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Metacell-based differential expression
analysis identifies cell type specific
temporal gene response programs in
COVID-19 patient PBMCs
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Kevin O’Leary 1 & Deyou Zheng 1,2,3

By profiling gene expression in individual cells, single-cell RNA-sequencing (scRNA-seq) can resolve
cellular heterogeneity and cell-type gene expression dynamics. Its application to time-series samples
can identify temporal gene programs active in different cell types, for example, immune cells’
responses to viral infection. However, current scRNA-seq analysis has limitations. One is the low
number of genes detected per cell. The second is insufficient replicates (often 1-2) due to high
experimental cost. The third lies in the data analysis—treating individual cells as independent
measurements leads to inflated statistics. To address these, we explore a new computational
framework, specifically whether “metacells” constructed to maintain cellular heterogeneity within
individual cell types (or clusters) canbeusedas “replicates” for increasing statistical rigor. Toward this,
we applied SEACells to a time-series scRNA-seq dataset from peripheral blood mononuclear cells
(PBMCs) after SARS-CoV-2 infection to constructmetacells, and used them inmaSigPro for quadratic
regression to find significantly differentially expressed genes (DEGs) over time, followed by clustering
expression velocity trends.We showed that suchmetacells retained greater expression variances and
produced more biologically meaningful DEGs compared to either metacells generated randomly or
from simple pseudobulk methods. More specifically, this approach correctly identified the known
ISG15 interferon response program in almost all PBMC cell types and many DEGs enriched in the
previously defined SARS-CoV-2 infection response pathway. It also uncovered additional and more
cell type-specific temporal gene expression programs. Overall, our results demonstrate that the
metacell-pseudoreplicate strategy could potentially overcome the limitation of 1-2 replicates.

Single-cell RNA sequencing (scRNA-seq) is a powerful tool that can detect
distinct gene expression dynamics in different cell types within a sample1,2.
One can apply the analysis to time-series samples for the identification of
temporal changes in gene expression and pathway activities within each cell
type. To do this, a currently common practice is to use each cell as a
statistically independent “observation” for determining gene expression
change between time points. Statistically, this is not rigorous because cells in
the same biological sample do not really represent independent measure-
ments, but have intrinsic correlations3. Pseudobulking has been proposed to
overcome this,where gene read counts for all cells of a cell type (or cluster) in

a biological sample are aggregated. This approach also has an advantage in
increasing gene coverage, as a relatively low number of genes are detected
per cell by current scRNA-seq analysis approaches4. The strategy, however,
brings up the problem of low numbers of replicates in scRNA-seq studies
due to the high cost of library preparation and sequencing5. In addition,
simply aggregating reads in all cells of a type may erase the bona fide
heterogeneity (or variation) in a cell type (or cluster). In this study, we
propose the use of “metacells” to circumnavigate these problems.Ametacell
represents the transcriptomes of a group of highly similar cells6. Multiple
methods and algorithms exist to create them6–8; however, the single-cell
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aggregation of cell states (SEACells) algorithmhas an advantage in retaining
heterogeneity within each cell cluster9, resulting in metacells representing
different transcriptomic states. It achieves this by constructing a k-nearest
neighbor (KNN)graph representing the cell-to-cell similarity in the scRNA-
seq data, analyzing the cell density on the graph, and then using archetypal
analysis to partition cells to metacells that can represent cells at diverse
regions of the KNN graph9. We thus decided to investigate if the metacells
from SEACells can be used as pseudo-replicates (referred as “metar-
eplicates”) in statistical methods that were developed for time-series data
from bulk tissues (vs single cells). Considering the continued importance of
understanding the diverse ways in which the immune system responds to
severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), we further
decided to test the approach with a time series dataset derived from cor-
onavirus disease 2019 (COVID-19) patients following symptom onset10.

SARS‑CoV‑2, the strain of coronavirus responsible for the COVID-19
pandemic11,12, continues to infect hundreds of thousands of people around
the globe. To date, over 7million confirmed deaths have been recorded as a
consequence of SARS-CoV-2 infection13. The desire to understand the
mechanisms behind SARS-CoV-2 infection andhost defense, especially as it
relates to its transmissibility14,15 and severity16, has prompted a vast amount
of research in the field of immunology and beyond17,18. One of many topics
of interest concerns gene programs within cell types that respond to SARS-
CoV-2, specifically peripheral bloodmononuclear cells (PBMCs),which are
round nucleus containing blood cells such as dendritic cells, lymphocytes,
natural killer cells (NKs), or monocytes19. Because PBMCs are responsible
for responding to and eliminating viral infections such as SARS-CoV-2, it is
important to understand the transcriptomic basis of this process.
Researchers have compared gene expression in PBMC cell types between
COVID-19patients and controls usingbulkRNAsequencing20.Othershave
implemented scRNA-seq21,22, which provides greater resolution at the cel-
lular level, especially as it relates to deducing cell type-specific responses to
SARS-CoV-2 infection. Some have even performed time series scRNA-seq
analysis of COVID-19 progression. While these studies have provided
valuable information related to cell type-specific changes in expression
through time, they were limited by the issues of small replicates as discussed
above. For example, some time points in the PBMCscRNA-seq data thatwe
planned to analyze have only one replicate. Consequently, the authors had
to bin samples of time points to increase statistical power10; so did in other
studies20,23,24. In addition to this computational difference, the scope and
focus of our current study are also different from those in the original
report10, e.g., the original authors focused on the response difference
between COVID-19 infection and flu and did not study the velocity of the
expression changes. The authors of SEACells also studied SARS-CoV-2
gene responses in PBMCs with a different dataset21, but focused on CD4 T
cells andonly analyzed a fewmetacells that could be assigned to specific time
points9. This differs from our study in that we analyzed metacells repre-
senting 10 discrete points in time and in many PBMC cell types.

In short, using the SEACells alogorithm, we created metacells that
retained hetergeneity and likely reprensented cell states within each cell type
and used them as metareplicates. This resulted in up to 12 replicates for
some time points and thus provided the statistical power necessary to
resolve signficiant changes in expression through time. With that, we per-
formed a strict statistical analysis through a greater number of time points
than any other COVID-19 time-series scRNA-seq study to date. To
accomplish this, we subset all cells based on time since symptom onset and
then used the SEACells algorithm to create metacells. maSigPro25 was used
for quadratic regression to find significantly differentially expressed genes
(DEGs) through time, due to its robust statistical base, its flexibility with
defining degrees of regression, and widespread use for time series analysis.
Additionally, quadratic regression was used because we did not want to
capture cyclical variation, rather we hoped to find broader changes in
expression through four weeks of COVID-19 symptoms. We further clas-
sified all DEGs by expression velocity trend based on fitted expression
curves and their dynamic derivates.With this approach,we identified ISG15
as a DEG through time when PBMC cell types were analyzed together.

When cell types were analyzed independently, however, we found many
immune system-related DEGs, which enabled us to expand upon previous
reports of certain gene programs and their relevance to SARS-CoV-2
immune response.

Results
Finding DEGs through time with either pseudobulking or indivi-
dual cell-based methods
To characterize the dynamics of cell type gene programs in the PBMCs in
response to SARS-CoV-2 infection, we first applied a pseudobulking
approach by aggregating scRNA-seq reads for individual genes, for either all
PBMCcells together or eachof the cell types separately, for each sample.The
samples and scRNA-seq data were collected at 10-time points representing
postsymptom onset days, from day 3 to day 28 by Zhu et al., as described
previously10. This generated timeseries pseudobulk RNA-seq data with 1 to
3 replicates, which were then used to identify genes exhibiting significant
expression changes along the postinfection period by maSigPro. The
regression ANOVA analysis did not find anyDEGs when PBMCswere not
separated into cell types but found a few DEGs for some cell types (1 for
CD8/CD4 T cells, 1 for NKs, 2 for naïve B cells, 2 for XCL+NKs, and 3 for
plasma cells) (Supplementary Figure 1). However, most of the DEGs
exhibited the same expression trend, suggesting model overfitting due to
outliers and low replicates. We also performed the maSigPro analysis at the
level of individual cells. Although many genes with FDR (derived from
ANOVA p-values) < 0.05 existed, their R2 values (coefficient for regression
fitting, see Methods) were all far below the 0.5 cutoff, an indication of
inflated p-values (hundreds of cells) and poormodel fitting (most points far
away from the regression fitting curves). We thus concluded that both
methods were not appropriate for the analysis.

Characterizing DEGs through time using metacells as replicates
We reasoned that using metacells to construct computational replicates
(referred as “metareplicates”) may allow us to mitigate false positives and
overfitting in the pseudobulk approach. To test this, we generatedmetacells
from the scRNA-seq data for samples in each of the 10 time points inde-
pendently using two different methods: SEACells and random selection
(Fig. 1; see Methods). The resultant metacells were referred as “sMetacells”
and “rMetacells”, respectively. Given that the SEACells algorithm retains
heterogeneity to capture cell stateswithin specific cell types,we expected that
itsmetacellswould introduce variationwithin individual timepoints, lead to
fewer DEGs through time and be less prone to overfitting. We therefore
compared the numbers of DEGs determined for these two methods
(Table 1). We excluded all cell types with fewer than 500 total cells to avoid
more extreme cases of overfitting for both methods since fewer cells would
lead to fewer metacells (and thus too few metareplicates). After that, the
average number ofmetareplicates per time point for each cell type using the
SEACells algorithm was 3.18. For rMetacells, three metareplicates were
created. The average number of cells assigned to each metacell was 71.6 for
sMetacells and predetermined to be 20 for rMetacells (see Methods).

For each metacell type, we determined the standard deviation (SD) of
each gene’s expression for each time point and used these values to calculate
the mean SD (mSD) for all genes. Thus, we obtained mSD values for each
time point and cell type for either rMetacells or sMetacells. sMetacells
showed greater mSD, and therefore greater variance, for 71 out of 100
individual time points across cell types. Additionally, if these mSDs were
furtheraveraged amongall timepoints andcell types, sMetacells still showed
greater mSD (0.065) than rMetacells (0.041), a difference that was statisti-
cally significant (p = 2.76e–10, two-sided t-test). These results are sum-
marized in Supplementary Table 1. Overall, this indicates that sMetacells
provide bigger variances among metareplicates than rMetacells.

Amore Important question is how the variances providedbymetacells
match the true or expected biological variances. Since at individual time
points there were insufficient biological replicates (i.e., patients) to provide
good estimate of sample variances,we decided to combine cells fromall time
points and computed gene SDs for each of the cell types, with
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pseudobulking, rMetacell, or sMetacellmethods. The result indicated that the
gene variances from sMetacells were very close to those from pseudobulking
and significantly larger than those fromrMetacells (Supplementary Figure 2),
further supporting that sMetacells could be used as replicates. Interestingly,
the average number of genes per metacell was also higher for sMetacells
(8440) than rMetacells (5930) (p = 2.2e–16, two-sided t-test) (Table 1).

To address the potential effect that cell purity may have on sMetacell
variance, we generated “pure” sMetacells, where >95% of single cells
assigned to it were of the same type. We found that these pure sMetacells
showed slightly lower gene SDs for most cell types compared to all sMe-
tacells (“mixed purity”), as expected from less cell heterogeneity, but still
higher than the rMetacells (Supplementary Figure 2). Note that among the
318 metacells used for this comparison, 184 were pure sMetacells. Con-
sidering this small difference,we proceeded to use all the sMetacells without
further filtering by purity scores.

Performing quadratic regression yielded more DEGs using rMetacells
than sMetacells inmost cell types, likely due to a higher degree of overfitting
because of less variation across metareplicates (Table 1B). However, the
difference between the total number of DEGs found using sMetacells vs
rMetacells was not statistically significant (paired t-test). Of all the DEGs
from the twomethods, 140were the same, leaving 440 and894unique to the
sMetacell and rMetacell methods, respectively. To better understand the
difference, we performed gene ontology (GO) enrichment analysis using all
the DEGs identified from at least one of the cell types (FDR < 0.05 and
R2 > 0.5) (Fig. 2). The results showed that the DEGs from the sMetacell
method, despite fewer in number, were enriched with more significant GO
terms, particularly those related to immune response. Additionally, for
“defense response to virus” and “response to virus” terms, which were
significant usingDEGs frombothmethods, the fold enrichment scoreswere
greater from data produced by sMetacells. Taken together, these results
indicate that DEGs from sMetacells are more biologically relevant and less
likely from statistical noise (i.e., false positives), e.g. overfitting due to
underestimated variance by rMetacells.We therefore consider themetacells
from the SEACells algorithm to be more appropriate metareplicates and
continue to discuss the analyses and biological and disease implications
from this method further in more details.

Supplementary Table 2 summarizes the number of samples, cells, and
metacells for each time point using the SEACells algorithm. The cell identity
of each metacell was assigned to the most frequent cell type among the
individual single cells contributing to the metacell, using the metadata
providedbyZhuet al. Figure 3a showsaUMAPrepresenting the25,775 cells
from the COVID-19 patients and their assignment to one of the fifteen cell
types. The SEACells algorithm performed exceptionally well in creating
metacells that encompass the entirety of the cell type and state space for each

Table 1 | Comparison of metareplicates from sMetacells and
rMetacells and DEGs computed from them

Metacell Method sMetacells rMetacells

A, Summary of
Metacells

Metareplicates Per
Time Point

3.2 3

Avg # of Cells Assigned
to Metacell

71.6 20

Avg Variance
Across Gene

0.041 0.0097

Avg # Genes in
Metacells

8440 (n = 370) 5930 (n = 450)

B, DEG numbers All PBMCs without
separating to cell types

1 10

Cytotoxic CD8 T cells 41 31

Naïve T cells 22 22

NKs 32 43

Activated CD4 T cells 128 64

Naïve B 25 91

Plasma 7 120

Memory B 9 57

XCL+ NKs 13 79

MAIT 61 49

Cycling T cells 332 633

Total unique DEGs 580 1034

A, Replicates per time point, # cells per metacell, average variance, and average # of genes
detected. B, The number of DEGs through time using quadratic regression at FDR < 0.05
and R2 > 0.5.

Fig. 1 | Summary of metacell generation
and usage. a An example of metacells generated
using the SEACells algorithm (sMetacells) and
random single cells (rMetacells) for a time point. An
example of the distribution of sMetacells (orange
dots) and rMetacells (blue) are shown with over-
laying all cells of a particular type (either grey or
blue). b The gene expression of each metacell was
computed from the average of the normalized
expression amongst all single cells assigned to it.
c After the generation of metacells for each time
point, quadratic regression was performed for each
gene. An example of a significantly changing gene is
shown here. d One of eight expression velocity
trends was assigned to eachDEG. For the example in
C, the trend would be “Decreasing, ↓ velocity” for
decreasing expression with decreasing expression
velocity.
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time point (Fig. 3b). As expected, sMetacells had much higher numbers of
genes detected (8840 on average) compared to single cells (814 on average)
(Fig. 3c). The proportion of cells in each sMetacell that were from the same
cell type were very high, indicating high sMetacell purity, with the average
purity scores reaching 90% or higher (Fig. 3d).

After eliminating cell types with low cell number or too few sMetacells
(monocytes, DCs, cycling plasma, stem cells, and megakaryocytes) to be
used asmetareplicates inmaSigPro analysis, we identified 328 uniqueDEGs
through time with an R2 > 0.5 and FDR < 0.05, with some DEGs found in
more than one cell type (Supplementary Table 3). We grouped the DEGs
based on their functions and the cell type in which they were identified.
Within each cell type, genes were further grouped according to their
expression trends through time (Figs. 1, 4).We decided not to discussDEGs
for which the expression in one metacell was greater than zero while all
others were zero, thus leading to overfitting of the model and less clear
biological relevance. Likewise, visual inspection of clusteredDEG trends for
MAITs and cycling T cells (Supplementary Figure 3) found that a large
group of DEGs were influenced by outliers, which led to overfitting. We
therefore also eliminated these cell types fromfurther discussion.Withmore
cells, bothof thesepost-filtering steps forDEGsare likelyunnecessary. In the
end, we kept 169DEGs, with the greatest proportion coming from activated

CD4T cells, followed by cytotoxic CD8T cells, NK cells, naïve B cells, Naïve
T cells, XCL+ NKs, Plasma, and Memory B cells (Fig. 4b).

At the level of general functional categories, the largest proportion of
the DEGs were related to the immune system response (37), followed by
genes related to ribosome/translation (22), transcription (13), protein
degradation (8), and transferases (7). Since no other category contained
more than 3-4 genes, genes unique to all those groups were classified as
other; however, this does not imply that they have no role in response to
SARS-CoV-2 infection.The functional classification results are summarized
as adot plot inFig. 4a, alongwith the expression velocity patterns over times.
35/37 immune system-related genes showed one of three decreasing trends
while just two increased through time (TNFRSF13C andMVB12A in acti-
vated CD4 T cells and XCL+ NKs, respectively). Genes implicated in
transcriptional control and protein degradation showed a variety of
increasing, decreasing, minima, and maxima trends. 20/22 genes related to
the ribosome and/or translation increased through time while just two
(EIF2AK2, and RPP40) decreased in multiple cell types. All transferase-
related genes except FNTB in XCL+NKs (minima trend) exhibited one of
three decreasing trends. Among the remaining genes classified as other,
there were a variety of increasing, decreasing, minima, and maxima trends;
however, most decreased through time. The predominance of decreasing

Fig. 2 | sMetacell-derivedDEGs show stronger enrichment of biologically relevant pathways than those derived from randommetacells. PANTHERGO-slim biological
processes annotation data set was used to find enriched terms amongst DEGs through time from rMetacells and sMetacells.
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expression trends in genes involved in the immune response is consistent
withZhu et al.’s previous report,where they showedone groupof geneswith
decreasing expression throughdifferent stages ofCOVID-19were related to
interferon signaling10. Additionally, they also showed an increase in
expression of genes enriched with terms related to translation10, consistent
with our results.

ConnectingmanyDEGs togenes previously implicated toSARS-
CoV-2 response
Next, we asked how the 169 DEGs from our analysis are related to genes
previously implicated in the COVID-19 pathway, based on KEGG. We
input the protein names corresponding to these 169 genes into the StringDB
to determine functional associations and colored the nodes by whether they
are in the COVID-19 KEGG pathway (Fig. 5a). 93 of the 169 genes were
determined to have a protein product that interacted with at least another
protein from the input. Among these 93, 25 were previously annotated as
part of the KEGG COVID-19 pathway. We also colored nodes by the
protein’s affiliationwith significant biological processes that capture the two
largest clusters of connected proteins (Fig. 5b). Actual cluster identification
prior to overlay with biological process identifiers can be found in Supple-
mentary Figure 4. The analysis showed that Cytoplasmic Translation
(FDR = 8.99e-15), Negative Regulation of Viral Genome Replication
(FDR = 3.60e-10), and Response to Cytokine (FDR = 0.012) were among
the significant GO terms corresponding to DEGs from these clusters. The
proteins comprising theCytoplasmicTranslation cluster areEIF3H,RPLP2,
RPL7,RPS28,RPL4,RPS3A,RPL3,RPS15A,RPS17,RPL30,RPL27,RPS21,
RPL34, RPS23, RPS8, RPL39, RPL27A, RPS27, and RPS6. Among these,
EIF3H was not previously annotated in the COVID-19 KEGG pathway.
Proteins comprising the Negative Regulation of Viral Genome Replication

areOASL, ISG15, EIF2AK2,OAS3,OAS2,MX1, RSAD2, ISG20, IFI16, and
IFIT1. OASL, RSAD2, ISG20, IFI16, and IFIT1 were not previously anno-
tated in the COVID-19 KEGG pathway. For the Response to Cytokine
Pathway group, EIF2AK2, ISG15, OASL, MX1, OAS2, IFI16, and IFIT1
overlapped with the Negative Regulation of Viral Genome Replication
group while CDK9, CX3CR1, TNFRSF13C, LGALS9, MX2, IFIT3, IRF7,
XAF1, and IFI27 did not. Among those unique to this group, CDK9,
CX3CR1, TNFRSF13C, LGALS9, IFIT3, IRF7, XAF1, and IFI27 were not
previously annotated in the COVID-19 pathway. The results indicate that
DEGs from our analysis likely have important roles inmodulating immune
responses.

Detailed description of DEGs newly implicated to SARS-CoV-2
response
As these DEGs changed expression post-infection, wewondered if their day
3 expression would be significantly different between infected PBMCs and
controls andwhether at day 28 their expressionwould return to the baseline.
To illustrate this, we plotted the expression of DEGs associated with one of
three significant GObiological process terms but not in the KEGGCOVID-
19 pathways, i.e. genes that are not yet well described in COVID-19 lit-
erature (Fig. 5).Wecompared the expressionatday3 (day7 forplasmacells)
between SARS-CoV-2 infected cells andhealthy controls and found that 13/
14 of these DEGs exhibited a significant difference (p < 0.05; two-sided t-
test). Activated CD4 T was the only cell type not showing a significant
difference between day 3 and baseline for TNFRSF13C and ISG20. We
performed the same test between infected cells at day 28 and baseline and
only found significant differences for 5 genes in certain cell types: higher for
CDK9 (in activatedCD4T cells), IFIT3 (inNKs andCytotoxic CD8T cells),
XAF1 (in Naïve B cells), and TNFRSF13C (in activated CD4 T cells) but

Fig. 3 | Summary of sMetacell output. aUMAP of 25,775 cells colored by cell type.
bMetacell distribution across cell type space for each time point. Metacells are red
while single cells are grey. cViolin plot of the number of genes detected for SEACell-
generated metacells (top) compared to all single cells (bottom). d Box plots showing

metacell purity for each day. The lower and upper hinges of the boxplots represent
the first and third quartiles, the center line is themedian, and the whiskers extend no
further than 1.5 * interquartile range.
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Fig. 4 | Summary of significant DEGs and expression trends by cell type. a Dot
plot of all significant DEGs through time by trend type, protein class, and sMetacell
type. A lighter blue dot corresponds to a lower p-value while a larger dot represents a
larger R2. The trend “Decreasing, ↑ velocity” is abbreviated as “Dec, ↑ veloc”.
b Summary of expression trends by metacell type. The y-axis corresponds to the

frequency of significant DEGs through time for each cell type that correspond to a
given trend pattern. a, bRed shades represent overall decreasing expression through
time, blue shades are increasing, green is maxima (increasing then decreasing) and
orange is minima (decreasing then increasing). The colors for the trends in amatch
the colors in b.
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lower for RSAD2 (in cytotoxic CD8 T cells). No significant difference was
found for other genes, indicating the return of their expression to baseline
after 28 days. Expression trends for all genes and their comparison to
baseline are shown in Fig. 6. The numbers of sMetacells used for t-tests can
be found in Supplementary Table 2.

We additionally investigated how the proportions of cell types in the
PBMCs changed after infection but did not find good and meaningful
trends, and furthermore there did not appear to be a relationship between
the trend of sMetacell type proportions through time and DEG trends
(Supplementary Figure 5).

EIF3H, whose protein product is related to cytoplasmic translation,
showed increasing expression with decreasing expression velocity in acti-
vated CD4 T cells. Expression differed significantly between day 3 and
baseline, which closely resembled day 28 expression. Among genes whose
protein products are related to negative regulation of viral replication,OASL
decreased expression through time with decreasing velocity in activated
CD4 T cells. RSAD2 showed the same trend in NK cells, cytotoxic CD8
T cells, activated CD4 T cells, and naïve B cells. ISG20 decreased expression
with constant velocity in activated CD4 T cells and NKs but decreased
expression with decreasing velocity in cytotoxic CD8 T cells. IFI16
expression decreased with decreasing velocity in Cytotoxic CD8 T cells
while IFIT1 expression showed the same trend in activated CD4 T cells,
cytotoxic CD8 T cells, naïve B cells, and NKs. Among genes whose protein
products are unique to cytokine response, CDK9 exhibited a minima trend
in activated CD4 T cells and day 28 expression was higher than baseline.
CX3CR1 expression decreased with decreasing velocity in cytotoxic CD8
T cells while TNFRSF13C expression increased with increasing velocity in
activated CD4 T cells. TNFRSF13C expression at day 28 did not return to
baseline. LGALS9 (in NKs), IFIT3 (in memory B, Naïve T, Naïve B, NKs,
and cytotoxic CD8 T cells), IRF7 (in NKs and activated CD4 T cells), and
IFI27 (in plasma cells) all showed decreasing expression with decreasing

velocity and a return toward baseline expression. XAF1 showed the same
trend, but it is important to note that this gene was found to be upregulated
inT,B,NKs, andDCsbyZhu et al. 10, which is consistentwith the significant
difference we observed between baseline and day 3 expression among naïve
B, NKs, naïve T, and cytotoxic CD8 T cells. We further showed that XAF1
expression decreased in these cell types through time and approached
baseline (except in DCs due to our elimination of these cells from analysis).

Prior to metacell analysis by cell type, we also performed the same
regression-based time series analysis on all sMetacells (irrespective of cell
type) together.With the sameR2 cutoff of > 0.5 andFDR < 0.05,we obtained
one significant gene, ISG15. The ANOVA p-value for this gene was 8.7e-62
while the R2 was 0.55. There was a significant difference between baseline
expression and day 3 (p = 2.2e-16).

Correlating disease severity with the expression trends of
the DEGs
Finally, we studied whether the expression trends of some DEGs were
related to disease severity, again focusing on DEGs not in the KEGG
COVID-19pathway (Fig. 6b).Weplotted the expressionof these genes in all
sMetacells through time and colored the sMetacells by whether they were
from severe ormild COV-19 patients. It is interesting to note that Zhu et al.
found previously that ISG15 and XAF1 were highly expressed in the severe
COVID-19 patient at early time points then decreased through time.
However, their analysis was done by grouping samples with days of PBMC
collection (day 1, 3, and 16) rather than day since symptom onset. Using
sMetacells and expanding the temporal resolution of this time series ana-
lysis, we showed that the high expression of these genes in the severe
COVID-19 patient seemed to reflect the fact that the first sample for this
patientwas collected 3days after symptomonsetwhile thefirst collection for
mild patients was at day 7. In addition to this, we observed that these genes
and nine others (OASL, RSAD2, ISG20, IFI16, IFIT1, CX3CR1, IFIT3, IRF7,

Fig. 5 | STRING protein interaction results. a STRING network colored by
annotated vs unannotated KEGG COVID-19 pathway-related protein products.
Red represents protein products from genes that are not annotated in the KEGG
COVID-19 pathway, while purple represents those in this pathway. b STRING

network colored by Biological Process GO Terms. GO terms were selected based on
their ability to encompass 3 main clusters. Yellow represents Cytoplasmic Trans-
lation, blue represents Response to Cytokine, and green represents Negative Reg-
ulation of Viral Genome Replication.
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Fig. 6 | Expression vs time plots and trendlines for selected DEGs. a Expression
through time for DEGs not previously annotated in the KEGGCOVID-19 pathway.
Note that for all DEGs, only corresponding cell types where they were significant are
shown except ISG15 (all sMetacell types). All baseline values were compared to day 3
(except plasma cells, which were from day 7) and day 28 via two-sided, unpaired

t tests with equal variance. An asterisk is placed at the approximate average for
day 3/7 and day 28 expression if significantly different (p < 0.05) from baseline.
b Expression in all sMetacells through time for the DEGs in a, colored by disease
severity. Red corresponds to mild infection while blue indicates severe.
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and IFI27) exhibitedmore rapidlydeclining expression inCOVID-19severe
sMetacells and reachedplateaus below the expression in the sMetacells from
patients withmild disease. 7/11 of these genes (RSAD2, ISG20, IFI16, IFIT1,
IFIT3, IRF7, and IFI27) are directly involved in interferon response while
OASL is related to interleukin 27 response, which behaves similarly to
interferons in its antiviral capabilities26. The finding of rapid decrease and
lower expression of these genes at later time points in the severe COVID-19
patient is consistent with previous studies on impaired interferon response
in people with severe outcomes following SARS-CoV-2 infection27,28.

Discussion
SEACells algorithm generates metacells providing statistical
robustness for low replicate time series analysis
In this study, we demonstrate that metacells from the SEACells algorithm
(sMetacells) can be used as replicates for time series analysis. Applying it to
COVID-19 scRNA-seq data, we were able to obtain metacells that retained
cell-type heterogeneity through time that appear to capture biological var-
iances among individual patients.Despite a similar number of replicates and
total cells assigned tometacells,metareplicates from the SEACells algorithm
seem less prone to overfitting than those from the rMetacell method, sug-
gesting that the retention of cell type heterogeneity could be important for
decreasing overfitting when performing regression on scRNA-seq time
series data. sMetacells also maintained a high degree of cell-type purity,
enabling us to study expression trends for individual PBMC cell types. As
such, our result suggests that this method provides a way to increase sta-
tistical power when performing quadratic regression that would otherwise
be impossible due to too few replicates. In the absence of this method,
pseudobulking led to overfitting, a problem thoroughly defined by Xue
Ying29, which yielded a low number of DEGs with little biological insight.
Wedidnot systematically comparemetacells fromother algorithmsbecause
the SEACells paper has alreadydemonstrated its outperformanceover other
software9.With sMetacells, we were able to obtain a list of significant DEGs
for PBMC cell types through timewith biological relevance to SARS-CoV-2
infection.ActivatedCD4Tcells contained thegreatest numberof significant
DEGs, further validating the reliability of using the SEACells algorithm for
time series analysis given CD4 T cells’ critical involvement in response to
SARS-CoV-2 infection30–33.

ISG15 expression changes significantly through time in PBMCs
When all PBMC sMetacells were analyzed without considering cell type
information, we found that ISG15 was the only gene showing a significant
decrease in expression through time. It also exhibited decreasing expression
velocity through the 28th day after symptom onset. ISG15 is one of many
ISGs that respond to IFN-I to establish an antiviral response34 and exacer-
bates inflammation following release from macrophages infected with
SARS-CoV-235,36. The combination of these findings and this gene’s sig-
nificance in our analysis further establish ISG15 as an important part of the
immune system’s response to SARS-CoV-2. We showed that, following
infection, ISG15 expression was initially high 3 days after symptom onset
then decreased through day 28 of symptoms. Gene expression velocity also
decreased, aswas evidenced by the decreasing slope of the line tangent to the
fitted expression curve (its derivative) through time. This makes sense since
a higher degree of inflammation occurs early in infection when viral load is
high then decreases as SARS-CoV-2 is cleared37.

In the SEACells paper, the authors found that ISG15 expression was
upregulated in CD4 T cells through approximately 10 days after symptom
onset and increased again at approximately day 13. By contrast, we found
that ISG15 expression in CD4 T cells decreased continuously with
decreasing velocity through approximately 25 days before returning to
baseline. This difference couldbedue topatient cohorts or technical reasons.
The SEACells authors constructedmetacells fromcells of all timepoints and
then determined pseudotime of a metacell based on relative abundance of
cells comprising certain time points, and their day 13metacell was enriched
in severe COVID-19 patient cells9. We constructed metacells using cells in
each of the 10 time points separately. The difference between our results and

theirs in relation to ISG15may be attributable to ISG15 expression in severe
COVID-19 patients. Nevertheless, because of its association with inflam-
mation and disease severity, it will be interesting to study in the future
whether changes in expression velocity of ISG15would lead to differences in
disease severity. Although we showed a more rapid decrease in ISG15
expression in severe COVID-19 patients, we cannot tell if the change causes
severity or is in response to it. It will also be valuable to determine whether
ISG15 expression differs between those with and without long COVID-19
symptoms.

Metacell time series analysis implies that PBMCs and type II
pneumocytes share similar SARS-CoV-2 response pathways
Among 169 of the genes that we characterized with significant changes in
expression through time, the protein products of 93 formed two main
clusters in an interaction network generated with STRING. Within these
clusters, one gene related to cytoplasmic translation, five related to negative
regulationof viral genome replication, and eight related to cytokine response
were already annotated in the KEGG COVID-19 pathway. Although this
KEGG pathway outlines type II pneumocyte response to SARS-CoV-2 and
downstream effector cell activation, its significant overlap with our DEGs
suggests that despite being non-susceptible to SARS-CoV2 infection10,38,
PBMCsmay undergo a similar response to the virus as type II pneumocytes.
PBMCs have been found to induce transcription of interferon-stimulated
genes, such as ISG15 mentioned above, via JAK/STAT signaling upon
exposure to SARS-CoV-238. The KEGG COVID-19 pathway has multiple
JAK/STATsignaling cascades that are inducedbyvarious cytokines39. Itmay
be the case that these same pathways are activated in PBMC response to
global cytokine release upon initial infection with SARS-CoV-2.

Metacell time series analysis implicates new genes not well
described in COVID-19 literature
Among the genes not in the KEGG annotated COVID-19 pathway, all have
been discussed, albeit most of them only briefly, in previously published
COVID-19-related literature. For genes whose protein products are related
to translation, EIF3H protein levels were previously found to be higher in
human umbilical vein endothelial cells exposed to SARS-CoV-2 in vitro40.
We found that EIF3H expression increased through time with decreasing
expression velocity in activatedCD4Tcells. Interestingly, earlier timepoints
showed lower expression compared to baseline,whichdeviates slightly from
Melo et al.’s findings. However, the increasing expression trend of this gene
suggests that CD4 T cells may play an important role in SARS-CoV-2
translation inhibition.

For genes whose protein products are related to interferon response,
IFI27 expression in bloodwas found to bemore highly expressed in patients
infectedwith SARS-CoV-2 as determined via qPCR41. Our results show that
IFI27 expression decreases significantly through time with decreasing
expressionvelocity before returning tobaseline inplasmacells. This suggests
that plasma cells may be a large contributor to high IFI27 expression in
COVID-19 patient blood. IFIT3 was found to increase in expression
through time in SARS-CoV-2 infected mice through 8 days of infection42.
Interestingly, this conflicts with our results, which showed that IFIT3
expression decreased through time with decreasing expression velocity in
naïve T cells, naïve B cells, memory B cells, NKs, and cytotoxic CD8 T cells.
A previous study showed that among interferon-stimulated genes, IFIT3,
ISG15, IFIT2, ISG20, IRF7, andMX2 were downregulated in monocytes43.
All these genes except IFIT2 were among genes that we deemed to as
changing significantly through time in a variety of cell types, all with
decreasing trends. We found that IFIT3, ISG15, ISG20, and IRF7 were
actually upregulated at day 3 compared tobaseline before decreasing back to
baseline. Perhaps if the time course were extended, we would see a more
global decrease below baseline for these genes. However, more consistent
withMaher et al., we found that these genes showed lower expression in the
severe COVID-19 patients, further suggesting that downregulation of these
interferon response genesmay confer greater susceptibility to infection.We
question whether this trend, along with expression velocity, differs
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depending on previous exposure to SARS-CoV-2 or other coronaviruses.
We also noticed that IRF7 and ISG20 expression fell slightly below baseline
near 28 days postsymptom-onset, suggesting potential downregulation of
these genes at later stages of infection.

Among genes whose protein products are related to cytokine response,
we found that XAF1 expression decreased with decreasing velocity in NKs,
naïve B, naïve T, and CD8 T cells. Its expression was significantly greater at
day 3 compared tobaseline, andbyday 28, expressionwas still slightly above
baseline levels (only significant for Naïve B cells). Several studies have
outlined XAF1’s role in protecting against RNA virus infection44,45, so high
expression at early time points makes sense. However, as mentioned pre-
viously, this gene’s expression decreased more rapidly in the patient with
severe COVID-19. This may suggest that its downregulation increases risk
of developing severe COVID-19 due to diminished antiviral activity. We
also found that TNFRSF13C expression increased in CD4 T cells through
28 days. One group found that a gain of function mutation in this gene was
associatedwith severeCOVID-1946.Wedidnotfind that this genewasmore
highly expressed in the severe COVID-19 patient; however, this patient did
not have a collection at 28 days. CX3CR1 expression in NKs has been
associatedwith severeCOVID-1947.Ourdata showeda significant change in
expression through time for this gene in cytotoxic CD8 T cells. CX3CR1
expression decreased with decreasing velocity; however, there was also a
slight increase in expression after day 20.Day 28 expressionwas higher than
baseline, but this differencewas not significant. GivenCX3CR1’s association
with severedisease and the role of chemokines in inflammation48,we suggest
that this genemaycontribute to longCOVID-19 symptoms if it continues to
be expressed above baseline following virus clearance. Future studies should
therefore determine expression trends through time forCX3CR1 in patients
with long COVID-19 compared to patients who fully recover.

Although several other significant DEGs from our analysis have been
discussed in literature related to COVID-19, our data did not further con-
tribute to understanding their potential roles in SARS-CoV-2 infection.We
comment here only on those where our results are most contributory to
previously published materials.

Metacells uncover important differences in expression trends by
disease severity
Using sMetacells, we found 11 DEGs exhibiting an expression trend in
severe COVID-19 sMetacells that was initially high then decreased below
that ofmildCOVID-19 after oneweek of symptoms. These genes are ISG15,
XAF1,OASL, RSAD2, ISG20, IFI16, IFIT1, CX3CR1, IFIT3, IRF7, and IFI27.
Zhu et al. found that ISG15 and XAF1 were upregulated in the severe
COVID-19 patient. However, their finding may be explained by how
samples were collected differently between the severe and mild group and
the higher expression of these genes at the early stage (Fig. 6). Different from
their findings, we suggest that these genes, alongwithOASL, RSAD2, ISG20,
IFI16, IFIT1, CX3CR1, IFIT3, IRF7, and IFI27, had rapidly decreased
expression in the severe COVID-19 patients and lower expression than in
the mild disease patients. Importantly, ISG15, RSAD2, ISG20, IFI16, IFIT1,
IFIT3, IRF7, and IFI27 are all related to interferon response. Their dimin-
ished expression at later time points is consistent with previous studies
regarding interferon response in patients infected with SARS-CoV-2. One
group found that type I interferon responsewas impaired in severeCOVID-
1928, while another described how immunodeficiencies reducing type I
interferon response confer a high risk for critical COVID-1949. IFIT1 was
found to inhibit EIF350, which functions in translation initiation. If our
results represent a true decrease in IFIT1 levels through time, they would be
consistent with increasing EIF3 expression through time (Fig. 6a).

Interestingly a recent longitudinal studyusing~300COVID-19patient
samples reported similar trends for interferon response51. They found that
the upregulation of 13 genes (ISG15, ISG20, IFIT1, IFIT2, IFIT3, IFITM1,
IFI6, IFI35, BST2, RSAD2, IRF7, MX1 andMX2) was the signature of early
gene expression for patients to subsequently develop worse symptoms.
Additionally, they found that these genes decreased rapidly in the severe
patients, in accordance with our finding using a much smaller number of

patient samples (n = 5), but we only found about half of their genes (ISG15,
ISG20, IFIT1, IFIT3, RSAD2, and IRF7). Although it could be valuable to
apply ourmetacell approach to this large cohort in the future, the agreement
provides a strong support for using sMetacells to analyze time series data
with a few replicates.

Limitations
Our study is a proof of concept and generally needs to be applied to more
datasets. Method wise, it particularly needs to be testedmore systematically
with datasets containing more biological replicates to carefully study the
performance difference between true biological replicates and metar-
eplicates. In terms of the relationship of our results to COVID-19, the
patient numbers were quite small, and especially our comparison of day 28
expression to baseline is suboptimal given the low number of metacells per
cell type at day 28. Our analysis of expression trends by cell type was also
limited by the overall low cell count for certain cell types. This led to low
numbers of metacells and subsequent overfitting for these cell types.

Methods
Metacell Creation
TheCOVID-19 scRNA-seq datasetwas obtained fromaprevious study that
performed time series analysis on PBMCs from five SARS-CoV-2 infected
patients10. The authors normalized the data using the Seurat software’s52

“NormalizeData” function where gene counts for a cell are divided by total
counts for that cell and then natural log transformed. They further inte-
grated data fromdifferent samples using the “FindIntegrationAnchors” and
“IntegrateData” functions, prior to dimensionality reduction and clustering.
We used the authors’ processed data directly. The date of symptom onset
and sample collection were recorded for each patient. Since we did not
intend to grouppatients bydisease stages, we simply classified each collected
sample by the number of days after symptom onset. Samples from
influenza-infected patients were excluded from our analysis, as were con-
trols, since theywere not collected continuously through time.However, we
included the normalized expression of three healthy controls as baseline
values for comparative purposes.

For SEACells, the number of metacells was determined based on the
software authors’ suggestionof 1metacell per 75 single cells9.We rounded to
the nearest 10 to enable the creation of more metacells for time points with
fewer total cells. We created twenty (rather than ten) day 28 metacells for
better comparison to baseline values. We used the SEACells (version 0.3.3)
algorithm implemented inPython3.9.We applied it to samples of each time
point independently. For each of the 10-time points, the input consisted of
an Anndata object containing pre-normalized gene counts, the n most
highly variable genes (2000 for our dataset), cell cluster/type assignments,
and a low dimensional representation of the data, all established by the
original authors10. Subsequent steps for metacell creation were outlined in
the SEACells manuscript9 and in Fig. 1. The expression of each gene for a
given metacell was determined by averaging the normalized counts of the
cells that were assigned to it (Fig. 1a, b). Each metacell was ascribed a cell
type based on whichever cell type was most prominent among the assigned
individual cells. For example, ifmost cells assigned to ametacellwere plasma
cells, themetacell would be called a plasmametacell. The percentage of cells
comprising themetacell that were of the assigned cell typewas referred to as
its “purity.”Here, we called metacells created using the SEACells algorithm
“sMetacells.”

To obtain metacells composed of random individual cells by cell type,
which we called “rMetacells”, we subset the same filtered PBMC dataset by
time. We then subset by cell type and took the average normalized
expression of 20 randomly selected cells to create an rMetacell. While we
intended to use more cells to create metacells that were as comparable to
sMetacells as possible, several cell types had less than 75 cells for a particular
time point, so we decreased our threshold to maximize metacell assign-
ments. The SEACells algorithm was not confined to this issue due to its
ability to assign varying numbers of cells to each metacell based on nearest
neighbor determination.
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The sMetacells and rMetacells thus differ in twomajor ways (Fig. 1): 1)
rMetacellswere createdat randomand thereforemore likely to represent the
densest space of each cluster, whereas sMetacells accounted for this, making
themmore heterogenous; and 2) rMetacells had exactly 20 cells assigned to
them, all from the same cell type, whereas sMetacells had a varying number
of cells assigned, which were not confined to a certain cell type, further
contributing to their diversity.

maSigPro and Trend Determination
After the creation of metacells (by SEACells or randomly) for each time
point, maSigPro (version 1.72) was used to find DEGs through time. The
maSigPro approach utilizes regression ANOVA followed by a variable
selection procedure25. Quadratic regression was used since we expected the
change in gene expression to follow one of eight general trends, as described
in Fig. 1c, d. For each cell type and gene, a quadratic equation was generated
to represent expression through time. Only genes with an ANOVA FDR
(false discovery rate) corrected p value (determined from the model’s F-
statistic) < 0.05 and R2 value > 0.5 were considered as DEGs. The null
hypothesis for the F-test is that the coefficients generated for fitted line are
zero.We included R2 to account for howwell themodel predicted observed
outcomes. The stepwise regression step calculated a p-value for each coef-
ficient A, B, and C in Eq. 1, which were used for expression trend deter-
mination, where the quadratic term (coefficient A) dictates the shape of the
fitted line.

y ¼ Ax2 þ Bx þ C ð1Þ

The p-values for the quadratic terms were used to determine whether
the linewas linear or parabolic. If p < 0.05 and the absolute value of the slope
of the line tangent to the expression vs time curve (the expression velocity)
decreased through time, we called this decreasing velocity, denoted “↓
velocity” in figures. If p < 0.05 and the absolute value of the slope of the
tangent line increased, this was referred to as increasing velocity, or “↑
velocity.”We combined these terms with the overall trend of increasing or
decreasing expression. For example, if the expression of a gene was
decreasing through time, was not linear, and showed decreasing velocity, we
would call this decreasing expression with decreasing expression velocity or
“Decreasing, ↓ velocity” for short. If p > 0.05 for the quadratic term, we
considered this to be linear and the direction of the curve dictatedwhether it
was considered increasing or decreasing. Increasing linear expression is
synonymous with “Increasing, constant”while decreasing linear expression
is synonymous with “Decreasing, constant” where constant refers to the
expression velocity. If the average expression for the first time point and the
last timepointwere both less than eachof the timepoints between them, this
was considered “Maxima”. If greater, this was “Minima”.

We should note that DEGs from dendritic cells (DCs), mega-
karyocytes,monocytes, cycling plasma, and stem cells were eliminated from
further analysis due to low cell numbers (less than 500 in total across all time
points), which led to numbers of metacells too low for robust statistical
analysis, because performing quadratic regression would lead to overfitting
for these cell types.Additionally, due to lowmetacell counts for thefirst three
time points in memory B cells, we eliminated days 3, 7, and 9 metacells for
trend determination of this cell type due to skewing toward early time point
outliers. For all other cell types, all 10-time points (days 3, 7, 9, 10, 13, 15, 16,
22, 25, and 28) were included for trend determination.

Other Bioinformatics Databases and Tools
For classification of the functions of the gene products (i.e., proteins), we
used the DAVID Gene Function Annotation Tool53,54 and further grouped
selected terms into broader function categories, such as transferases, protein
degradation, immunoglobulin-related, and immune-related. The KEGG39

COVID-19 pathway was used to define known SARS-CoV-2-related genes.
Although the KEGG pathway is based on SARS-CoV-2 entry into type 2
pneumocytes, we generalized this response to the cascade of events that
follow the uptake of the virus by PBMCs to further narrow our search for

novel expression responses. We base this generalization on the finding that
cell-intrinsic innate immune responses are triggered in PBMCs following
exposure to SARS-CoV-238. The STRINGDatabase55 was used for network
analysis to connect our DEGs to known COVID-19-related genes. To find
significantly enriched gene ontology (GO) terms from inputted DEGs, we
used geneontology.org56,57, set the annotation dataset to “PANTHER GO-
slim biological processes”, and used the entire human genome as back-
ground. Figures were edited using biorender.com.

Reporting summary
Further information on research design is available in the Nature Research
Reporting Summary linked to this article.

Data availability
The scRNA-seq data reanalyzed in the current study were described in a
previous study (ref. 10) and publicly available at the CNGB Nucleotide
Sequence Archive (accession number: CNP0001102).

Code availability
The R codes used for the data analysis are available at the GitHub, https://
github.com/bioinfoDZ/metacell_based_DEA.
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