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Microorganisms exist in large communities of diverse species, exhibiting various functionalities. The
mammalian gutmicrobiome, for instance, has the functionality of digesting dietary fibre andproducing
different short-chain fatty acids. Not all microbes present in a community contribute to a given
functionality; it is possible to findaminimalmicrobiome,which is a subset of the largemicrobiome, that
is capable of performing the functionality while maintaining other community properties such as
growth rate andmetabolite production. Such aminimalmicrobiomewill also contain keystone species
for SCFA production in that community. In this work, we present a systematic constraint-based
approach to identify a minimal microbiome from a large community for a user-proposed function. We
employ a top-down approach with sequential deletion followed by solving a mixed-integer linear
programming problem with the objective of minimising the L1-norm of the membership vector.
Notably, we consider quantitative measures of community growth rate and metabolite production
rates. We demonstrate the utility of our algorithm by identifying the minimal microbiomes
corresponding to threemodel communities of the gut, anddiscuss their validity basedon thepresence
of the keystone species in the community. Our approach is generic, flexible and finds application in
studying a variety of microbial communities. The algorithm is available from https://github.com/
RamanLab/minMicrobiome.

Microorganisms seldom exist in isolation in nature; they form communities
and survive by interacting with other microbial species. Communities are
known to exhibit cooperation and competition depending on the compo-
sition of member species and environmental conditions1. The human gut
harbours at least 1000 different species, comprising 1013–1014 organisms,
whose collective genome is at least 100 times the human genome2. The gut
microbiome is an essential part of the digestive system that synthesizes
amino acids and vitamins and breaks down the otherwise indigestible
dietary fibre into products that the human body can absorb3,4. It has a
massive influence on human health, and its disruption has been found to
cause several disease states5 such as obesity6,7, type II diabetes8 and inflam-
matory bowel disease6. Microbes in the gut are known to co-exist by cross-
feeding metabolites9 and by performing complementary metabolic
functions1.Gutmicrobespredominantly surviveon thedietaryfibre, glycans
and secretions from the host epithelial cells10. The symbiotic association

between humans and the gutmicrobiome is demonstrated through the role
of microbiome-derived short-chain fatty acids (SCFA), bile acids and other
small molecules in maintaining energy homeostasis and regulating gut
barrier and inflammation11. SCFA are involved in adaptive immune system
response, provide energy for the growthof colon epithelial cells, play a role in
cholesterol synthesis, and are involved in the crosstalkwith other tissues like
the lung and liver3,12,13. For instance, butyrate has been reported to have a
significant influence on maintaining host health owing to its ability to
induce apoptosis14, develop intestinal barrier15 and regulate the immune
system16. Perturbation to the community, such as that brought about by
antibiotic usage17–19, can disturb the community and affect its functionality.
All the members of the microbial community do not contribute equally to
the production of all themetabolites. Only some of themhave the capability
to break down dietary fibre, and such species are regarded as keystone
species in the community20,21. For example, certain species of
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Bifidobacterium, Bacteroides and Firmicutes can degrade polysaccharides22.
The numerical abundance of such organisms may not be significant com-
pared to their functional impact on the community20,21. Microbiomes also
possess functional redundancydue towhichdissimilar organisms capable of
similar functions can be interchanged21. Understanding the interaction
characteristics of the member species is paramount to comprehend the
features of the overall microbiome, and several works have been published
in this regard20,23. Previous literature has shown that synthetic microbial
communities comprising representative species frommajorphylapresent in
the gut24 can be used for treating diseases such as Clostridium difficile
infection (CDI) and Inflammatory Bowel Disease (IBD)25.

Computational tools are very effective andwidely used for studying the
behaviour of microbes in a community using their genome-scale metabolic
models. Numerous approaches using genome-scale metabolic networks
(GSMNs) at varying levels of complexities are available for microbial
community modelling26–31. Algorithms such as MiMiC32 use data-driven
approaches on microbial metagenomes to predict synthetic communities
consisting of all the identifiablemembers as a proxy for native communities.
Previous studies have also exploited GSMNs from metagenomic data to
identify microbial consortia that can perform a specific function with a
minimal number of species. Various graph theoretical approaches,
including Integer Linear Programming-based solutions for network flow
problems33, topological sub-network analysis34 and network expansion
algorithms35, used GSMNs to extract the metabolic potential of a commu-
nity and identify theminimal set of species capable of carrying out a desired
function. Most of these methods offer reliable predictions, better scalability
and good computational efficiency. However, topological methods provide
qualitative solutions without considering the important stoichiometric
constraints of reactions in amicrobe. To overcome this limitation and gain a
better understanding of community behaviour and dynamics through
quantitative community features such as microbial growth rate, metabolite
production rate and community growth, constraint-based modelling
methods are increasingly recognised26–29,31.

In this work, we present a systematicmathematical approach to design
functionality-dependentminimalmicrobiomes of a given large community.
The minimal microbiome so identified need not be unique—there can be
many possible combinations of species that form a minimal microbiome.
Knowledge of such minimal microbiomes would be useful in designing
treatment strategies for diseases caused by a disruption in the gut micro-
biome. For example, instead of a faecal transplant to treat Clostridium
difficile infection, a minimal microbiome with the required functional
capability of a large healthymicrobiome can be cultivated and administered.
This would, in turn, reduce the risk of unintentional transfer of pathogenic
microbes36. Microbial communities play an important role in bioengi-
neering applications such as chemical production37 and waste-water
treatment38,39, and the concept of the minimal microbiome to recover
from perturbations is useful in those situations as well. This work identifies
functionality-specific model microbiomes using a constraint-based
approach, which could be considered as the ‘community’ analogue of the
minimal reactome of an organism40,41. It helps to develop customised
communities based on a given application. Our algorithm is flexible and
allows one to choose the desired functionality, such as the maximisation of
the production of a metabolite or the sum of a few metabolites.

Results and discussion
In this section, we detail the performance of ourmethod, a constraint-based
approach to identify minimal microbiomes from a large community. As
discussed in the Methods, we use a top-down approach with sequential
deletion followed by solving a mixed-integer linear programming (MILP)
problem with the objective of minimising the L1-norm of the membership
vector, at the same time satisfying certain functionalities that can be defined
by the user.We validate and assess the utility of our algorithmby applying it
to a syntheticmicrobial community and three datasets from literature: a gut
microbiome dataset, a diet-based minimal gut microbiome dataset and a
widely studied synthetic therapeutic consortium. This allows us to

comprehensively evaluate the performance of our method and highlight its
significance for identifying minimal microbiomes in various contexts.

Demonstration of the algorithm on a synthetic microbial
community
We first evaluate the ‘minMicrobiome’ algorithm on a 9-member com-
munity, encompassing both known butyrate producers (Faecalibacterium
prausnitzii, Escherichia coli, Eubacterium rectale, and Bifidobacterium
adolescentis) and non-butyrate producers (Bartonella quintana, Bur-
kholderiales bacterium, Helicobacter pylori, Clostridium scindens, and
Blautia wexlerae). This microbial assembly is predicted to exist as a com-
munity with a growth rate of 3.3444 h−1 (see Methods) and is capable of
producing different SCFAs, including acetate, butyrate, and propionate, at a
maximum flux of 0.6694mmol/gDW-h. The algorithm, under default
parameters (gr_opt_frac = 0.99; gr_frac = 0.8; scfa_frac = 0.8; constraint = 1
(sum of all SCFAs); constraint weight = 1:1:1), identifies E. coli and B.
wexlerae as the minimal microbiome for maximal SCFA production of
0.5355 mmol/gDW-h with a community growth of 2.6755 h−1. Despite B.
wexlerae primarily producing acetate rather than butyrate, its inclusion
underscores the comprehensivemaximisation of all SCFAs.However, while
focusing the analysis on butyrate production (Constraint 3), ‘minMicro-
biome‘ identifies E. coli, B. adolescentis, and E. rectale as the minimal
microbiome for predominant butyrate production while sustaining com-
munity growth. All identified microbes in this analysis are verified butyrate
producers capable of supporting community growth. The algorithm also
successfully identified themicrobewith the highest contribution to butyrate
production as a part of a minimal microbiome while reducing redundancy
in community functionalities as expected. This focused analysis can be
extended to explore the minimal microbiome for various metabolites in
diverse microbial ecosystems.

Analysis of a 9-member community for butyrate production
A complex web of cross-feeding between the microbial species in a com-
munity is required to digest the undigested dietary substrates that reach the
colon, and to produce SCFA. Despite their intricate exchanges, the gut
microbiome presents high functional redundancy and environment-
specific variation in inter-species interactions. Butyrate is a crucial SCFA
that provides several health benefits to the host due to its anti-carcinogenic14

and anti-inflammatory properties16.We analyzed amodel community with
the functionality constraint on maximum butyrate production (Constraint
3) for the gut microbiome consisting of 9 organisms26 namely Bacteroides
thetaiotaomicron VPI 5482 (Bt), Eubacterium rectale ATCC 33656 (Er),
Faecalibacterium prausnitzii A2 165 (Fp), Enterococcus faecalis V583 (Ef),
Lactobacillus caseiATCC 334 (Lc), Streptococcus thermophilus LMG 18311
(St), Bifidobacterium adolescentis ATCC 15703 (Ba), Escherichia coli SE11
(Ec) andKlebsiella pneumoniae pneumoniaeMGH78578 (Kp), on AGORA
high-fibre and Western diets and identified their minimal microbiomes.
These organismswere chosenbecause theycanbe consideredproxies for the
four major phyla present in the gut microbiome (Firmicutes, Bacteroidetes,
Actinobacteria andProteobacteria) andare a representativemodel of the gut
microbiome26.Analysis of this community to identifyminimalmicrobiomes
can shine light on the roles of various species present in the community and
can also be validated using known results in literature. The parameter values
used are 0.8 for both gr_frac and scfa_frac and 0.99 for gr_opt_frac. The
results of the simulation are tabulated in Table 1.

On a high-fibre diet, the overall growth rate of this community was
calculated to be 3.65 h−1, and the individual growth rates were [0.29, 0.007,
0.006, 0.000856, 0.065, 0, 0.27, 2.98, 0.027] h−1. The maximum butyrate
produced by this community when the growth rate of each species is con-
strained to be at 99% (gr_opt_frac) of the above individual growth rates was
10.96mmol/gDW-h.Theminimalmicrobiome that has at least 80%growth
(gr_frac) and butyrate production rates (scfa_frac) as that of the above
community (Constraint 3) consists of only Fp A2 165 and Ec SE11. This
minimal microbiome can grow at the rate of 2.91 h−1 while producing
butyrate at 8.77mmol/gDW-h. Since sub-optimal growth rates increase
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SCFAproduction, the constraint of 80%on the growth ratemakes the above
solution possible. Now, for calculating the maximum butyrate by the
community, if 90% of individual growth rates (gr_opt_frac) is used instead
of 99%, the butyrate production of the community is 18.79mmol/gDW-h,
with a minimal microbiome comprising Bt, Fp and Kp, that produces
15.03mmol/gDW-h butyrate. On the other hand, if the lower bound for
growth rate (gr_frac) is 90% instead of 80%, the minimal microbiome will
have 3.28 h−1 growth rate with 8.77mmol/gDW-h of butyrate production.
For this case, there are multiple possible minimal microbiomes containing
three organisms: such as Fp, Ba and Ec or Er, Fp and Ec.

The same community (with parameters gr_frac = scfa_frac = 0.8 and
gr_opt_frac = 0.99) on a Western diet, has a growth rate of 3.64 h−1 with a
butyrate production rate of 8.77mmol/gDW-h. The minimal microbiome
is Fp and Ec, with a growth rate of 2.91 h−1. gr_frac and scfa_frac are the
fractions of the growth rate and SCFA production rate that are the lower
bounds of the growth rate and SCFA production rate in the minimisation
problem for finding the minimal microbiomes. Relaxing these parameters
could result in more possible combinations of species to form minimal
microbiomes. A graphical representation of the effects of the parameters
gr_opt_frac, gr_frac and scfa_frac for this 9-member community on high-
fiber diet is provided in Fig. 1. A lower value of gr_opt_frac implies that in
order to maximise the production of butyrate by the large community, the
individual members are allowed to grow at a lower rate. This, in turn,
increases the lower bound on the butyrate production rate of the minimal
community, and hence more species will be required in the minimal
microbiome to achieve the butyrate production requirement. The growth
rate of individual species lesser than 0.499 are not plotted because it is not
possible tofind anyminimalmicrobiomeswith suchhigh SCFAproduction
and growth rates (optimisation problem is infeasible). On theWestern diet,
butyrate production is comparatively lesser, yet the same organisms con-
stitute the minimal microbiome, which is in accordance with the reduction
of SCFA in high-fat diets13.

It may be noted that all the minimal microbiomes identified consist of
either Fp or Er, which are Firmicutes and are capable of producing butyrate,
and are thus the keystone species, in the above community. Belcour et al.35

using their function-specific model reduction tool called M2M, have also
predicted Firmicutes to be the key organism for butyrate production. Some
species, such as the keystone species, could be interchangeable but not
essentially equal21. The algorithm is not meant to find all the abundant
species in the community, but to find a possible minimal community that
includes the keystone species for a specific purpose. The keystone species
need not be an abundant species in the microbiome.

The constraint on maximising the sum of SCFA (Constraint 1),
although intended to find themaximum total SCFAproduction, sometimes
results in the production of only acetate and propionate because the pro-
duction of acetate is the highest and thus maximises the objective. The code
has been enabled for aweighted sumof SCFAwhereweight can be provided
by the user. The aforementioned community of nine organisms was found

not to produce acetate and butyrate simultaneously. If theweightage used in
the sum of acetate, butyrate and propionate is 1:1:1 or 1:2:1, the production
will be 24.554, 0, 0.906mmol/gDW-h, respectively. On the contrary, if the
weightage is 1:3:1, the corresponding fluxes are −1.000, 10.958,
0.906mmol/gDW-h. If acetate in the diet is removed (by changing the lower
bound to 0 from−1), the corresponding fluxes when the weightage is 1:3:1
are 0, 10.732, and 0.910mmol/gDW-h, respectively. There is only a slight
dip in the production of butyrate on the removal of acetate from the diet.

A minimal microbiome does not necessarily identify all the keystone
species—so it may be possible to have other microbiomes (not minimal),

Table 1 | Predicted minimal microbiomes

Community Size High fibre diet Western diet

BPR μ BPR μ

Gut microbial community 9 10.958 3.646 8.775 3.643

Minimal microbiome 2 8.766 2.917 7.020 2.915

DbMM 10 1.085 1.478 0.980 1.348

Minimal microbiome 3 0.619 1.171 0.793 1.151

Synthetic therapeutic
consortium

17 1.588 4.138 1.619 4.149

Minimal microbiome 3 0.734 3.369 0.899 3.413

Table shows three example communities from literature, and predicted minimal microbiomes.
BPR Butyrate production rate (mmol/gDW-h); μ, growth rate (h−1).

Fig. 1 | Effect of algorithm parameters onminimal microbiome size and butyrate
production rate. The three panels show the number of organisms in the minimal
microbiomes when the parameters gr_opt_frac - minimum individual growth rate
fraction for metabolite production (a), gr_frac - minimum growth rate fraction in
minimal microbiome (b) and scfa_frac - minimum metabolite production fraction
inminimal microbiome (c) are varied, for the 9-member community on a high-fibre
diet. In (a), the corresponding butyrate production rates when gr_opt_frac is varied
are indicated on the secondary Y-axis.

https://doi.org/10.1038/s41540-024-00373-1 Article

npj Systems Biology and Applications |           (2024) 10:46 3



capable of the same functions. Multiple minimal microbiomes are also
possible becausemultiple combinations of themember speciesmight satisfy
the imposed functionality constraints. They could even be mutually
exclusive depending on the type of member species. The redundancies in
microbial functionalities that result in several possibilities of minimal
microbiomes are discussed indetail in ref. 42.Thus, thedeletionofoneof the
minimalmicrobiomes from the large community neednot affect the growth
rate and functionality of the latter.

Identification of diet-based minimal gut microbiome
A recent study43 identified 10 microbial species as a Diet-based Minimal
Microbiome (DbMM) for the effective conversion of dietary fibres to SCFA.
The study employed an eco-physiology-guided44 approach to identify
SCFA-producing (butyrate, propionate) stable minimal microbiomes that
could utilise multiple dietary substrates. The identified minimal micro-
biome embodies functional modules involved in complex carbohydrate
degradation to simple sugars and fermentationproducts and the production
of SCFA using the degraded products. Minimal microbiomes and key
species under a host-based diet from DbMM are evaluated to illustrate the
ability of the proposed algorithm.

The minimal microbiome from 10 core microbial species [Faecaliba-
terium prausnitzii, Coprococcus catus, Bacteroides ovatus, Bacteroides
xylanisolvens, Agathobacter rectalis, Anaerobutricum soehngenii, Eubacter-
ium siraeum, Flavonifactor plautii, Roseburia intestinalis, and Sub-
doligranulum variable] is investigated under different host-based diet
conditions (Western and high-fibre) for maximum SCFA (butyrate and
propionate) production with optimal community growth. A 10-member
microbial community under theWestern diet exhibited a growth of 1.35 h−1

with 0.921mmol/gDW-h of propionate production. Butyrate was not
predicted to be produced by the community, while optimising for biomass
production suggests that the community prefer propionate production over
butyrate. Maximum butyrate production of 0.979mmol/gDW-h was pre-
dicted when the growth rate of the community (gr_frac) and individual
species (gr_opt_frac) in a community were constrained to 80% and 99%,
respectively. A 2-member community of Bacteroides ovatus and Copro-
coccus catus is considered a minimal microbiome and they could produce
more than 80% of the maximum SCFA produced by the 10-member
community. Since the objective is to maximise the linear sum of different
SCFAmetabolites (propionate and butyrate), the solution obtained showed
only propionate production. At a weighted sum of SCFA (propionate:
butyrate - 1:1), 0.921mmol/gDW-h of propionate production is observed
with no butyrate production, and the butyrate production of 0.979 mmol/
gDW-h at a ratio of 1:5. While optimising for butyrate production, the
minimal microbial community includes B. ovatus and C. catus along with
either Fp or Eubacterium sp. The community captures the cross-feeding of
species capable of degrading complex carbohydrates to simple metabolites,
such as lactate (B. ovatus45,46) and a species which could convert the simple
metabolites to propionate (C. catus47) or butyrate (Fp48, Er49).

Reducing the constraint for the growth of individual species
(gr_opt_frac) in a community to 0.9 instead of 0.99 improves themaximum
butyrate production (Constraint 2) to 9.436mmol/gDW-h ( ≈ 10-fold
compared to the results for gr_opt_frac = 0.99), and 4.606mmol/gDW-h of
butyrate production is detected at a ratio of 1:2 (propionate:butyrate).
However, the growth of the community drops down to 1.215 h−1. Keystone
species of the microbial community are consistent, and all three species (B.
ovatus, C. catus and E. rectale) are identified as part of the minimal
microbiome that facilitates maximum butyrate production.

The same pattern of butyrate and propionate production was
observed when the community was simulated on a high-fibre diet. The
core microbial community exhibited a growth of 1.479 h−1 with 0.901
mmol/gDW-h propionate. The maximum butyrate production of
1.085mmol/gDW-h is observed at a ratio of 1:5 (propionate: butyrate). B.
ovatus, an important key microbial species for glycan production, formed
a microbial community with C. catus and F. prausnitzii to produce
butyrate and propionate. Few minimal microbiomes also reported the

utilisation of E. rectale (western diet)/ Subdoligranulum variabile (High
fibre diet)50 as a replacement for butyrate-producing F. prausnitzii. A 10-
fold increase in butyrate production (10.499 mmol/gDW-h) with
decreased growth (1.346 h−1) is observed when the individual species’
growth in a community is constrained at 90%. The minimal microbiome
analysis suggested that 10 microbial species can produce SCFA from
various complex carbohydrates. The proposed algorithm could identify
the minimum number of microbial species needed to produce SCFA
(desired metabolites) for a specific carbon source.

Minimal microbiome of a synthetic therapeutic consortium
A synthetic consortium is designed to treat inflammatory bowel disease
(IBD) by complementing the missing critical functions of the human gut
microbiome. A bottom-up approach-based rational consortium design
identified a 17-species therapeutic consortium, including Megamonas
funiformis, Megamonas hypermegale, Acidaminococcus intestini, Bacter-
oides massiliensis, Bacteroides stercoris, Barmesiella intestinihominis, Fp,
Subdoligranulum variabile, Anaerostipes caccae, Anaerostipes hadrus,
Clostridium symbiosum, Akkermansia muciniphila, Clostridium scindens,
Clostridium boltae, Blautia producta, Blautia hydrogenotropia and Mar-
vinbryantia formatexigens51. The consortium is analysed for its therapeutic
function to support mucosal homeostasis (SCFA-mediated) and immune
modulation defects (bile acid-mediated) in the gut microbiome modulated
during the IBD condition. The synthetic community designed to treat IBD
and promote gut health has high functional redundancy and com-
plementary auxotrophies for better stability and efficacy. The minimal
microbiome of the 17-species consortium for a specific objective will pro-
vide insights into the role of microbial species in a community, such as
butyrate production, community resilience and secondary bile-acid
production.

Here, the algorithm identifies key species involved in the SCFA (pro-
pionate and butyrate) mediated energy homeostasis in the microbiome52.
Default growth parameters are applied to determine theminimumnumber
of microbial species needed to produce the maximum SCFA from the
community (gr_opt_frac = 0.99; gr_frac = 0.8; scfa_frac = 0.8). A synthetic
consortium exhibitsmaximumbutyrate production of 1.588mmol/gDW-h
and propionate production of 2.382mmol/gDW-h at a growth rate of
4.138 h−1 on a high-fibre diet. Minimal microbiome reveals C. boltae, M.
funiformis and C. symbiosum as essential species for SCFA production and
can produce nearly 50% of the maximum butyrate (0.734mmol/gDW-h).
The butyrate production increases 13-fold when the growth rate of the
community is constrained at 90% instead of 99%. Since the minimal
microbiome can vary basedon the sequence of themicrobes removal froma
community, B. massiliensis, a propionate producer, replaces the commonly
observed propionate producer M. funiformis in a few iterations to form a
minimal microbiome.

The higher growth rate of the butyrate-producing microbe, C.
symbiosum52 and the propionate-producing microbe, M. funiformis53, is
observed in the minimal microbiome when it is analysed for growth and
SCFA production potential. The results suggest that higher butyrate pro-
duction (1.588mmol/gDW-h) by the key species (C. symbiosum) in 17-
member consortia is complemented by the growth of the other microbial
species in a community.

A similar trend of butyrate production and growth profile of a com-
munity and minimal microbiome on a Western diet is observed (Table 1).
The minimal microbiome consists of C. boltae,M. funiformis and C. sym-
biosum, produces 0.899mmol/gDW-h of butyrate, at a growth rate of
3.413 h−1 and 7.328mmol/gDW-h at a growth rate of 3.103 h−1. The
microbiome, including two key species (M. funiformis and C. symbiosum)
accompanied by C. boltae to support the growth of individual species and
microbiome, is identified as a minimal microbiome for SCFA production
irrespective of host diet conditions. Further analysis showed that the other
microbial species support the community in fulfilling other significant
functions, such as secondary bile acid production and better resilience to
pathogen colonisation.
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Minimal microbiomes of a larger model microbiome
Wenow examine a well-studiedmodelmicrobiome, to identify its minimal
microbiome. Becker et al.54 studied simplified human intestinal microbiota
(SIHUMI) comprised ofAnaerostipes caccae, Bacteroides thetaiotaomicron,
Bifidobacterium longum, Blautia producta, Clostridium ramosum, Escher-
ichia coli and Lactobacillus plantarum, complemented with Clostridium
butyricum for butyrate production.Theyobserved improvement in butyrate
production with themodified SIHUMIx. Theminimal microbiome for this
communityonahigh-fibrediet,with the functionality tomaximisebutyrate,
was found to consist of Escherichia coli and Clostridium butyricum. The
butyrate production by the whole community is 15.16mmol/gDW-h,
whereas that by the minimal microbiome is 12.13mmol/gDW-h. Clos-
tridium butyricum is an irreplaceable member of the minimal microbiome
as deletion of this species from the community reduces butyrate production
to 11mmol/gDW-h, which violates the constraint of at least 80% butyrate
production.

A community consisting of 25 organisms55 with a high-fibre diet was
studied, and 30 minimal microbiomes were identified for butyrate pro-
duction. Figure 2 shows the representation of the presence/absence of all the
species and the corresponding butyrate production rates by each minimal
microbiome. Some species of Bacteroides are capable of breaking down
glycans22, and thus show up very frequently as a part of the minimal
microbiome. Due to the functional redundancy offered by several species,
several minimal microbiomes with distinct species are possible and are
indicated by the lower frequency appearances. All the 30 minimal micro-
biomes identified and their maximum butyrate production rates for these
conditions are provided in Supplementary Note 1. A table showing a large
community of 50 organisms and some of its minimal microbiomes on a
high-fibre diet with a constraint on butyrate production is given in Sup-
plementary Note 2.

Performance of the algorithm
Running the MILP alone for a large community would be computationally
intensive. The deletion of one species involves running anLP twice—one for
checking the growth rate (FBA) and another (FVA) for the SCFAproduced.
We observed that when smaller communities were considered,

computational times were comparable when solved as an MILP or when
size-reduction was done before MILP. For instance, when a 15-member
community was run as an MILP (with 15 integer variables and the corre-
sponding continuous flux variables), the time taken for computation was
101 s, whereas when it was reduced to an eight-member community before
runningMILP, the time taken was 106 s owing to the additional number of
LPs. The computations were done on a 2.40 GHz 11th Generation Intel i5-
1135G7processorwith 16GBDDR4RAMrunningWindows 11.However,
for large communities, the size reduction resulted in significant savings in
computational time. MILP of a 25-member community took 1497 s while
reducing it to 15 and 8 members reduced the time required to 430 s and
251 s, respectively, on the samemachine. Itmust be noted, however, that the
computational time also depends on the complexity of species models.

A known drawback of the algorithm is that it forces the metabolite
cross-feeding between the organisms to attain the maximisation objective;
nonetheless, it is an admissible assumption in the caseof the gutmicrobiome
since it is known to be a co-occurring, cooperative community. If the spatial
arrangement of the species or/and the regulatory constraints are known, the
individual uptakes for each species can be accordingly adjusted for a more
realistic solution. Besides, sub-optimal growth rates are known to result in
better SCFAproduction, and the parametersmay be adjusted to suit realistic
conditions. In short, the code is flexible to account for a variety of scenarios.
The algorithm, however, does not exhaustively identify all the possible
minimal microbiomes, especially when multiple functional redundancies
are present in the community. While it is readily possible to achieve that by
using integer cuts to the MILP problem, there will be a definite drop in
performance.

In summary, we presented a procedure of sequential deletion followed
by solving an MILP for the identification of a minimal microbiome having
specific characteristics of the large microbiome considered. Given a large
microbial community, all of its members would not be contributing to
certain specific functionalities of the overall microbiome. It is possible to
design ‘minimal microbiomes’ specific to certain functionalities, and we
present a simple, customisable constraint-based approach for identifying
them. Such minimal microbiomes would contain keystone species of the
community. Multiple minimal microbiomes, which may even be mutually

Fig. 2 | 30 minimal microbiomes identified from the 25-member community on
the high-fibre diet. The X-axis denotes different minimal microbiomes identified.
The presence (dark orange) or absence (light orange) of a species in a minimal
microbiome is indicated in the illustration in (b), and the corresponding maximum

butyrate production rate by each of the minimal microbiomes is shown by the bar
graph in (a). Only the species present in at least one of the minimal microbiomes are
indicated in (b).
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exclusive, can exist with the capability for a given functionality. Knowledge
of minimal microbiomes will be useful in designing microbial composition
to treat certain diseases caused by disruption of the gut microbiome. The
usage of a rationally designed community for treatment is better than faecal
microbial transplantation from a donor that poses a risk for accidental
pathogenic infection. The idea of a minimal microbiome can also be made
use of in bioengineering applications involving microbial communities, to
rescue them from undesired consequences of perturbations. The existing
minimal microbiome identification algorithms such as ‘Miscoto’42,
‘MultiPus’34 and ‘Metage2Metabo’35, majorly focus on topological analyses.
These algorithms, while effective, do not consider important biological
factors such as expected flux through metabolic reactions, interactions
between the microbial species and the survival probability of the microbial
members in an identified community under a given environment. Being a
constraint-based approach, our algorithm can quantitatively predict fluxes
and metabolic exchanges and is reasonable for a co-existing community
such as the gut microbiome. It presents complementary insights into the
structure of microbial communities, as compared to the topological meth-
ods, and can be adapted to appropriate objectives, as needed. The algorithm
has been designed to be flexible with the possibility of incorporating user-
defined inputs for most constraints. The identified minimal microbiomes
are found to be rational and include species that digest dietary fibre. Our
proposed algorithm is able to identify the minimal microbiomes and key-
stone species in model communities of the gut and can be readily extended
to other scenarios.

Methods
Formulation
Genome-scale metabolic models (GSMMs) represent a comprehensive,
systems-level metabolic view of an organism by integrating genomic
information with biochemical information56. Flux Balance Analysis
(FBA)57,58 is a constraint-based modelling approach that efficiently uses
GSMMs to study and explore the cellular metabolism by predicting steady-
state flux distributions in an organism under given contexts. Joint FBA59 is
an extension of FBA for modelling microbial communities by a compart-
mentalised approach. It solves a linear programming (LP) problemwith the
defined objective, stoichiometric balances as the equality constraints and
lower and upper bounds on fluxes as the inequality constraints. The for-
mulation of joint FBA is as follows:

max
X

k

c>vk;biomass ð1Þ

Skijv
k
j ¼ 0 ð2Þ

LBk
j ≤ v

k
j ≤UB

k
j ð3Þ

vj
exchange ¼

X

k

ðvk;exchangej Þ ð4Þ

where k denotes species, j denotes reactions, i denotes metabolites, S is
the stoichiometric matrix, and v are the reaction fluxes. In this approach,
the overall exchange of each metabolite by the community is the sum of
the corresponding exchange reactions of each organism, and these
constraints enable metabolite uptakes and cross-feeding. However, in
this approach, if the objective is tomaximise the sum of biomass reaction
fluxes of each organism, it could result in metabolite production without
growth for certain organisms, which is unrealistic. This problem is
surmounted by coupling the metabolic reactions of an organism to its
biomass equation:

vkj � c � vk;biomass ≤ u 8k 2 species ð5Þ

where c is the coupling vector and u is the threshold.

Due to themathematical formulation tomaximise the sumof biomass,
constraint-based approaches such as joint FBA might force metabolite
cross-feeding to attain the maximum possible growth. For co-occurring
species in the gut microbiome, this cross-feeding would be reasonable,
unless the species are known to be regulated differently or spatially
separated.

To find the minimal microbiome, we define a binary membership
vector identifying the status ofmembership of each species as 0: absent, or 1:
present. This integervector is used in the biomass constraint. Theproblem is
now anMILP and is solvedwith the objective ofminimising the L1-norm of
the membership vector with the required functionality constraints. The
following approach is used to find the functionality constraints:

1. The overall and individual growth rates of the given large community
are calculated by solving the joint FBA LP problem.

2. The maximum possible rates of production of the desired metabolites
—by default, SCFA (acetate, butyrate and propionate), or their sum, is
calculatedbyFluxVariabilityAnalysis (FVA)bykeeping the individual
growth rates calculated in the previous step as the lower bounds for the
individual biomass fluxes. The code is designed to work with the
production of any three individual metabolites or their weighted sum
as the constraint. The objective function for FVA is:

maxðwacv
exchange
ac þ wbuv

exchange
bu þ wprv

exchange
pr Þ ð6Þ

wherew denotes the weightage for each of the fluxes. The default weightage
is (1, 1, 1) and can be varied by the user if the production of one product is
preferred to the others. The additional constraint on individual growth rates
is given by:

vk;biomass ≥ gr opt frac× constant ð7Þ

where the constant value is obtained from the joint FBA solution of Step 1. If
needed, a differentmetabolite list can be provided by the user in the optional
inputs. The fraction of growth rates to be considered as lower bounds in this
step can also be provided by the user (default value of ‘gr_opt_frac’ is 0.99).
This value is relevant because a sub-optimal growth rate is known tobemore
realistic and results in good SCFA production60. In the code, the constraint
on the sumof SCFA is denoted as Constraint 1. Likewise, constraints on the
production of acetate, butyrate andpropionate are denoted asConstraints 2,
3 and 4, respectively.
3. Fractions of individual growth rate calculated in Step 1 and SCFA

production rate calculated in Step 2 are provided as the lower bounds
for the corresponding fluxes in the MILP problem. The growth rate
fraction (gr_frac) and SCFA production fraction (scfa_frac) can be
provided by the user.

The MILP formulation is as follows:

min
X

k

Xk ð8Þ

Skijv
k
j ¼ 0 ð9Þ

LBk;biomassXk ≤ vk;biomass ≤UBk;biomassXk ð10Þ

LBk
j ≤ v

k
j ≤UB

k
j ; j≠biomass ð11Þ

vkj � c:vk;biomass ≤ u ð12Þ

vkj 2 �1;1ð Þ ð13Þ

Xk 2 0; 1ð g ð14Þ
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Functionality and growth rate constraints are captured as follows:

vexchangeSCFA ≥ scfafrac:ϑ
exchange
SCFA ð15Þ

vk;biomass ≥ grfrac:ϑ
k;biomass ð16Þ

where k denotes species, j denotes reactions, i denotes metabolites, S is the
stoichiometric matrix,X are the integer (binary membership) variables and
v are the reaction fluxes (continuous variables). LB andUB denote the lower
and upper bounds. ϑ in functionality constraints denotes reaction fluxes of
the full community.

For large communities, solving an MILP is computationally challen-
ging. In such cases, organisms can be deleted one by one in a given sequence
such that the functionality constraints are satisfied by the resultant com-
munity, until the community is small enough for reasonable computation
for MILP solution. If the deletion sequence is not provided by the user, a
random sequence is chosen by default. The deletion sequence is run over
multiple times to reach theMILP size provided by the user. ‘Deletion’ of an
organism is done by assigning zero values to the lower and upper bounds of
all the corresponding fluxes of the organism. However, the resultant
minimal microbiome will depend on the sequence used for deletion and
hencemultiple iterations of the algorithm help to identify different possible
solutions.The effect of deletion sequence in identifying the minimal
microbiomes is demonstrated in Supplementary Note 3. The number of
organisms in theminimalmicrobiomes identified indifferent iterationsmay
vary. If required by the user, the code also has a feature to compute the
maximumvalue of the SCFA production rate by theminimal communities.

The algorithm is explained in step-by-step detail in Supplementary
Methods, and a schematic is provided in Fig. 3. COBRA toolbox61

functions are used in MATLAB 2020b for the computations. The
exchange and biomass reactions are identified in the code by the names
used in AGORA62 models, and each individual organism in the com-
munity is identified as ‘_org<number>’ as in the communities created
using the COBRA function createCommModel(). Gurobi (version
9.1.2, Gurobi Optimisation LLC, USA) is the solver used for solving both
LP and MILP.

Generation of synthetic community to validate ‘minMicrobiome’
algorithm
We employed a synthetic community comprising nine microorganisms to
evaluate the ‘minMicrobiome’ algorithm,which identifies theminimal set of
microorganisms within a community capable of producing a desired
metabolic function. The microorganisms within this synthetic community
were deliberately selected to encompass key butyrate and acetate producers,
as well as those unable to produce acetate and butyrate. Using community
FBA inMATLAB,we validated the growth of allmicroorganismswithin the
community and analysed the production of desiredmetabolites like SCFAs.
The microorganisms are selected based on their capability for acetate and
butyrate production: (i) Acetate and butyrate producers -Escherichia coli,
Bifidobacterium adolescentis, Faecalibacterium prausnitzii, and Eubacter-
ium rectale; (ii) Butyrate producers - Helicobacterpylori; (iii) Acetate pro-
ducers -Blautia wexlerae and Clostridium scindens; and (iv) butyrate and
acetate non-producers -Bartonella quintanaandBurkholderiales bacterium.
The algorithm aims to identify the key contributors to acetate/butyrate
production, supporting the growth of a minimal set of organisms within a
community. Although seven microbes with potential for inclusion in the
minimal microbiome were added, the algorithm is anticipated to select
organisms with higher metabolite production rates, minimising functional
redundancy within the community.

Fig. 3 | Schematic illustration of the proposed algorithm. Every circle above
illustrates a microbiome with different microbes, each having its own metabolic
network. At each step, indicated by the coloured squares, various steps described in
the formulation are illustrated. Triangles indicate secreted metabolites from each of

themicrobiomes (objective, such as SCFA production). Theminimisation is done in
steps C and D, employing constraints based on the growth and production rates
obtained from steps A and B.
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Reporting summary
Further information on research design is available in the Nature Research
Reporting Summary linked to this article.

Data availability
All data generated or analysed during the study is provided in the Supple-
mentary Material.

Code availability
The ‘minMicrobiome’ algorithm is available from https://github.com/
RamanLab/minMicrobiome.
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