MEK–ERK pathway and
warrant further experimental investigation. The results demonstrate that DBF and DBF–TMT–SCH
therapies show marked sensitivity to BRAFV600E concentrations in silico, whilst TMT and SCH
monotherapies do not.

Cancer cells have properties that differentiate them fromnormal cells of the
human body. Targeted cancer drugs work by specifically targeting those
properties1. The clinical use of small-molecule targeted cancer drugs, which
began in the early 2000s, has improved survival rates for multiple cancers2.
However, targeted cancer drugs have been linked to early onsets of drug
resistance in patients3–5, which poses a major clinical question: How do we
avoid or delay resistance to targeted cancer drugs? Proposed strategies to
approach this question include altering (i) drug combinations, (ii) drug
doses, and (iii) drug schedules. By altering (i-iii), it is possible to designmore

treatment strategies than can be feasibly tested. Therefore, optimal strategies
cannot be found by pre-clinical experiments and clinical trials alone. To
limit the search space for effective treatment strategies that warrant pre-
clinical and clinical investigation, rational and quantitative approaches can
be used. Rational treatment strategies refer to strategies informed by
mechanistic understandings of how treatments target cancer cells’ abilities
to survive and proliferate4,6. One such rational treatment strategy is vertical
inhibition, where multiple components of an intracellular signalling path-
way are simultaneously inhibited5.
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For treating BRAFV600E-mutated melanoma, for instance, vertical
inhibition is now a standard of care7. The BRAFV600E mutation causes
hyper-activated signalling in the intracellular BRAFV600E–MEK–ERK
pathway, in which BRAFV600E activatesMEK via phosphorylation events,
which in turn activates ERK via phosphorylation events8. Activated ERK
promotes cell survival and cell proliferation by activating numerous sub-
strates in the cell nucleus and cytoplasm. Thus, hyper-activated
BRAFV600E–MEK–ERK signalling may result in high ERK activity and,
by extension, uncontrolled cell proliferation9,10. ERK-activated substrates
include structural proteins, nuclear envelope proteins and transcription
factors such as the cancer-associated substrate c-Myc11. c-Myc is involved in
regulating multiple cell functions, including cell cycle progression, cell dif-
ferentiation and cell death12. In normal cells, c-Myc expression is tightly
controlled. In cancer cells, however, c-Myc expression has been observed to
be dysregulated, entailing increased c-Myc concentration and uncontrolled
cell proliferation13,14. This overexpression is promoted by upstream signal-
ling of, e.g., the BRAFV600E–MEK–ERK pathway12.

Vertical inhibitionof theBRAFV600E–MEK–ERKpathwayultimately
acts to suppress ERK’s ability to activate substrates. The rationale is that by
inhibiting not only the BRAFV600E oncogene but also downstream path-
way components such as MEK and ERK, treatments should be more
effective anddrug resistance should be impeded. In support of this rationale,
previous experimental results indicate that when multiple components in a
signallingpathway are inhibited, the risk for cancer cells evadingdrug effects
via adaptive feedback reactivation of pathway signalling is reduced15–18.
Moreover, experimental results show that high-dose monotherapies of
inhibitors that target the BRAFV600E–MEK–ERK pathway exacerbate the
onset of drug resistance in vivo, by creating evolutionary pressures that
select for drug-resistant cell clones19. These evolutionary pressures decrease
with increased treatment complexities, enabled via vertical inhibition19. The
risks of high-dose drug treatments are important to note, as cancer drugs are
commonly clinically administered at doses that are determined in the early,
dose-escalation stages of clinical trials. This is the case for the BRAFV600E-
specific inhibitor dabrafenib (DBF), and the MEK inhibitor trametinib
(TMT) which are administered together for treating BRAFV600E-mutated
melanoma20–22. Low-dose vertical inhibition strategies have been shown to
provide promising alternatives to high-dose strategies in vitro and in vivo23.

As a complement to experimental and clinical studies, mathematical
models can be used to simulate and analyse pathway signalling
dynamics24–29 and quantitatively identify vertical inhibition, low-dose drug
combinations that yield synergistic treatment responses in silico30. Notably,
in 1996, Huang and Ferrell developed a reaction network model that
describes signalling dynamics in general MAPKKK–MAPKK–MAPK
cascades (MAPK cascades)25, of which the BRAFV600E–MEK–ERK
pathway is one.WhilstHuang and Ferrell predicted ultrasensitive dynamics
in MAPK cascades, such that ERK goes from being non-activated to acti-
vated in a switch-like manner, later work by Aoki et al. showed that ERK
phosphorylation inHeLa cells is graded or, in otherwords, processive31. The
authors also suggested that, underphysiological conditionswheremolecular
crowding occurs, ERK phosphorylation is quasi-processive. Building on
observations fromyeast experiments,Takahashi andPryciak concluded that
the MAPK cascade is inherently ultrasensitive but that the pathway can be
converted to a processive form via interactions with scaffold proteins32.
Scaffold proteins are, indeed, crucial for signal regulation and activation in
MAPKcascades. This was emphasised by Levchenko et al. who developed a
computational model in whichMAPK-cascade components interact with a
generic scaffold protein. Model analysis revealed that scaffold protein
concentrations significantly alter cascade signalling dynamics33. The
importance of cascade-scaffold interactions was also marked by Tian et al.
who studied Ras signalling nanoclusters, i.e., discrete plasma membrane
nanodomains. The authors showed that spatial Ras organisation crucially
impacts pathway signalling34. Furthermore, to investigate downstream
effects of ERK signalling, Lee et al. developed a mathematical model that
integrates signalling dynamics in the ERK and the phosphatidylinositol
3-kinase (PI3K) pathways, the two effector pathways that regulate Myc35.

Their model suggested that Myc stability is sensitive to temporal aspects of
ERK and PI3K signalling. Building on Huang and Ferrell’s modelling
work25, we (some of the authors) recently developed a mathematical model
and a computational framework for simulating signalling dynamics in the
BRAFV600E–MEK–ERK pathway in response to vertical inhibition with
two drugs: DBF and TMT30. Our study focused on signalling dynamics in
response to pathway–drug interactions and therefore omitted details per-
taining to e.g., scaffold proteins, spatial molecular structures, and other
intracellular pathways. In the previous study, we calculated ERKactivities in
response to varying concentrations of drugs, adenosine triphosphate (ATP),
and pathway components. The model provided a mechanistic under-
standing on a molecular level of when DBF–TMT synergy occurs and
identified intracellular BRAFV600E and ATP levels as factors in drug
resistance.

Beyond two-component vertical inhibition strategies, combining
BRAFV600E,MEKandERK inhibitors has shownpromising results in pre-
clinical experiments19. Therefore, ERK inhibitors have been proposed to be
used in combination with DBF and TMT, as part of a three-drug vertical
inhibition strategy19. To investigate such strategies in silico we here extend
our previous mathematical model30 to also include an ATP-competitive
ERK-inhibitor. Themodel is parameterisedbydata pertaining specifically to
the ERK-inhibitor SCH77298436, but the parameter values can be adjusted
to study other ATP-competitive ERK inhibitors. We use the model to
simulate BRAFV600E–MEK-ERK signalling dynamics in response to var-
ious combinations and doses of BRAFV600E, MEK, and ERK inhibitors.
Our results also identify two and three-component vertical inhibition dose
combinations that yield synergistic treatment responses in silico, in terms of
inhibiting the activation of an ERK-activated substrate.

Results
We simulate signalling dynamics in the BRAFV600E–MEK–ERK pathway
using a mathematical model and a computational framework30. The
mathematical model comprises an abstraction of the intracellular
BRAFV600E–MEK–ERK pathway, and a set of possible interactions that
can occur betweenpathway components and inhibitors. In order to evaluate
the effect of treatment strategies that involve ERK inhibitors, we extend the
pathway model to include the ERK-activated substrate c-Myc, which we
refer to as S, downstreamof ERK. From the c-Myc extended pathwaymodel
and the set of possible interactions,we extract a systemof chemical reactions
that describe pathway signalling in response to vertical inhibition.Using our
previously developed computational framework30 that builds on the law of
mass action, we convert the system of chemical reactions into a system of
ordinary differential equations (ODEs) that are solved numerically to
produce simulations of pathway signalling dynamics. These simulations
show how concentrations of the pathway components change over time, in
response to different inhibitor combinations and concentrations. We
choose phosphorylated c-Myc (pS) to be ourmainmodel output of interest,
and the simulated treatments ultimately act to suppress the amount of pS in
the modelled system. By altering the initial inhibitor concentrations, we
simulate treatment responses to vertical inhibition strategies that target one,
two, or three components of the pathway. To simulate pathwaydynamics in
the absence of a specific inhibitor, we simply set the initial concentration of
that inhibitor to zero. Throughout this study, the total amount of inhibitor
concentrations is constant over the time courses of the simulations.

Simulatingtreatment responses tomonotherapies that inhibit the
BRAFV600E–MEK–ERK pathway
We first simulate pathway dynamics in response to monotherapies that
inhibit BRAFV600E, MEK or ERK activity. Our main simulation output of
interest is Sact(t), the fraction of simultaneously free and activated substrate S
in the system (Eq. (1), “Methods”). We are interested in investigating how
this model output changes in time, in response to different doses of the
BRAFV600E-inhibitorDBF, theMEK inhibitor TMT, or the ERK-inhibitor
SCH. We are also interested in understanding how intracellular con-
centrations of BRAFV600E and ATP impact treatment responses in silico.
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We choose an initial condition in which only free and non-phosphorylated
MEK, ERK, and S are present in the system, in line with previous studies25,30

(SupplementaryMaterial, SupplementaryNote 3.2).Hence the substrate S is
not immediately activated when the simulations start. Instead, S activation
occurs after MEK and ERK activation, as regulated by the pathway
dynamics. This transient behaviour of S activation is illustrated in Fig. 1,
where monotherapy responses to DBF, TMT and SCH are plotted over
increasing inhibitor concentrations for six different simulation time points.

With the baseline values of totalBRAFV600EandATPconcentrations,
which are estimated to correspond to physiological values30, TMT and SCH
monotherapies yield steady-state activated substrate levelswithin 72 h for all
doses (Fig. 1, left column). These steady-state levels are reached within 60 h
for TMT treatments, and within 3 h for SCH treatments. In contrast, no
steady-states are reached in response toDBFmonotherapies. By comparing
the two leftmost columns in Fig. 1, we can study what happens to substrate
activation dynamics when the total BRAFV600E concentration is increased
from the 3 nM baseline value to 10 nM. This comparison shows that the
increased BRAFV600E concentration raises the dose-response curves and
thus desensitises the pathway to DBF monotherapies. Furthermore, the
simulation results show that the steady-state treatment responses to TMT
and SCH monotherapies are not affected by the change in BRAFV600E
concentrations from 3 to 10 nM, although the time durations to reach the
steady-states do decrease with increasing BRAFV600E concentrations. This
latter result is visible in Fig. 1 for TMTmonotherapies at 3 h. We note that

the transient system behaviour of responses to SCH monotherapies is not
visible from Fig. 1, as steady-state levels are reached within 3 h. However,
this transient system behaviour is observable from supplementary simula-
tion results where we plot activated substrate levels over time (Supple-
mentary Material, Supplementary Note 4).

Next, to investigate the role ofATP in treatment responses, we increase
the total ATP concentration from the baseline value, 1 mM, to 5mM in the
third column.We then compare the first and third columns in Fig. 1. Doing
this, we see that the increase inATP levels renders the pathway less sensitive
to DBF, TMT and SCH monotherapies at all regarded time points. These
results follow from the fact that ATP is needed for the phosphorylation of
MEK,ERKandS.Hencewhen intracellularATPconcentrations increase, so
does the probability that ATP-binding sites on the catalysing enzymes will
be occupied by ATP molecules.

In summary, from the simulation results, we find that both
BRAFV600E and ATP levels impact transient and absolute values of Sact(t)
in response to DBF monotherapies. Conversely, in response to TMT and
SCH doses, ATP concentrations predominately impact the steady-state
levels of Sact(t), whilst BRAFV600E concentrations impact the time until
steady-state levels are reached. This finding is substantiated by Fig. 1 (right),
in which both total BRAFV600E and ATP concentrations have been ele-
vated from the baseline values. Notably, the model predicts that DBF
monotherapies are initially effective in suppressing substrate activation, but
that this efficacy decreases over time. For instance, at 3 h and baseline

Fig. 1 | Mathematical modelling quantifies in silico treatment responses to
monotherapies that target components of theBRAFV600E–MEK–ERKpathway.
The plots show activated substrate levels (Sact(t), Eq. (1), “Methods”) over time in
response to different doses of the BRAFV600E-inhibitor DBF (top row), the MEK
inhibitor TMT (middle row), and the ERK-inhibitor SCH (bottom row). The plots

show activated substrate levels at six simulation time points (3, 8, 16, 24, 60 and 72 h).
The total BRAFV600E and ATP concentrations vary between the columns, where
baseline values (BRAFV600Etot = 3 nM, ATPtot = 1 mM) are used in the leftmost
column.
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BRAFV600EandATPconcentrations, 0.45 μMDBFsuffices to achieve 90%
inhibition of activated substrate (S�actð 3hÞ ¼ 0.1, Eq. (3), “Methods”), whilst
the samedose inhibits less than 1% substrate activation at 24 h.On the other
hand, a 1.15 μMSCHdose achieves 90% inhibition of activated substrate for
all time points at 3 h and over. Evenmore strikingly, when the BRAFV600E
concentration is increased to 10 nM, 90% inhibition of activated substrate is
achieved by, e.g., 1.57 μM DBF at 3 h, 8.71 μM DBF at 24 h, and 1.15 μM
SCH for time points at 3 h and over. These results suggest that, due to (i)
DBF-leakage, and (ii) DBF sensitivity to BRAFV600E concentrations, SCH
monotherapies may be effective in complementing DBF therapies in inhi-
biting substrate activity.

Simulating treatment responses to two-component vertical
inhibition of the BRAFV600E–MEK–ERK pathway
We next simulate pathway dynamics in response to vertical inhibition
treatment strategies that target two components of the
BRAFV600E–MEK–ERK pathway. Activated substrate levels (Sact, Eq. (1),
“Methods”) in response to BRAFV600E andMEK inhibition (DBF–TMT),
BRAFV600E and ERK inhibition (DBF–SCH), and MEK and ERK inhi-
bition (TMT–SCH)are shown in theheatmaps for three selected timepoints
(8, 16 and 24 h) in Fig. 2. The time points are chosen to exemplify time
windows of BRAFV600E–MEK-ERK signalling dynamics that are of
interest from a treatment perspective, and are motivated by treatment

Fig. 2 | Mathematical modelling quantifies in silico treatment responses to ver-
tical inhibition treatment strategies that target up to two components of the
BRAFV600E–MEK–ERK pathway. The heatmaps show levels of substrate activity
(Sact(t), Eq. (1), “Methods”) in response to combination treatments of BRAFV600E
and MEK inhibitors (DBF–TMT, top row), BRAFV600E and ERK inhibitors
(DBF–SCH,middle row), andMEKandERK inhibitors (TMT–SCH, bottom row) at
three different simulation time points (8, 16 and 24 h). Baseline values of total

BRAFV600E (3 nM) and ATP (1 mM) concentrations are used in the simulations.
The right-most plots include isoboles (lines) that connect the relevant monotherapy
doses that yield 90% inhibition of substrate activity at 24 h such that S�actð 24 hÞ ¼
0.1, which corresponds to Sact(24 h) ≈ 0.024. Two-drug combination doses under the
isoboles that achieve more than 90% activated substrate inhibition, such that
S�actð 24 hÞ< 0.1, are here categorised as synergistic.
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schedules from the first-in-human study of DBF, where DBF was admi-
nistered once, twice, or three times daily37. The heatmaps demonstrate the
dynamic behaviour of the system through the time-varying Sact levels. We
use these heatmaps to visually identify dose combinations of two inhibitors
that yield synergistic treatment responses in silico.

In this study, we categorise a drug combination as being synergistic, or
not, using themethod of isoboles38. To understand thismethod, consider an
N-dimensional space whereN denotes the number of drugs that wewant to
include in a drug combination. A drug-dose combination can be described
as a point �d ¼ ðd1; d2; . . . ; dN Þ where di denotes the dose of drug i. In this
space, we can create a synergy-isobole that connects all monotherapy doses
that achieve somedesired drug effectE*. If a drug-dose combination �d yields
a drug effect that is higher than E*, and �d lies under the synergy-isobole, the
drug combination is categorised as synergistic. Otherwise, the drug com-
bination is categorised as non-synergistic. Here, we quantify the inhibitory
effects of drugs in termsofS�actðtÞ levels (Eq. (3), “Methods”), and inFig. 2we
draw out isoboles between monotherapy doses that yield 90% inhibition at
24 h, such that S�actð 24 hoursÞ ¼ 0.1. Thus, we categorise two-drug com-
bination drug doses that achieve S�actð 24 hÞ< 0.1 and lie under the isobole
lines as synergistic. The 0.1 threshold value is chosen to reflect an inhibition
level that we assume to be effective from a treatment perspective. This
assumption is extrapolated from previous studies, where 80%39, and 90%40

inhibition of ERK phosphorylation has been observed in patients with
tumour regression. Importantly, the model can identify drug combinations
that achieve any inhibition level of interest.

With the chosen synergy categorisation, our results identify a broad
range of synergistic DBF–TMT combinations (Fig. 2). These results are in
line with our previous mathematical study30, in which we identified
DBF–TMT combinations that synergistically inhibit activated ERK levels
(as opposed to activated substrate S levels which are the focal simulation
output in the current study).However, our results donot identify synergistic
DBF–SCH or TMT–SCH combinations (Fig. 2). This result is clearly
visualised in the SupplementaryMaterial (Supplementary Fig. 2), where we
have re-plotted Fig. 2 with binary heatmaps that indicate if a treatment
combination yields an inhibition of at least 90% or not. Note that these
simulation results do not mean that DBF–SCH and TMT–SCH combina-
tions are generally non-synergistic in practice, but rather that our pathway
model alone cannot explain DBF–SCH or TMT–SCH synergies, according
to our chosen synergy categorisation.We hypothesize that the inclusions of
alternative pathway components or treatment-induced feedback loops in
the pathway model might capture, e.g., potential DBF–SCH synergies. We
also note that, from a treatment perspective, drug combinations need not be
synergistic in order to be beneficial. Moreover, potential synergies might
result from mechanisms at the cell population or tissue scale, rather than
from pathway-intrinsic mechanisms at the intracellular scale. To capture
such synergies mathematically, our intracellular model could, for example,
be migrated to a cell population or tissue model via a multi-scale modelling
approach41,42.

Simulating treatment responses to three-component vertical
inhibition of the BRAFV600E–MEK–ERK pathway
We, lastly, simulate BRAFV600E–MEK-ERK pathway dynamics in
response to simultaneous BRAFV600E, MEK and ERK inhibition. We are
especially interested in identifying synergistic drug-dose combinations of
the BRAFV600E-inhibitor DBF, the MEK inhibitor TMT, and the ERK-
inhibitor SCH. Using the same isobole-based synergy categorisation as in
the previous subsection, a three-drug combination strategy is here classified
as synergistic if the strategy achieves more than 90% inhibition of activated
substrate at some time t (Eq. (3), “Methods”) and lies under a plane that
connects the three monotherapy doses that yield S�actðtÞ ¼ 0:1. In Fig. 3,
three-drug combination therapies that yield S�act ¼0.1 at 8, 16 and 24 h are
plotted on a surface. By picking any point on this surface, and using the axes
to read out where in DBF–TMT–SCH space the regarded surface point lies,
drug-dose combinations that yield 90% inhibition can be identified. To aid
readability, we have included a numericalmatrix of surface point drug-dose

combinations in the Supplementary Material (Supplementary Fig. 3). Also
included in Fig. 3 are synergy-isoboles for 90% inhibition. Thus, we can use
the plots to graphically identify synergistic combinations of three drugs as
anypart of the S�actðtÞ ¼0.1 surface that liesunder the synergy-isobole.Using
this graphical method, we can observe a range of drug combinations that
yield synergistic treatment responses. These follow from the synergistic in
silico relationships that were observed for two-component vertical inhibi-
tion strategies in Fig. 2, and in our previousmathematical study30. Note that
the choice of using 90% inhibition in the drug-dose surfaces and synergy
planes inFig. 3 is guidedbyour assumption that 90% inhibition corresponds
to an effective treatment objective, following our discussion in the previous
subsection. In the Supplementary Material (Supplementary Note 6), we
have repeated this graphicalmethod to find drug combinations that achieve
25%, 50% and 75% inhibition of substrate activity. More generally, the
methodologyused in this study canbe used tofinda range of one-, two-, and
three-component vertical inhibition strategies that target the
BRAFV600E–MEK–ERKpathwayandachieve selectedactivity levels of any
chosen pathway components.

The simulation results in Fig. 3 show that both S�actðtÞ levels and the
synergy-isoboles change over time and are sensitive to the total amount of
BRAFV600E and ATP concentrations in the system. Increasing the total
BRAFV600E and ATP concentrations pushes the S�actðtÞ ¼ 0.1 surface
towardshigherdrugdoses. Inotherwords, increasingBRAFV600EandATP
concentrationsmakes DBF–TMT–SCH treatment strategies less effective in
silico. This result suggests that high BRAFV600E and ATP concentrations
may result in drug resistance to DBF–TMT–SCH vertical inhibition,
mediated by intrinsic mechanisms of the BRAFV600E–MEK–ERK path-
way. These observations are in line with the discussions that followed the
monotherapy simulations, where we examined the impact of BRAFV600E
and ATP concentrations on pathway dynamics.

Discussion
In this study,wepresent amathematicalmodel of signallingdynamics in the
intracellular BRAFV600E–MEK-ERK pathway. The model can be used to
simulate pathwaydynamics in response to combinationsof theBRAFV00E-
inhibitor DBF, theMEK inhibitor TMT, and the ERK-inhibitor SCH. In its
versatility, themodel can be used to identify a range of one-, two-, and three-
component vertical inhibition treatment strategies that achieve some
desired treatment response, such as suppressing the activity of selected
pathway components to chosen levels. In this article, we specifically use the
model to identify treatment strategies that achieve 90% inhibition of the
ERK-activated substrate c-Myc.We argue that this in silicomethodology of
identifying viable treatment strategies can be used to inform which treat-
ment strategies warrant further investigation in vitro and in vivo. This is
important, as it is possible to design more treatment strategies than are
feasibly testable in experimental and clinical settings by varying, e.g., drug
combinations, drug doses, and drug schedules (although the latter is not
discussed in this article). As such, our study contributes an approach to limit
the search space for effective vertical inhibition strategies.

The methodology outlined in this study can also be used to identify
vertical inhibition treatment strategies that comprise two (Fig. 2) or three
(Fig. 3) inhibitors that are synergistic in silico. Themodel identified a broad
range of synergistic DBF–TMT dose combinations, but no synergistic
DBF–SCH or TMT–SCH doses (Fig. 2 and Supplementary SM6.1.).
However, drug combinations of DBF–TMT43, DBF–SCH44 and
DBF–TMT–SCH98419 (where SCH984, like SCH772984, is an ATP-
competitive ERK-inhibitor) have all shown markedly improved treatment
effects, compared to the respective monotherapies alone, in pre-clinical
experiments.

The fact that the mathematical model presented in this paper predicts
striking DBF–TMT synergies, but no synergies between other inhibitor
combinations, suggests that, whilst the used pathway model suffices to
explain DBF–TMT synergies, a model modification or extension is needed
to explain experimentally observedDBF–SCH synergies. Such an extension
could, for instance, include drug–protein interactions with un-
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phosphorylated or singly phosphorylated proteins, so that TMT could bind
to MEK, and pMEK (not solely ppMEK), and SCH could bind to ERK and
pERK (not solely ppERK). Another possible model extension would be to
include alternative pathway components that feed into MEK, or feedback
loops in the BRAFV600E–MEK–ERK signalling pathway that are activated
by DBF monotherapies but suppressed by combination therapies. On this
note, one of the working hypotheses for why vertical pathway inhibition
yields better treatment responses than DBF alone is that BRAFV600E-
inhibitor monotherapies can activate alternative signalling programs to
phosphorylateMEK and ERK45. This type of alternative pathway activation
has been recognised as a mechanism of drug resistance to BRAFV600E-
inhibitors45. Building on this, Kholodenko et al.29 investigated drug

resistance mediated by the reactivation of initially inhibited signalling
pathways in a recent publication. They analysed how pathway topologies
affect pathway signalling in responses to drug treatments. As an example,
they considered RAF–MEK–ERK signalling in BRAFV600E-mutated
melanoma subjected to vertical inhibition treatment strategies.

Another intracellular mechanism for resistance to BRAFV600E-
inhibitors is elevatedBRAFV00Eactivity46,47. Thismode of drug resistance is
captured by our model, as our simulation results show that increasing
BRAFV600E concentrations yield decreasing sensitivity to inhibitors that
target the BRAFV600E–MEK–ERK pathway, as illustrated in Figs. 1 and 3.
These simulation results also show that ATP concentrations impact drug
resistance in silico, although we note that the clinical relevance of this

Fig. 3 | Mathematical modelling quantifies in silico treatment responses to ver-
tical inhibition treatment strategies that target up to three components of the
BRAFV600E–MEK–ERK pathway. The yellow-to-blue surface plots show
DBF–TMT–SCH combination therapies that yield 90% substrate activity inhibition
(S�actðtÞ ¼ 0.1, Eq. (3), “Methods”). The red synergy-isoboles (planes) connect the
monotherapy doses that yield a 90% inhibition of substrate activity. Monotherapy

doses that yield 90% substrate activity are marked with crosses. Treatment combi-
nations, i.e., parts of the S�actðtÞ ¼ 0.1 surfaces, that lie under the synergy-isoboles are
here categorised as synergistic. Results are plotted at 8 (left column), 16 (middle
column) and 24 h (right column) for baseline, total ATP, and BRAFV600E con-
centrations (top row), and for elevated BRAFV600E concentrations (middle row)
and ATP concentrations (bottom row).
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finding is not straightforward to interpret. This is because tumour cells in
physiological oxygen conditions decrease their oxidative phosphorylation in
favour of increased use of glycolysis, according to the Warburg effect48–50.
Though both processes produce ATP, which generates energy for cellular
processes, oxidative phosphorylation generally generates ATP more effec-
tively than glycolysis51. The complex relationship between drug resistance,
ATP, and ATP production in tumour cells is beyond the scope of this study
but has been investigated in other works51–53. We also remark that the
discrepancy in ATP levels between experimental models and in situ
tumours has been suggested to contribute to the discrepancy in drug per-
formance between laboratory and physiological settings52. Our results,
which show that ATP levels may impact treatment responses to ATP-
competitive and ATP-allosteric inhibitors in silico, support this argument.

ERK pathways have been studied with a variety of mathematical
models of different spatial and temporal resolutions. This is, in large part,
due to their importance for normal cell functions, and their links to diseases
such as cancer, developmental disorders and neurological disorders11. In
“Introduction” of this article, we discussed a handful of mathematical ERK
models that are directly related to the design of our study. Here, we describe
a selectionof otherERKandBRAFV600E-relatedmodels that demonstrates
a range of mathematical, statistical and computation techniques. Gerosa
et al. combined mathematical modelling with cell imaging and proteomics
to study how BRAFV600E-mutated melanoma cells adapt to drugs. They
showed that drugs induce pathway re-wiring which results in sporadic ERK
pulses that promote cell survival and proliferation54. Pillai et al. demon-
strated the existence of phenotypic multistability in melanoma with a gene
regulatory network model. The model was related to drug resistance and
provided explanations for sub-cellular mechanisms that drive phenotypic
heterogeneity and phenotypic switching in melanoma55. Smalley et al.
showed that information about cell-level transcriptional heterogeneity in
melanoma xenografts can be used to predict initial treatment responses to
BRAF-inhibitors. They used a two-compartment ODEmodel, in which the
two compartments represented the amounts of drug-sensitive and drug-
resistant cells in the xenografts56. Lai andFriedmanused apartial differential
equation model that described the dynamics of cancer cells, T cells, proin-
flammatory cytokines, a BRAF/MEK inhibitor, and a drug that targets the
immunoinhibitory receptor PD-1 on T cells to show that combination
treatments with the two drugs are positively correlated at low doses, but are
antagonistic for some high doses in silico57. Sun et al. studied therapy-
induced drug resistance inmelanomawith a stochastic differential equation
model. The model revealed dose-dependent synergy of combination
treatments that involve BRAF, MEK, and PI3K inhibitors, and suggested
that optimal dose combination therapies may reduce drug resistance58.
Marsh et al. used model reduction techniques, including those based on
algebraic topology, to reduce an ERK reaction network model. Such
methods are useful as mathematical models of intracellular pathway
dynamics can become large, which may complicate model analysis and
parameter estimation59. Moreover, the experimental and computational
modelling studies by Schoeberl et al.28 and Fujioka et al.60 have made
important contributions to the estimationand reportingof parametervalues
that pertain to MAPK-cascade-related rate constants and kinase con-
centrations in human cells.

On that note, we remark that one limiting factor of this study is that the
model parameter values are gathered and derived from multiple literature
sources (Supplementary Material, Supplementary Note 3). As such, the
parameter values are based on results from different studies with different
experimental settings, which we need to consider when evaluating the
values’ correctness. We anticipate that access to a complete set of cell-line-
specific model parameter values, derived from one baseline experimental
setting, would improve the predictive ability of the model. Just as impor-
tantly, such a setting would (a) provide an experimental system in which to
test and evaluate the model’s predictive performance and (b) informmodel
updates. In our previous study, we evaluated model-predicted levels of
activated ERK in response to DBFmonotherapies against data from clinical
samples (Fig. 6 in ref. 30). The results of this evaluation were promising,

which indicates that themodel used in our previous study, and by extension
the model used in our current study, has the potential to be of clinical
relevance. Here, our model is designed to focus on signalling dynamics that
result from interactions between components of the BRAFV600E–MEK-
ERK pathway and three drugs: DBF, TMT and SCH. As such, our model
simulates intracellular signalling dynamics within one cell as a closed sys-
tem. To more realistically represent in vivo or clinical signalling dynamics,
the model could be extended to include, e.g., drug transportation, drug
elimination, immune responses, dynamic drug resistance and cell crowding
effects. Challenges and techniques for bridging mathematical in vitro
findings with mouse-model and clinical research have been discussed in
previous bio-mathematical articles61,62. Even in its current form, our model
is able to qualitatively capture important aspects of vertical inhibition of the
BRAFV600E–MEK–ERK pathway that have been observed in vitro.
Notably, the model shows that DBF–TMT combination therapies may
synergistically inhibit ERK-activated substrate phosphorylation and that
SCH therapies are effective in both the presence and absence of inhibitors
that target BRAFV600E and MEK19,36.

On the topic of translational and clinical relevance, we remark that
beyond BRAFV600E-mutant melanoma, the BRAFV600E–MEK–ERK
pathway is also a target for treating non-small-cell lung carcinoma, thyroid
cancer, and paediatric high-grade glioma with the BRAFV600E
mutation63,64. The mathematical model presented in this article could be
modified, ideally by cancer-type specific model parameter values, to simu-
late BRAFV600E–MEK–ERK pathway dynamics and vertical inhibition
treatment responses in other cancers. The model could also be altered to
study the dynamics of other ERK-activated substrates such as the tran-
scription factors c-Fos and Elk1, which also impact carcinogenesis11.

To summarise, the translational value of this bio-mathematical study is
twofold. Firstly, the mathematical model increases our understanding of
BRAFV600E–MEK–ERK signalling dynamics in response to vertical inhi-
bition. Notably, the model provides data-driven mechanistic modelling
explanations forwhy resistance toDBFmonotherapies andDBF–TMT–SCH
combination therapies markedly increases with intracellular BRAFV600E
concentrations, whilst resistance to TMT and SCHmonotherapies does not.
Secondly, the methodology presented in this study can be used as a tool to
inform the design of pre-clinical studies that aim to find a range of drug-dose
combinations that target the BRAFV600E–MEK–ERK signalling pathway
and achieve desired treatment responses. These mathematically identified
dose combinations could offer alternatives to high-dose combinations which
are currently used in clinics. As such, this bio-mathematical study constitutes
a calculated step towards rational treatment strategies.

Methods
Themathematicalmodel used in this study is composedof a pathwaymodel
of the intracellular BRAFV600E-MEK-ERK pathway with the substrate
c-Myc (S) downstream of ERK (Fig. 4a), and a set of possible interactions
that canoccurbetweenpathway components and inhibitors (Fig. 4b).When
ERK phosphorylates c-Myc at the Ser62 phosphorylation site, c-Myc
expression is stabilised35. In melanoma, stable c-Myc overexpression has
been observed to promote cell proliferation and is associated with poor
prognosis65. Accordingly, we choose phosphorylated c-Myc (pS in Fig. 4) to
be our main model output of interest, and the simulated treatments ulti-
mately act to suppress the amount of pS in the modelled system. From the
pathway model and the set of possible interactions, we extract a system of
chemical reactions that describe pathway signalling in response to vertical
inhibition (Fig. 4c). Using a computational framework30 that builds on the
lawofmass action,we convert the systemof chemical reactions into a system
of ODEs that are solved numerically to produce simulations of pathway
signalling dynamics. The model is adapted from previous studies25,30, and is
extended to include an ERK-activated substrate S (c-Myc) and an ERK-
inhibitor (SCH772984). The next subsections provide detailed descriptions
of the mathematical model and the computational methods used in this
study. Information on how to access, run, and modify the code files is
available in the Supplementary Material (Supplementary Note 2).
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Fig. 4 | The mathematical model used in this study is composed of a model of the
BRAFV600E–MEK–ERK signalling pathway, a set of possible interactions that
can occur between pathway components and inhibitors, and a systemof chemical
reactions that is extracted from the pathway and interaction models. a The
pathway model comprises the BRAFV600E–MEK–ERK signalling cascade and an
ERK-activated substrate, S. Singly and doubly phosphorylated pathway components
are, respectively, indicated by the prefixes (p) and (pp). Via sequential ATP-
meditated phosphorylation events, in which ATP donates a phosphate group to a
substrate and turns into ADP, BRAFV600E activates MEK to the form ppMEK.
Similarly, ppMEK activates ERK to the form ppERK, which in turn activates the
substrate S. Dephosphorylation is mediated by phosphatases (phosph1, phosph2,
phosph3). bThemodel includes a set of possible interactions that can occur between
pathway components and the BRAFV600E-inhibitor DBF (i), the MEK inhibitor
TMT (vi), and the ERK-inhibitor SCH (xi). If inhibitors are not bound to the

enzymes, enzyme-bound ATP donates a phosphate group to the substrateMEK (ii)/
pMEK (iii)/ERK (vii)/pERK (viii)/S (xii). The ATP-competitive inhibitor DBF binds
to the same site as ATP on the BRAFV600E molecule and thus prevents ATP from
binding to BRAFV600E and donating a phosphate group to MEK (iv)/pMEK (v).
The ATP-allosteric inhibitor TMT binds to a binding site adjacent to the ATP-
binding site on the ppMEK molecule and inhibits ATP from donating a phosphate
group to ERK (ix)/pERK (x). The ATP-competitive inhibitor SCH binds to the same
site as ATP on the ppERKmolecule and thus prevents ATP from binding to ppERK
and donating a phosphate group to S (xiii). c A system of chemical reactions is
extracted from (a, b). Reactions marked by one (*), two (**), or three (***) stars
involve the inhibitors DBF, MEK, and SCH, respectively, and can be omitted when
modelling pathway dynamics in the absence of drugs. This figure has been adapted
from one of our previous publications30, licensed under CC-BY-4.0 (http://
creativecommons.org/licenses/by/4.0/).
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Modelling the BRAFV600E–MEK–ERKpathway in the absence of
inhibitors
The pathway model consists of a three-tiered cascade comprising
BRAFV600E, and various forms of MEK, ERK, and the ERK-activated
substrate S (Fig. 4a). Throughout this study, single (p) and double (pp)
p-prefixes respectively indicate that one or two phosphate groups are bound
to the pathway component of interest. At the top of the cascade is the
BRAFV600E-mutatedBRAFoncogene,whichwemodel as always activated
to simulate hyper-activated pathway signalling. BRAFV600E can transform
MEK into its activated form ppMEK, which can transform ERK into its
activated formppERK,which in turn can activate the substrate S to the form
pS. More precisely, activation events downstream of BRAFV600E are
mediated via one or two sequential phosphorylation events, where an ATP
molecule binds to an enzyme (i.e., BRAFV600E/ppMEK/ppERK) and
donates a phosphate group to a substrate (i.e., MEK/pMEK/ERK/pERK/S)
(Fig. 4a, b). After the phosphate groupdonation, theATPmolecule converts
to adenosine diphosphate (ADP). In our model, dephosphorylation is
mediated by the phosphatases phosph1, phosph2 and phosph3 which,
respectively, remove phosphate groups from themolecules pMEK/ppMEK,
pERK/ppERK and pS (Fig. 4a, c).

The pathway model used in this study is an extension of our recently
published model of the BRAFV600E–MEK–ERK patwhay30, which is an
adaptation of the more general pathway model presented by Huang and
Ferrell in 199625. The components downstream of ppERK in the pathway
model are introduced in the current study (Fig. 4a).

Modelling interactions between pathway components and
inhibitors
Wemodel interactions between pathway components and inhibitors on a
molecular level (Fig. 4b). To do this, we distinguish between ATP-
competitive and ATP-allosteric inhibitors. DBF43 and SCH36 are ATP-
competitive inhibitors,meaning that they competewithATP for a binding
site on their target enzyme, i.e., BRAFV600E, and ppERK, respectively. As
such, DBF prevents ATP from binding to BRAFV600E and, by extension,
inhibits ATP-mediated MEK phosphorylation. Similarly, SCH prevents
ATP from binding to ppERK and, by extension, inhibits ATP-mediated S
phosphorylation. On the other hand, TMT is an ATP-allosteric
inhibitor66, and thus TMT binds to a MEK binding site that is adjacent
to, but distinct from, the ATP-specific binding site. MEK-bound TMT
prevents MEK-bound ATP from donating a phosphate group to MEK-
bound ERK or pERK. The modelled interactions pertaining to
BRAFV600E and MEK inhibition (Fig. 4b, i–x) were presented in one of
our previous studies, whereas the interactions pertaining to ERK inhibi-
tion are introduced in this study (Fig. 4b, xi–xiii). Note that we havemade
the simplifying modelling assumption that the drugs TMT and SCH only
bind to activated, i.e., doubly phosphorylated, forms of MEK and ERK,
respectively.

Formulating the system of chemical reactions that describes
pathway dynamics
From the pathway model (Fig. 4a) and the set of possible interactions
between pathway components and inhibitors (Fig. 4b), we extract a system
of chemical reactions (Fig. 4c). These reactions are associated with rate
constants that we obtain from published in vitro data, as described in the
Supplementary Material (Supplementary Note 3).

Converting chemical reactions to equations and simulating
pathway dynamics
Using the law of mass action, we convert the system of chemical reactions
R.1–R.44 (Fig. 4) to a systemofODEs. The law ofmass action states that the
rate of a chemical reaction is proportional to the product of the reactants’
concentrations67. The reactions-to-ODEs conversion process is automated
by a computational MATLAB68 framework, that we (some of the authors)
previously developed30. The full system of ODEs for our model (Fig. 4) is
available in the Supplementary Material (Supplementary Note 1.2). After

formulating the equations, we also use the computational framework to
numerically solve the equations and thus produce simulations of intracel-
lular pathway dynamics. The simulations show how concentrations of the
pathway components change over time. In this study, we are interested in
studying vertical inhibition strategies in which up to three components of
the BRAFV600E–MEK–ERK signalling pathway are simultaneously
inhibited. Therefore, a specific output of interest is the fraction of activated
(i.e., simultaneously free and phosphorylated) substrate S in the system
which we call Sact and define as

SactðtÞ ¼
½pS�ðtÞ
Stot

; ð1Þ

where we have used the slanted bracket notation [x](t) to denote the con-
centrationof substratex at time t, and Stot is the total amountof substrate S in
the system. Our mathematical model obeys a set of conservation laws that
ensures the total amount of various pathway components is constant
throughout the simulations. For example, the conservation law for Stot reads

Stot ¼ ½S�ðtÞ þ ½pS�ðtÞ þ ½ppERK � S�ðtÞ þ ½ppERK � S � ATP�ðtÞ
þ ½ppERK � S � SCH�ðtÞ þ ½S � phosph3�ðtÞ;

ð2Þ

where the left-hand-side of Eq. (2) corresponds to the denominator in Eq.
(1). The full list of conservation laws is available in SupplementaryMaterial
(Supplementary Note 1.3). Building on Eq. (1), we introduce the variable
S�actðtÞ to clearly quantify the inhibitory effects of in silico treatments.We set

S�actðtÞ ¼
SactðtÞ

Sact;BLðtSSÞ
; ð3Þ

where Sact,BL(t) denotes Sact(t) computed for baseline (BL) intracellular
BRAFV600E and ATP concentrations, and in the absence of drugs.
Moreover, tSS denotes the time it takes for Sact,BL(t) to reach a steady state. In
this study, we thus say that a treatment strategy that yields S�actðtÞ ¼ 0.1
achieves a 90% inhibition of substrate S activity.

Using in vitro data to parameterise the model
The system of reactions (Fig. 4c, R.1–R.44) includes 12 forward rate con-
stants a1, a2,…, a12, 12 reverse rate constants d1, d2,…, d12 and 6 catalytic
rate constants k1,2, k3, k5,6, k7, k9,10, k11. The rate constants are listed in the
Supplementary Material (Supplementary Table 1) and are derived from
published data25,35,36,69–77 using binding data calculations78–80 (SM3.1,3). The
initial and total concentrations of all pathway components are listed in the
Supplementary Material (Supplementary Table 2) and are obtained from
published data25,75 (Supplementary Note 3.2).

Reporting summary
Further information on research design is available in the Nature Research
Reporting Summary linked to this article.

Data availability
All simulation data are available on the code-hosting platform GitHub
(https://github.com/SJHamis/MAPKcascades). Instructions on how to
access, run, and modify the code files are available in the Supplementary
Material (Supplementary Note 2).

Code availability
All code files are available on the code-hosting platform GitHub (https://
github.com/SJHamis/MAPKcascades). Instructions on how to access, run,
and modify the code files are available in the Supplementary Material
(Supplementary Note 2).
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