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Drug-drug interaction (DDI) may result in clinical toxicity or treatment failure of antiretroviral therapy
(ARV) or comedications. Despite the high number of possible drug combinations, only a limited
number of clinical DDI studies are conducted. Computational prediction of DDIs could provide key
evidence for the rationalmanagement of complex therapies.Our study aimed to assess thepotential of
deep learning approaches to predict DDIs of clinical relevance betweenARVs and comedications. DDI
severity grading between 30,142 drug pairs was extracted from the Liverpool HIV Drug Interaction
database. Two feature construction techniques were employed: 1) drug similarity profiles by
comparing Morgan fingerprints, and 2) embeddings from SMILES of each drug via ChemBERTa, a
transformer-based model. We developed DeepARV-Sim and DeepARV-ChemBERTa to predict four
categories of DDI: i) Red: drugs should not be co-administered, ii) Amber: interaction of potential
clinical relevance manageable by monitoring/dose adjustment, iii) Yellow: interaction of weak
relevance and iv) Green: no expected interaction. The imbalance in the distribution of DDI severity
grades was addressed by undersampling and applying ensemble learning. DeepARV-Sim and
DeepARV-ChemBERTa predicted clinically relevant DDI between ARVs and comedications with a
weighted mean balanced accuracy of 0.729 ± 0.012 and 0.776 ± 0.011, respectively. DeepARV-Sim
and DeepARV-ChemBERTa have the potential to leverage molecular structures associated with DDI
risks and reduce DDI class imbalance, effectively increasing the predictive ability on clinically relevant
DDIs. This approach could be developed for identifying high-risk pairing of drugs, enhancing the
screening process, and targeting DDIs to study in clinical drug development.

Drug-drug interactions (DDIs) represent an important issue in the drug
development process and complicate the clinical management of
antiretroviral therapy (ARV)1,2. DDIsmay occur when combining drugs
where the effect of one drug alters the exposure (pharmacokinetic
interaction) or the effect (pharmacodynamic interaction) of other
drug(s), potentially resulting in adverse drug events or loss of efficacy.
People living with HIV (PLWH) often present comorbidities requiring
the concurrent use ofmultiple drugs thereby increasing the risk of DDIs
outcome3.

Obtaining data through clinicalDDI studies betweenall possibleARVs
and drug combinations is highly challenging due to ethical, time and cost
constraints4. Therefore, the evaluation of the risk associated with DDIs is
mostly conducted using a mechanistic approach (i.e., elimination pathway
and inhibitory/inducing effects of drugs) or based on expert opinion. More
recently, physiological-based pharmacokinetic modelling (PBPK), an
approach combining drug in vitro data and population physiology, has
demonstrated an accurate predictive power to simulate clinically relevant
yet unstudied DDI scenarios. PBPK guided dose recommendations have
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been approved in several drug labels as an alternative to real-world studies5.
However, this method requires extensive mathematical modelling of rele-
vant physicochemical and physiological processes and relies on the avail-
ability of experimental data, which is often time consuming and therefore
cannot be readily applied to guide the management of DDIs in clinical
practice.

Due to the importance of DDIs throughout drug development and for
the clinical management of PLWH, efficient computational methods for
predicting DDI risks are in need. Currently, the cutting-edge approach to
this problem is via machine learning6–9, which is a branch of artificial
intelligence that uses algorithms to extract patterns from given data tomake
predictions. Deep learning, a sub-field of machine learning, is inspired by
the human neural network that offers powerful tools to generalise learning
bymapping the artificial neurons between the given input andoutput data10.
Transformer-based models are a type of neural network architecture that
learns context and semantic information within sequential data via self-
attention mechanism, gaining significant popularity for its effectiveness in
capturing complex patterns/relationships within a sequence11. These
models, such as BERT12, are often adopted in transfer learning scenarios,
where a transformer model is pretrained on a large dataset using self-
supervised learning tasks. The goal of the pretraining phase is to leverage the
learned features and representations from that task which can subsequently
be fine-tuned for specific downstream tasks. Designed for applications in
cheminformatics, ChemBERTa13, pre-trained on 10 million compounds
from PubChem, serves as a robust tool for molecular representations and
holds potential for further refinement for DDI prediction tasks.

On the other hand, the concept of structural similarity, whereby
molecules that are structurally similar are likely to have similar properties,
has been employed and proven to be useful by substantially supporting
evidence in the field of cheminformatics, such asQSAR/QSPR (quantitative
structure activity relationship/quantitative structure property relationship)
methods. Studies14–20 have expanded this concept to predictDDIs, assuming
that if drugAhas aDDIwith drug B and drugA has a similar structure with
drug C, it is likely that drug C establishes a similar DDI with drug B.

In the past decade, deep learning has gained growing interest where
several algorithms have been developed to allow amore efficient integration
of drug similarity features as input and predictedDDIs on a larger scalewith
high accuracy such as studies by Rohani and Eslahchi21 and Lin et al. 22

However, the DDI predictions were binary (presence or absence of DDI)
which may not be sufficient to guide clinicians manage DDIs. On the other
hand, Ryu et al. 23 has proposed a computational framework utilising
molecular structural similarity to output 86 DDIs using causal mechanism
types based on DrugBank’s descriptive database. Zitnik et al. 24 has devel-
oped an approach for modelling up to 964 side effects as a result of DDIs.
Although these methods have provided advanced pharmacological
knowledge in DDIs and various implications for adverse drug events, the
predictions ofDDI need to be refined to better predict the clinical relevance.

The University of Liverpool has developed a well-established resource
to describe and classify DDIs between ARVs and a wide range of comedi-
cations (including prescribed and over-the-counter medicines, herbals and
vitamin supplements, and recreational drugs), https://www.hiv-
druginteractions.org. Clinical recommendations are based on a ‘traffic
light’ system, with each recommendation accompanied by an assessment of
the quality of evidence25 in a system which has some similarity with the
principles of the Grading of Recommendations Assessment, Development
and Evaluation System (GRADE). The database is broadly used in clinical
practice to screenDDIs with ARVs. However, the curation process requires
an extensive literature search, a large volume of detailed drug information
and expert opinion which could be labour-intensive and time-consuming.

Here, we propose two deep learning approaches calledDeepARVs that
build on theUniversity of LiverpoolHIVDrug Interactiondatabase andaim
to predict clinical DDI risk between ARVs and commonly used comedi-
cations. There are four DDI grading categories: 1) Green – No clinically
significant interaction expected. 2) Yellow – Potential interaction of weak
clinical relevance for which additional action/monitoring or dosage

adjustment is not required. 3) Amber – Potential clinically relevant inter-
action that can bemanaged by clinicalmonitoring, alteration of drug dosage
or timing of administration. 4) Red – These drugs should not be co-
administered as they may cause a deleterious effect (e.g., loss of efficacy or
toxicity of the ARV drug or co-administered drug). DeepARV framework
included sampling and algorithmic adjustedweight techniques to overcome
the imbalance challenge formed by the skewed distribution among DDI
grading categories (Fig. 1). In addition, our study adopts two distinct input
feature construction strategies for a given drug: 1) generating a similarity
profile through molecular fingerprints, namely DeepARV-Sim, and 2)
employing the advanced transformer-based model, ChemBERTa-2, as a
molecular feature extractor, namely DeepARV-ChemBERTa.

Result
Molecular structural similarity analysis
Structural similarity-based approach for DDI prediction could be derived
from the Similar Property Principle26, which states that molecules that are
structurally similar are likely to have similar properties. Measure of mole-
cular similarity has twomain components: 1) the descriptor to characterise
themolecular structure of drug pairs of interest (also known as fingerprint),
and 2) the similarity coefficient to quantify the degree of resemblance
between two molecules. Our study employed Morgan fingerprint27 using
RDKit, which is a hashed topological algorithm that assigns a numeric
identifier to all thenearest neighbourswithin eachatom(radius=2, typically
between 0 and 3 bonds)28. As a result, all identifier representations of each
drug are hashed to a fixed-length binary fingerprint (n = 1024 bits). The
Tanimoto coefficientwas applied to compute a similarity score for eachdrug
pair basedon thefingerprint. Figure 2 providesmolecular similaritymaps of
anticonvulsant comedication as an illustrative example (phenobarbitone –
reference; primidone, phenytoin, ethosuximide and topiramate – test
molecules).We found that DDI patterns betweenARVs and comedications
were more similar when a target and a query comedication were more
structurally similar, example is provided in Supplementary Table 1.

DeepARV accurately predicts DDI risks
The optimal architecture of DeepARV-Sim was composed of four hidden
layers with {1024, 512, 256, 128} number of neurons respectively, ReLu
activation function and the Adam optimiser. The optimal architecture of
DeepARV-ChemBERTa was comprised of two hidden layers with {256,
128} number of neurons respectively, Tanh activation function and the
Adam optimiser. During the training of both models, Green DDI category
was under-sampled to five subsets and the remaining DDI categories were
kept the same frequency in each subset. The class weight balance of {0.688,
1.448, 0.692, 2.429} for {Green, Yellow, Amber, Red} respectively was cal-
culated using Eq. 1 where the final weight of each DDI category was
inversely proportionate to the number of samples within that category. A
stratified 5-fold cross-validation was performed on the dataset of 25,039
drug pairs (80%of thewhole data) inwhich the dataset was divided intofive
equal-sized foldswhile preserving the samedistribution ofDDI risks in each
fold. The process involved five iterations where 4-fold of data (n = 19,230
drug pairs) was applied for training and the remaining 1-fold for evaluation.
DeepARV-Sim achieved a weighted average macro of 0.868 ± 0.011 accu-
racy, 0.811 ± 0.007 balanced accuracy, 0.757 ± 0.018 f1-score, 0.809 ± 0.006
precision, 0.737 ± 0.023 sensitivity (recall), and 0.885 ± 0.009 specificity
across the evaluation folds (Supplementary Fig. 1). DeepARV-ChemBERTa
yielded a higher weighted average macro of 0.904 ± 0.005 accuracy,
0.878 ± 0.003 balanced accuracy, 0.823 ± 0.009 f1-score, 0.868 ± 0.003 pre-
cision, 0.809 ± 0.01 sensitivity, and0.948 ± 0.003 specificity (Supplementary
Fig. 1).

Eight ARVs were randomly selected where associated drug pairs data
containing either of those ARVs (n = 5103 pairs, 20% of the whole data)
were kept blind from the 5-fold cross-validation to be used as an inde-
pendent test set. On this independent dataset, the metrics for DeepARV-
Sim were 0.703 ± 0.011 precision, 0.621 ± 0.032 sensitivity,
0.836 ± 0.018 specificity, 0.642 ± 0.029 f1-score and 0.729 ± 0.012 balanced
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accuracy. The metrics for DeepARV-ChemBERTa were 0.752 ± 0.012
precision, 0.675 ± 0.016 sensitivity, 0.878 ± 0.015 specificity, 0.7 ± 0.011 f1-
score, and 0.776 ± 0.011 balanced accuracy. Evaluation metrics also inclu-
ded ROC curves with AUC measurements (Fig. 3). Both DeepARVs
achieved the highest ROC-AUCvalues for the RedDDI category compared
to other DDI categories, indicating a superior predictive ability in distin-
guishing the most clinically concerned DDI risk. The lowest values were
observed for the Amber DDI category, with DeepARV-Sim exhibiting a
lower ROC-AUC than DeepARV-ChemBERTa, implying a greater dis-
criminative capacity for Amber risk with DeepARV-ChemBERTa.

To analyse the effectiveness of ensemblemethods, the performance
of the ensembles of DeepARV-Sim and DeepARV-ChemBERTa were
compared against their single models, namely Single-Sim and Single-
ChemBERTa respectively–both sharing the same architecture but
without down-sampling techniques. The single models exhibited a
higher weighted mean across all metrics but with a notably greater
standard deviation, indicating a trade-off between performance and
consistency (Fig. 4). A summary of the ground truth DDIs versus those
predicted by both DeepARV-Sim, DeepARV-ChemBERTa and their
corresponding singlemodels (Single-Sim and Single-ChemBERTa) was

Fig. 1 | DeepARV framework to overcome imbalance challenge for improved
prediction of four severityDDI gradings. a Skewed distribution of theDDI grading
dataset. b Data sampling methods included undersampling combined with five
ensemble models to split the dataset to five subsets by reducing the size of the
majority class (Green DDI class), forming DeepARV. c Algorithmic method of

adjusting class weight to increase the cost matrix of Red category and so its
importance, thus penalising themisidentification against theRedDDI pairs themost
and reducing the likelihood of misclassification of this instance in the future
prediction.
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represented as a normalised confusion matrix (Fig. 5). DeepARV-Sim
displayed the highest predictive accuracy for the most critical Red DDI
category, with a correct prediction rate of 0.71 ± 0.05, followed by
DeepARV-ChemBERTa at 0.67 ± 0.04. In contrast, both single models

misclassified approximately 50% of the Red DDI pairs. Additionally,
DeepARV-ChemBERTa and Single-ChemBERTa exhibited a superior
predictive ability for the Amber DDI category compared to DeepARV-
Sim and Single-Sim.

Fig. 3 | Performance of Single-Sim and Single-ChemBERTa on the independent
test set. All trained models from 5-fold cross-validation were tested on the inde-
pendent dataset with a total of 5103 DDIs, which was composed of 3221 Green, 358
Yellow, 1146 Amber and 378 Red. Single models share the same architecture as
DeepARV-Sim and DeepARV-ChemBERTa, but without ensemble learning and
class weight modification, namely Single-Sim and Single-ChemBERTa respectively.

The box plot showed the distribution of the performance scores across accuracy,
precision, sensitivity, specificity, f1-score and balanced accuracy of each DDI cate-
gory and the weighted macros. Each box shows the quartiles of the result, with a line
at the median. The whiskers extend to show the rest of the distribution, except for
points that are determined to be outliners (displayed as dots) using amethod that is a
function of inter-quartile range.

Fig. 2 | An illustrative example of molecular
similarity maps for anticonvulsant comedication.
a Reference compound is phenobarbitone. Test
compounds include primidone (1), phenytoin (2),
ethosuximide (3) and topiramate (4). b Similarity
maps of a reference molecule compared to test
compounds are generated via RDKit with the spe-
cification of Morgan fingerprint and Tanimoto
similarity metric. Colour scheme indicates: remov-
ing green area bits decreases similarity (i.e. positive
difference), removing pink area bits increases simi-
larity (i.e. negative difference), no change in simi-
larity in neutral area.
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Comparison to other machine learning approaches
To compare the performance of DeepARVs to other approaches, models
including Gaussian Naïve Bayes (GaussianNB), Decision Trees (DTs) and
Random Forest (RF) classifier were optimised and trained on the two
datasets where features comprised of similarity profiles of drugs (suffixed as
-Sim) and features constructed via ChemBERTa transformer (suffixed as
-ChemBERTa). The performance of them on the independent test set was
evaluated via precision, sensitivity, specificity, f1-score and balanced accu-
racy scores (Table 1). DeepARV-ChemBERTa outperformed other
machine learning models across all metrics, yielding the highest score for

precision (0.752), sensitivity (0.675), specificity (0.878), f1-score (0.695) and
balanced accuracy (0.776). Normalised confusion matrix showed that
GaussianNB-Sim had the most accurate prediction for the Red instances
with a rate of 0.82 ± 0.01, followed by DeepARV-Sim with a rate of
0.71 ± 0.05 (Fig. 6).

Discussion
PLWH especially older individuals are more likely to present comor-
bidities and consequently are more likely to have polypharmacy
leading to a higher risk of DDIs29. Therefore, there is a need for tools to

Fig. 4 | Receiver Operating Characteristics (ROC) Curve on the independent test
set (n= 5103 DDI). a DeepARV-Sim and (b) DeepARV-ChemBERTa. Both
models were tested multiple times on the independent dataset. The results showed

ROC curves for each class as a plot of true positive rate (sensitivity) versus false
positive rate (1-specificity) with AUC measurement.
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predict risks associated withDDIs in order to prevent treatment related
adverse events. We developed two DeepARV algorithms, namely
DeepARV-Sim and DeepARV-ChemBERTa, to predict the risk of
DDIs using structural molecular information of drugs. We evaluated
the accuracy, sensitivity (recall), specificity, f1-score and balanced
accuracy of both models against the University of Liverpool DDI HIV
database (Fig. 7).

Skewed distribution across data, especially in the naturally occurring
frequencyof data (e.g., cancer detectionwith extremedisproportionate ratio
of cancer and non-cancer patients) is one of the greatest concerns in
developing a machine learning algorithm for real-world applications30–32.
This is known as the imbalance problem,which is inherently difficult for the
algorithm to capture the prediction of the minority class, potentially
resulting in ignoring the entire class and thus reducing the relevance for
future applications. Similarly, in our case, the Red DDI category was
composed of the lowest number of pairs (5% of total drug pairs), however,
the cost and consequences of making incorrect decisions against this min-
ority class are much greater than other classes.

We evaluated the performance of both DeepARVs using the inde-
pendent dataset, metrics of balanced accuracy was included to account for
the skewed distribution of our DDI grading categories and as a trade-off
between specificity and sensitivity33,34. DeepARV-ChemBERTa had a
greater balanced accuracy score than DeepARV-Sim (0.776 ± 0.011 vs.
0.729 ± 0.012, respectively). However, DeepARV-Sim exhibited a superior
predictive ability for the highest-risk DDI class, with a greater accurate
prediction rate of 0.71 ± 0.05 compared to DeepARV-ChemBERTa with
0.67 ± 0.04.

The misclassification rate from the highest-risk Red DDI pairs to the
no-risk Green DDI pairs is of the greatest concern clinically, measuring as
0.10 ± 0.03 for DeepARV-Sim and 0.12 ± 0.01 for DeepARV-ChemBERTa,
with total of 378RedDDIpairs.However, thismisclassification rate for their
corresponding single models were considerably greater, 0.24 ± 0.04 for
Single-Sim and 0.30 ± 0.09 for Single-ChemBERTa, suggesting that Dee-
pARVs outperformed their single counterparts in predicting minority but

Fig. 5 | Performance of Single-Sim and Single-ChemBERTa on the independent
test set. All trained models from 5-fold cross-validation were tested on the inde-
pendent dataset with a total of 5103 DDIs, which was composed of 3221 Green, 358
Yellow, 1146 Amber and 378 Red. Single models share the same architecture as
DeepARV-Sim and DeepARV-ChemBERTa, but without ensemble learning and
class weight modification, namely Single-Sim and Single-ChemBERTa respectively.

The box plot showed the distribution of the performance scores across accuracy,
precision, sensitivity, specificity, f1-score and balanced accuracy of each DDI cate-
gory and the weighted macros. Each box shows the quartiles of the result, with a line
at the median. The whiskers extend to show the rest of the distribution, except for
points that are determined to be outliners (displayed as dots) using amethod that is a
function of interquartile range.

Table1 |PerformanceofDeepARVandothermachine learning
approaches

Precision Sensitivity
(Recall)

Specificity F1-
score

Balanced
accuracy

GaussianNB-Sim 0.494 0.580 0.842 0.469 0.711

DFs-Sim 0.634 0.596 0.832 0.605 0.714

RF-Sim 0.680 0.656 0.860 0.666 0.758

DeepARV-Sim 0.703 0.621 0.836 0.642 0.729

GaussianNB-
ChemBERTa

0.419 0.430 0.799 0.403 0.615

DFs-ChemBERTa 0.569 0.530 0.807 0.537 0.673

RF-ChemBERTa 0.744 0.550 0.798 0.591 0.674

DeepARV-
ChemBERTa

0.752 0.675 0.878 0.695 0.776

Bold values present the highest performance for that metric across all the models.
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high-risk class instances. Moreover, both single models also exhibited a
much greater variability and inconsistency in their performance across the
test set and the evaluation iterations. Thesefindings highlight the strength of
both DeepARVs – ensemble models in addressing imbalanced data
challenges.

On the other hand, among 3220Green DDI pairs, approximately 23%
of which were predicted as major-risk Amber/Red by both DeepARVs.
Many of them were found to be supported by the guidelines from the
European Medicine Agency, the National Institute for Health and Care

Excellence UK (NICE) and Drugs.com (Table 2). One of such is DDI of
lopinavir/ritonavir versus buprenorphine where both lopinavir and rito-
navir may increase the concentration of buprenorphine, and thus mon-
itoring and adjusting dose are recommended by the NICE35,36; another
example is DDI of darunavir/cobicistat/emtricitabine/tenofovir alafena-
mide (DRV/c/FTC/TAF) versus clotrimazole where antifungals like clo-
trimazole inhibiting CYP3A may decrease the clearance of darunavir and
cobicistat, and thus clinical monitoring is recommended by the European
Medicines Agency37. Interestingly, Vivithanaporn et al.38 reported a

Fig. 6 | Normalised confusion matrix of DDI prediction by DeepARV-Sim,
DeepARV-ChemBERTa, Single-Sim and Single-ChemBERTa versus the ground
truth DDI.A total of 5103 DDIs composed of 3221 Green, 358 Yellow, 1146 Amber

and 378 Red. Heatmap was applied to represent the concentration of values by
colour depth.

Fig. 7 | Performance of DeepARV-Sim and DeepARV-ChemBERTa on the
independent test set. A total of 5103 DDIs composed of 3221 Green, 358 Yellow,
1146 Amber and 378 Red. Heatmap was applied to represent the concentration of

values by colour depth.GaussianNB Gaussian Naïve Bayes, DTs Decision Trees, RF
Random Forest, -Sim features were constructed as similarity profiles, -ChemBERTa:
featureswere constructed as embeddings viaChemBERTa transformer-basedmodel.
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significant inconsistency in severity grading across three major DDI data-
bases – Drugs.com, Micromedex and the Liverpool HIV Interaction. A
number of drugpairs betweenARVsandantimicrobialswere shown tohave
poor concordance in the DDI recognition, e.g., minor or none by Micro-
medex and Drugs.com but major (Amber/Red) by the Liverpool HIV
Interaction database (e.g. DDI of atazanavir versus azithromycin, cipro-
floxacin, mebendazole, primaquine, pentamidine and ribavirin). This dis-
parity could be due to the lowquality of evidence and/or lack of clinical data,
complicating the evaluation of true accuracy of DeepARVs. In addition, it is
important to highlight that our DeepARVs were developed based on the
earlier LiverpoolHIV Interaction database’s version (March 2021). Some of
our novel DDIs are confirmed in the later version (January 2024), such as
DDIs of efavirenz versus gastrointestinal agents including esomerprazole,
lansoprazole, omeprazole and pantoprazole (Table 2). Our novel DDI
predictions not only demonstrate the ability of our DeepARVs to predict
previously undiscovered DDIs, but also emphasise the importance of cross-
referencing multiple sources to enhance the robustness and accuracy of
identified DDIs.

Both DeepARV-Sim and DeepARV-ChemBERTa also showcased
their potential in discovering novel interactions previously overlooked by
the existing system. It should be noted that certain novel DDIs were
exclusively detected by DeepARV-Sim such as efavirenz – omeprazole, and
lopinavir/ritonavir – hydrocortisone, while others were identified solely by
DeepARV-ChemBERTa such as efavirenz – canagliflozin, and lopinavir/
ritonavir – levonorgestrel (IUD). Therefore, integrating the synergistic
strengths of DeepARV-Sim and DeepARV-ChemBERTa into a unified
ensemble model presents a promising avenue for future work. Moreover,
data split for ensemble models could be functionally informed so that each
model would be able to establish a complementary strength for the pre-
diction task.

The Liverpool HIV Interaction database undergoes continuous
updates, with new therapies added and existing drug pairs re-scaled
(downgraded/upgraded) based on emerging evidence from clinical DDI
studies, case reports or clinical practice. Our DeepARVmodels represent a
promising tool for enhancing the screening process of the database. Given
the inherent challenge and time-consuming nature of identifying DDI risk,
DeepARVs offer a powerful means to examine the clinical DDI pattern
associated with molecular structure in a time- and cost- efficient manner.
This capability ofDeepARVs provides an additional perspective and criteria
during the development/maintenance of ARVDDI databases and the drug
development process.

As a limitation of our study, exploring the performance of DeepARVs
against the DrugBank Open Data or other latest state-of-the-art models
presented challenges due to variations in DDI classification systems. The
University of LiverpoolHIV Interaction specialises in determining clinically
relevant DDIs of HIV medicine, its grading system ranks the clinical sig-
nificance of an interaction from ‘no interaction’ (green flag), ‘interaction of
weak intensity not requiring additional action’ (yellow flag), ‘potentially
clinically relevant DDI requiring either dose adjusting or close clinical
monitoring’ (amber flag), to ‘contraindicated’ (red flag). On the other hand,
the DrugBank Open Data (version 5.0) provides descriptive DDI infor-
mation outlining the mechanism or consequences of the interaction. For
example, DrugBank describes the interaction between efavirenz and terbi-
nafine as ‘Themetabolism of Terbinafine can be decreasedwhen combined
with Efavirenz’ (https://go.drugbank.com/drugs/DB00625), whereas the
Liverpool HIV Interaction classifies it as ‘yellow’ indicating potential
interaction of weak clinical relevance for which additional action/mon-
itoring or dosage adjustment is not required. For future work, further
refining the architectureofDeepARVs to further investigate its performance
on a standardised DDI classification system should be considered to enable
the benchmarking of state-of-the-art-models, and to enhance the applic-
ability and robustness of DeepARVs.

DeepARV-Sim and DeepARV-ChemBERTa were developed exclu-
sively integrating structural data, into an automated analytical model,
providing an evaluation of ARVDDI risks. The performance of DeepARVsT
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were comprehensively evaluated and could generate opportunities for
similar applications for other disease areas. DeepARVs define innovative
opportunities for an integrated application of AI approaches in the drug
development process for the rational prediction of risk related to DDIs.

Methods
University of Liverpool Drug Interaction
The University of Liverpool Drug Interaction provided the DDI identifi-
cationbetweenARVsandcomedication (https://www.hiv-druginteractions.
org/). An overview of the database (March 2021 version) is outlined in
Supplementary Table 2. The assessment of the DDI potential for a given
drug combination is evaluated following a systematic approach which
consists first to compile the pharmacokinetic and pharmacodynamic
characteristics of the co-administered drugs including also available in vitro
or clinicalDDI studies or case reports. The risk of having a clinically relevant
DDI is typically low if the co-administered drugs have different elimination
pathways or if the change in exposure is unlikely to be of clinical relevance or
lead to safety concern. If there is evidence that a DDImay occur, the clinical
relevanceof theDDI is subsequently evaluatedby taking into account factors
such as themagnitude of the pharmacokinetic change, the therapeutic index
of the drug or the possibility to monitor the drug. The recommendation of
the product label is also taken into consideration when classifying the DDI
into a risk category (https://www.hiv-druginteractions.org/site_updates).
There are four categories for the DDI risk: 1) Green – No clinically sig-
nificant interaction expected. 2) Yellow – Potential interaction of weak
clinical relevance for which additional action/monitoring or dosage
adjustment is not required. 3) Amber – Potential clinically relevant inter-
action that can bemanaged by clinicalmonitoring, alteration of drug dosage
or timing of administration. 4) Red – These drugs should not be co-
administered as they may cause a deleterious effect (e.g., loss of efficacy or
toxicity of the ARV drug or co-administered drug).

DeepARV-similarity
Morgan fingerprint. The molecular structure of each drug in SMILES
format was extracted from PubChem Substances and Compound data-
base (version updated in March 2019) via PubChemPy. Chemical fin-
gerprints of each drug were then calculated using Morgan fingerprints
with RDKit (version 2021.09.3), where neighbours of each atom up to a
radius of 2 were recorded as binary numerical format (0 or 1) in 1024 bits.
For combination therapy, the final fingerprint was determined by con-
catenating bits of ‘1’ from corresponding drugs while maintaining the
fingerprint size.

Structural similarity profile. Similarity in structure between two drugs
was measured by the Tanimoto coefficient based on the industry
standard39, where the intersection of common chemical fingerprints is
divided by the union of fingerprints of the two drugs (Supplementary Fig.
2). Tanimoto coefficient ranges between 0 and 1, reflecting the degree of
structural similarity between two drugs being compared, where a higher
value indicates higher similarity. To construct a similarity profile, each
drug was compared to a fixed reference drug list from the database
(n = 688). This approach was applied based on the assumption that
similar drugs are likely to have similar interactions. Given a drug pair of
interest, structural similarity profiles of both drugs were concatenated
and fed into the input layer of the neural network, which was optimised
for predicting DDI. This approach was referred to as DeepARV-Sim.

DeepARV-ChemBERTa
Transformer-based model. ChemBERTa, developed by Chithrananda
et al. 13, is a variant of BERT transformer-based model that learns
molecular structures through semi-supervised pretraining of the lan-
guage model. ChemBERTa was pretrained on 10 million SMILES from
PubChem using the same procedure used by RoBERTa. It involved
masking 15% of tokens in each SMILES string and assigning a maximum
sequence length of 256 characters. Through the use of the byte pair

encoding (BPE) algorithm, ChemBERTa has learnt to predict masked
tokens consisting of multiple atoms and functional groups.

Feature extractor and fine-tuning. ChemBERTa was downloaded from
seyonec/PubChem10M_SMILES_BPE_450k tokenizer via Huggingface:
https://huggingface.co/seyonec/PubChem10M_SMILES_BPE_450k/
tree/main. The final hidden layer was adapted to serve as a featuriser that
outputted embeddings of length of 768 bits for a given drug SMILES. The
embeddings were concatenated for corresponding drug pairs as input
feature to the neural network, which was subsequently fine-tuned for the
prediction of DDIs, called DeepARV-ChemBERTa.

5-fold stratified cross-validation
DeepARVs were trained to classify four types of DDI (Green, Yellow,
Amber, and Red) between ARVs and comedications. The training set of
25,039 drug pairs (80% of the whole data) were split for a stratified 5-fold
cross validation, maintaining the distribution of DDI classes in each vali-
dation step (Supplementary Table 3). 4-Fold data was used for training the
model and the remaining foldwas used for validation. This process repeated
five times, with each fold serving in the validation step once.

Sampling techniques and ensemble models
As the dataset had a skeweddistribution of pairs across four severity grading
classes, under-sampling techniques with ensemble methods and class
weight balance were employed. Undersampling technique was applied to
the training dataset by considering Green DDI category as a majority class,
associated drug pairs (n = 13,811) were reduced to 5 subsets (n = 2762 per
each set); pairs from remaining DDI categories were kept the same within
the subsets (Table 3).

Five ensemble models were built with the same neural network
architecture where each model was trained on each subset. Class weight
balance technique was applied to all ensemble models based on Eq. (1)
where the final weight of each DDI class was inversely proportionate to the
number of samples within that class.

weight of each class ¼ total number of samples
total number of classes× number of samples within that class

ð1Þ

DDIpredictions from thefive ensemblemodelswere aggregatedwhere
each ensemblemodel predicted probabilities across DDI classes. Soft voting
technique was applied to determine the final prediction by averaging the
predicted probabilities and selecting the DDI class with the highest
probability.

Independent test
To construct the independent test, eightARVswere randomly selected to be
excluded from training and used for testing. FiveARVdrug classes available
on the Liverpool HIV Drug Interaction database (version March 2021)
included: 1) Entry and Attachment Inhibitors, 2) Integrase Inhibitors
(INSTIs), 3) Non-Nucleoside Transcriptase Inhibitors (NNRTIs), 4)
Nucleoside/tide Analogues (NRTIs/NtRTIs), 5) Protease Inhibitors (PIs).

Table 3 | Undersampling the majority class – Green DDI cate-
gory during 5-fold cross-validation process

DDI class Before sampling Sampling to five subsets

Drug pairs Distribution Drug pairs per subset Distribution

Green 13,811 72% 2762 36.3%

Yellow 1472 7.6% 1472 17.2%

Amber 3052 16% 3052 36.1%

Red 895 4.4% 895 10.4%

Total 19,230 100% 8181 100%

https://doi.org/10.1038/s41540-024-00374-0 Article

npj Systems Biology and Applications |           (2024) 10:48 10

https://www.hiv-druginteractions.org/
https://www.hiv-druginteractions.org/
https://www.hiv-druginteractions.org/site_updates
https://huggingface.co/seyonec/PubChem10M_SMILES_BPE_450k/tree/main
https://huggingface.co/seyonec/PubChem10M_SMILES_BPE_450k/tree/main


An overview of chemical structure of single ARVs and related drug classes
was shown in Supplementary Fig. 3. ARVswithin the same class often share
common structural similarities, however, variation in chemical structures
within the same class persists and is of great significance to optimise the
therapeutical efficacy and overcome viral resistance. The structural differ-
ences arise the most across ARV drug classes due to their distinct
mechanisms of action and/or targets. Therefore, the selection of test set was
comprised of five single ARVs and three combination ARVs, ensuring a
comprehensive representation across all classes of ARV to inspire the
confidence of the prediction: 1) Emtricitabine (FTC) - NRTIs/NtRTIs, 2)
Efavirenz (EFV) - NNRTIs, 3) Darunavir/Cobicistat/Emtricitabine/Teno-
fovir alafenamide (DRV/c/FTC/TAF) - PIs, 4) Lopinavir/Ritonavir (LPV/r)
- PIs, 5) Doravirine/Lamivudine/Tenofovir-DF (DOR/3TC/TDF) -
NNRTIs, 6) Maraviroc (MVC) – Entry Inhibitors, 7) Tipranavir (TPV) -
PIs, and, 8) Raltegravir (RAL) - INSTIs. The performance of the model was
evaluated on this set with a total of 5,103 drug pairs where Green was
composedof 3221pairs,Yellowof 358pairs,Amber of 1146pairs andRedof
378 pairs.

Optimisation of the neural network
The architecture of both DeepARVs was a neural network. To optimise
DeepARVs, a number of hidden layers of {1, 2, 3, 4, 5} and a number of
neurons in hidden layers of {2048, 1024, 512, 256, 128} were tested. In the
model, the activation function of hidden layers was tested using either
Rectified linear activation function (ReLU) following Eq. (2) or Tanh fol-
lowing Eq. (3). Dropout rate of {0.2, 0.4} was tested.

f xð Þ ¼ x; 0f g ð2Þ

tanh xð Þ ¼ e2x � 1
e2x þ 1

ð3Þ

The optimised architecture of DeepARV-Sim was composed of four
hidden layerswith {1024, 512, 256, 128} numberof neurons respectively, the
activation function of hidden layers was ‘ReLu’ and of the output layer was
‘softmax’, dropout rate was {0.2} and learning rate was set to {0.001}
(Supplementary Fig. 4).

The optimised architecture of DeepARV-ChemBERTa was composed
of two hidden layers with {256, 128} number of neurons respectively, the
activation of hidden layers was ‘Tanh’ and of the output layerwas ‘softmax’,
dropout rate was {0.2} and learning rate was set to {0.001} (Supplementary
Fig. 5).

The cost function used for training was Sparse Categorical Cross-
entropy, also knownas SoftmaxLoss,whichevaluates crossentropybetween
the predicted probability distribution and the true labels. TrainingAdaptive
Moment Estimation (Adam) optimiser (beta_1 = 0.9, beta_2 = 0.999, epsi-
lon = 1e-07) was employed to minimise the cost function. Adam uses
momentum and adaptive learning rates to converge efficiently. To prevent
overfitting, early stopping was applied as a callback during training.

Other machine learning approaches for benchmarking
GaussianNaïveBayes (GaussianNB),DecisionTrees (DTs), RandomForest
(RF) were built using scikit-learn (version 1.0.2; https://scikit-learn.org/)
with ‘GridSearhCV’ optimising function. Hyperparameter tuning was
performed for both features of similarity profile via molecular fingerprints-
Tanimoto score and embeddings via ChemBERTa, the optimal model was
suffixed as -Sim and -ChemBERTa respectively.

Gaussian naïve bayes. GaussianNB is a variant of Naïve Bayes, which is
a supervised learning algorithm that supports continuous values and
assumes normal distribution across all classes. GaussianNB has been
well-known for its effectiveness and efficiency in multiclass prediction40.
The likelihood of features is assumed to be Gaussian where σy and μy are

estimated using maximum likelihood (4).

P y
� � ¼ 1

ffiffiffiffiffiffiffiffiffiffi
2πσ2y

q exp exp �
ðxi � μyÞ2

2σ2y

 !

ð4Þ

Hyperparameter tuning for GaussianNB was performed on two
parameters: ‘priors’ – representing the prior probability of a class, and
‘var_smoothing’ – a stability calculation to account for variance of the
features. ‘Priors’ were tested on two sets of (0.72, 0.076, 0.16, 0.044), which
was corresponding to Green, Yellow, Amber, Red classes, and of (0.1, 0.1,
0.3, 0.5), where the highest importance was assigned to the Amber and Red
classes. The testing range for ‘var_smoothing’ was {1e-9, 1e-8, 1e-7}.

The best parameters for GaussianNB-Simwere {‘priors’ = (0.72, 0.076,
0.16, 0.044), ‘var_smoothing’ = 1e-07}, and for GaussianNB-ChemBERTa
were {‘priors’ = (0.72, 0.076, 0.16, 0.044), ‘var_smoothing’ = 1e-09}.

Decision trees. DTs are a non-parametric supervised learning algorithm
and is a tree-like model. It is composed of a hierarchical tree root with
internal nodes representing a feature, branches representing a decision
rule and leaf nodes, where each of them is the decision or the outcome.
The prediction of a target value is achieved by learning simple decision
rules inferred from the feature. DTs are widely used due to their sim-
plicity, versatility, and interpretability41.

The grid search to explore hyperparameters for DTs included: i) the
maximum depth (‘max_depth’) in the range of {None, 5, 10, 20}, ii) the
minimum number of samples required to split an internal node (‘min_-
samples_split’) with options of {2, 5, 10}, iii) the minimum number of
samples required to be in a leaf node (‘min_samples_leaf’) over a range of {1,
2, 4}, iv) the maximum features considered for splitting a node (‘max_fea-
tures’) with choices of {‘sqrt’, ‘log2’}, and, v) the function to measure the
quality of a split, either ‘gini’ for Gini impurity (5) or ‘entropy’ for infor-
mation gain (6) was explored as follows:

Gini p
� � ¼ 1�

Xc

i¼1

ðpiÞ2 ð5Þ

Where Gini p
� �

is the Gini impurity for a particular node, c is the
number of classes (n = 4), pi is the probability of belonging to class i in a
given node. The Gini impurity is minimised when all samples in a node
belong to the same class (pure node).

Entropy p
� � ¼ �

Xc

i¼1

piðpiÞ ð6Þ

Where EntropyðpÞ is the entropy for a particular node, c is the number of
classes (n = 4), pi is the probability of belonging to class i in a given node.
Similar to the Gini impurity, Entropy is minimised when all samples in a
node belong to the same class.

Thebestparameters forDTs-Simwere {‘criterion’= ‘gini’, ‘max_depth’=
20, ‘max_features’ = ‘sqrt’, ‘min_samples_leaf’ = 1, ‘min_samples_split’ = 2},
and for DTs-ChemBERTa were {‘criterion’ = ‘gini’, ‘max_depth’ = 20,
‘max_features’ = ‘sqrt’, ‘min_samples_leaf’ = 1, ‘min_samples_split’ = 10}.

Random forest. RF is an ensemble learningmethod of decision trees that
builds multiple trees independently during training and the final pre-
diction is determined by a majority vote among the individual trees42. RF
presents advantages over a single decision tree such as a lower risk of
overfitting due to its ensemble approach, and robustness to noisy data
achieved via a voting technique.

Optimising RF hyperparameters included: i) the number of decision
trees in the forest, (n_estimators) testedover a rangeof {100, 200, 300}, ii) the
maximum depth of trees that helps to control overfitting, (‘max_depth’) of
choices {None, 5, 10, 20}, iii) the minimum number of samples required to
split an internal node that have impact on the tree granularity and
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generalisation, (‘min_samples_split’) with options {2, 5, 10}, iv) the mini-
mumnumber of samples required to form a leaf node (‘min_samples_leaf’)
tested over values {1, 2, 4}, v) themaximumnumber of features for splitting
at each node, allowing randomness and diversity among trees, (‘max_fea-
tures’) with either choice of square root (‘sqrt’) or base-2 logarithm (log2),
and vi) options of whether using bootstrap sampling technique during the
generation of individual trees (‘bootstrap’).

The best parameters for RF-Sim were {‘n_estimators’ = 100, ‘max_-
depth’=20, ‘min_samples_split’=2, ‘min_samples_leaf’=1, ‘max_features’=
‘sqrt’, ‘bootstrap’ = False}, and for RF-ChemBERTa were {‘n_estimators’ =
100, ‘max_depth’ = 20, ‘min_samples_split’ = 5, ‘min_samples_leaf’ = 1,
‘max_features’ = ‘sqrt’, ‘bootstrap’ = False}.

Evaluation criteria
Evaluation metrics included accuracy, precision, sensitivity (also known as
recall), specificity, f1-score (7), balanced accuracy (8) and ROC-AUC score.
Positive and negative classifications were defined as a binary classification
for every class individually e.g. for Green DDI category: True Positive (TP)
instances constitute true target Green class predicted as Green; True
Negative (TN) instances include target class of Yellow, Amber or Red not
predicted as Green; False Negative (FN) instances are target Green class
predicted as either Yellow, Amber or Red; False Positive (FP) instances are
target class of Yellow, Amber or Red predicted as Green.

F1 ¼ 2 × precision× recall
precisionþ recall

¼ 2×TP
2×TP þ FP þ FN

ð7Þ

Balanced accuracy ¼ sensitivity þ specificity
2

ð8Þ

The overall performance of the model was computed using weighted
macro-average. It combines the macro-average metric (e.g. accuracy, pre-
cision, sensitivity) (9) and weighting based on class frequencies (10) to
account for class imbalance. To calculate weighted macro-average, the
macro-average metric was weighted by the corresponding class’s frequency
and summed up (11).

AveragedMacroMetric ¼ 1
N

XN

i¼1

Metrici ð9Þ

Weighti ¼
Number of instances in class i
Total number of instances

ð10Þ

Weighted AveragedMacro ¼
XN

i¼1

Weighti ×Metrici ð11Þ

Where N is the total number of classes, in our case, N ¼ 4.

Overall scheme (Fig. 1)
At the data-level, instead of randomly removing drug pairs with redun-
dancy, our pipeline employed a combination of undersampling and
ensemble techniques to avoid the removal of any samples. Briefly, the
under-sampling method was applied to reduce the size of the majority
class–Green to five equal subsets while keeping all the samples from the
minority classes–Amber, Yellow and Redwithin each subset. The ensemble
methods involved the construction of five neural network models with the
same architecture, each model was trained on each subset. As a result, the
uneven frequency of {Green: Amber: Yellow: Red} with a ratio of
approximately {30: 7: 3: 2} respectively was minimised to {7:7:3:2}
respectively.

At the algorithm-level, the weight for each class prediction is algor-
ithmically calculated to be equal by assuming normal distribution of the
data. In our case, all the ensemble models of DeepARVs were modified to
examine the skewed distribution across DDI classes, where the weight for

each class was inversely proportional to the frequency of that class. As a
result, class weights in descending order of 2.429, 1.448, 0.692, and 0.688
were applied to the DDI class of Red, Yellow, Amber, and Green, respec-
tively. During the learning process, the penalties for a misclassification
attempt was calculated through class weight, called the cost function. By
giving the highest weight to the Red DDI category, the incorrect prediction
of this instance was penalised the most, increasing the cost of this class and
so its importance. The ultimate purpose was to decrease the likelihood of
misclassification against the Red DDI pairs and to reduce the bias towards
the majority class-Green for future predictions.

The predicted class probabilities by ensemble models were pooled and
averaged, theDDI classwith the highest probabilitywas thefinal prediction.

Reporting summary
Further information on research design is available in the Nature Research
Reporting Summary linked to this article.

Data availability
The datasets used and/or analysed during the current study available from
the corresponding author on reasonable request. DDI risks between ARVs
and comedication are publicly available at the Liverpool HIV Interaction
Checker, https://www.hiv-druginteractions.org/. Molecular structures are
available at PubChem Substance and Compound databases, https://
pubchem.ncbi.nlm.nih.gov/.

Code availability
The underlying code for this study is available in GitHub and can be
accessed via this link https://github.com/ThaoPham96/DeepARV.
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