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mechanisms for spatial pattern formation
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Gene regulatory mechanisms (GRMs) control the formation of spatial and temporal expression
patterns that can serve as regulatory signals for the development of complex shapes. Synthetic
developmental biology aims to engineer such genetic circuits for understanding and producing
desired multicellular spatial patterns. However, designing synthetic GRMs for complex, multi-
dimensional spatial patterns is a current challenge due to the nonlinear interactions and feedback
loops in genetic circuits. Here we present a methodology to automatically design GRMs that can
produce any given two-dimensional spatial pattern. The proposed approach uses two orthogonal
morphogen gradients acting as positional information signals in a multicellular tissue area or culture,
which constitutes a continuous field of engineered cells implementing the same designed GRM. To
efficiently design both the circuit network and the interaction mechanisms—including the number of
genes necessary for the formation of the target spatial pattern—we developed an automated
algorithm based on high-performance evolutionary computation. The tolerance of the algorithm can
be configured to design GRMs that are either simple to produce approximate patterns or complex to
produce precise patterns. We demonstrate the approach by automatically designing GRMs that can
produce a diverse set of synthetic spatial expression patterns by interpreting just two orthogonal
morphogen gradients. The proposed framework offers a versatile approach to systematically design
and discover complex genetic circuits producing spatial patterns.

Gene regulatory mechanisms (GRMs) comprise a network of genes and
signal molecules together with their mechanistic interactions. They can
govern the development of gene expression patterns in time and space,
which in turn can control the formation of anatomical structures, organ
locations, and complex shapes1. Understanding the regulatory mechanisms
that can produce particular spatial patterns is crucial for the prediction of
phenotypes and the identification of interventions toward desired outputs2.
Furthermore, the design, engineering, and experimental control of complex
GRMs in synthetic developmental biology3,4, such as synthetic bistable
behaviors5, will allow the manufacturing of multicellular patterns, value-
added bioproducts, and synthetic smart biomaterials for medical and
industrial applications6–9. Towards this, automated algorithms have been
proposed to aid the molecular engineering of pre-designed synthetic gene
circuits10–12 as well as for the design of novel circuits that can implement a
given behavior, such as switches, oscillators, or temporal functions13–18.
However, automatically discovering or designing aGRM that can produce a
target multi-dimensional spatial expression pattern, is still a current major
challenge19,20. Although random search has been used for exploring and

engineering GRMs for relatively simple spatial patterns such as a stripe21,22,
heuristic optimization methods are required for automatically designing
complex GRMs23.

Different heuristic methods exist for reconstructing complex gene
regulatory networks (GRNs)—a network of predicted gene-gene regulatory
links lacking mechanistic information. These approaches infer links in the
network as probabilistic gene-gene interactions24, typically from large-scale
transcriptomics data. Unsupervised machine learning can take unlabeled
data from experimental or synthetic nonspatial gene expression patterns,
such as microarray or RNA-Seq transcriptomics, to predict GRNs25–32. In
contrast, supervisedmachine learninguses knowngene-gene interactions as
labeled data for training the models and then infer GRNs from non-spatial
transcriptomics data33–36. In addition, automated methods have been pro-
posed to infer GRNs from spatial gene expression patterns in in situ
hybridization images, such as those during early Drosophila
development37,38. However, these GRN-inference methods are limited to
inferring the topology of the gene regulatory network through link pre-
diction and hence lack the mechanistic details in the gene interactions
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essential for predicting spatial pattern formation dynamics. Indeed, infer-
ring such GRMs needs computational methods based on dynamic mathe-
matical formalisms that can mechanistically model signal- and gene-gene
interactions to predict the resulting spatial phenotypes39–41.

Several heuristic optimization methods have been proposed for the
inference of dynamic GRMs from spatial expression patterns19. These
pattern-forming GRMs are typically formalized with partial differential
equations (PDEs) due to their ability to combine controllingmechanisms of
gene regulation with spatial signaling and their resulting cellular behaviors
in time and space21,22. Evolutionary computation is a heuristic population-
based method that can optimize complex solutions42–46. This evolutionary
approach can infer the parameters of one-dimensional PDE models of the
development of natural gene expression patterns, such as in the early
Drosophila embryo47–49, as well as both the parameters and structure of
GRMs for one-dimensional embryonic dynamic patterns50,51 and simple
two-dimensional planarian head-trunk-tail body spatial patterns52–54. In
addition, evolutionary computation has been proposed for designing syn-
thetic gene circuits55 that can perform relatively basic tasks, including
switches56, logic gates57, and oscillators58. Evolutionary computation meth-
ods have been combined withMixed Integer Nonlinear Programming local
solvers59 to design biological circuits with dynamic behaviors such as
switches and oscillators60 that also can be resilient to molecular noise61.
These methods also have been demonstrated for the optimization of the
regulatory interactions in three-gene circuits capable of forming a stripe
pattern62. However, the automatic design of GRMs that can produce an
arbitrarily complex, multi-dimensional spatial pattern is still a current
challenge.

Here, we present a novel methodology for the automatic design of
GRMs that can dynamically produce any given spatial gene expression
pattern in response to positional information gradient signals. The method
leverages the advantages of evolutionary computation and high-
performance computing63 to rapidly design spatiotemporal GRMs. We
defined a versatile set of non-linear gene regulatory mechanisms that serve
as buildingblocks for theoptimizationmethod todesignGRMs that develop
the target spatial pattern. Furthermore, themethod can be tuned to produce

either complex GRMs that develop precise patterns or simple GRMs that
develop approximate patterns. We evaluate the performance of the meth-
odology by successfully inferring GRMs for a diverse set of synthetic two-
dimensional spatial patterns, including geometric shapes, symbols, and
characters.

Results
A system for spatial pattern formation based on orthogonal
gradient signals
Patterns in developmental biology are often formed by GRMs that react to
diffusiblemorphogen signals producing spatial gradients64. These signals act
as a positional information system for cells to react differentially depending
on their location65, a process that can be applied to synthetic spatial
behaviors66 and reinforced with synthetic bistable switches5. Here we
employed a similar in silico approach based on continuous orthogonal
morphogen gradients that serve as input signals for an automatically
designedGRMto forma target spatial pattern (Fig. 1). The two input signals
(labeled red and green) are produced from the top and left sides, respec-
tively, of a two-dimensional cell culture domain and form similar but
orthogonal static gradients. Each cell in the domain encodes the sameGRM,
which takes as input the two input signals and through a cascade of reg-
ulatory interactions expresses a non-diffusible reporter gene (blue).

Starting with the input morphogens forming the orthogonal gradients
and all the other products at zero concentration, the goal of the designed
GRM is to dynamically process the input morphogen signals to express the
reporter gene in a stable spatial pattern similar toa target pattern. In addition
to the input signals and the reporter gene, the GRM can include inter-
mediate genes to form complex regulatory networks. The input morpho-
gens and intermediate genes can regulate the reporter gene and other
intermediate genes, but the reporter gene cannot regulate any other gene.
Except the input gradient morphogens, all products are confined intra-
cellularly. GRMs are modeled as a system of partial differential equations
(PDEs) where each gene is represented by an equation defining its rate of
change in product concentration due to their regulatory interactions
and decay.

Fig. 1 | Designing gene regulatorymechanisms for
forming a target spatial gene expression pattern in
response to two-dimensional orthogonal mor-
phogen gradients. A. Two static input morphogens
(labeled red and green) form orthogonal gradient
signals across a two-dimensional tissue or cell cul-
ture. The green morphogen forms a gradient from
left to right (left being high), and the redmorphogen
forms a gradient from top to bottom (top being
high). B. Each cell in the domain implements the
same gene regulatory mechanism (GRM) including
the input morphogens, an output reporter gene for
the spatial pattern (blue), and intermediate genes
(a-h). C. The regulatory mechanisms defined in the
GRMprocess the inputmorphogen gradients so that
the expression pattern of the output gene forms the
target spatial pattern.
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A versatile modeling framework for non-linear regulatory
mechanisms
Biological regulatory interactions between signals and genes are continuous
and non-linear and can act as enhancers (positive regulation) or inhibitors
(negative regulation). Furthermore, multiple regulatory interactions can
affect the same gene in a necessary or sufficient fashion. To allow the design
and simulation of such a large variety of gene regulatory mechanisms, we
have designed a versatile mathematical approach based on Hill equations
combiningdifferent terms as building blocks tomodel the integration of any
number of regulatory interactions in GRMs. Single positive and negative
regulations follow a sigmoidal response modeled by a simple Hill equation.
Multiple positive regulations can be grouped as necessary (similar to an
ANDgate)or sufficient (similar to anORgate)by combiningmultiple terms
in the Hill equation numerator with either multiplication or multiplication
and summation operators, respectively. For simplicity, negative regulations
are always combined with a multiplication operator (AND gate) in this
work. Figure 2 illustrates the approachwith examples including one and two
regulatory interactions (see Methods for equations). The rate of expression
of a product (‘b’) depends on the concentration levels of its regulatory
products (‘g’ and ‘r’) as well as the sign (positive or negative) and grouping
(necessary or sufficient) of its regulatory interactions. In this way, multiple
types of gene regulations can be combined to produce a large variety of
continuous regulatory mechanisms, such as the AND, OR, NOR, and
NIMPLY logic illustrated. Similarly, any number of regulatory interactions
can be combined to produce a versatile set of possible genetic mechanisms.

Automatic design of GRMs
Designing a GRM that can produce a given target function is a current
challenge, especiallywhen including spatial features. To streamline this task,
we developed a machine learning methodology to automatically design
GRMs able to recapitulate the formation of a given spatial pattern. The
method makes use of the two-dimensional orthogonal input morphogen
gradients together with the versatile regulatory modeling framework based
on Hill equations to design GRMs that can form a stable spatial expression
pattern. The approach is based onparallel evolutionary computation, where

a population of candidate GRMs evolve by iteratively crossing, mutating,
simulating, and scoring them until a GRM that can recapitulate the target
pattern is found (Fig. 3). The method takes as input a target spatial pattern
(e.g., a square shape) and returns a complete GRM—including the number
of intermediate genes, regulatory interactions, and parameters—that when
simulated produces a reporter gene with a spatial expression pattern similar
to the given target pattern.

The pseudocode for the evolutionary algorithm to design regulatory
mechanisms is described in Box 1 (see Methods for details). The algorithm
startswith a randompopulationofGRMs, each including the gradient input
signals and the reporter gene, a random number of intermediate genes,
random interactions among all products (except the gradient signals, which
have no regulators, and the reporter gene, which cannot regulate other
products), and random parameters. Based on the presented framework for
non-linear regulatory mechanisms, GRMs are translated into a system of
partial differential equations, which can then be numerically simulated to
score their capacity to produce the target expression pattern (error of the
model). The GRMs that produce the most similar and stable patterns as
compared to the input targetpattern are kept in thepopulation,whileGRMs
with higher errors are discarded. The population then produces new off-
spring GRMs by stochastically crossing those in the current population and
adding random mutations. The new offspring GRMs are then simulated,
scored, and added to the population to select the next generation. This
iterative process continues until a GRM with zero error is found, repre-
senting a GRM that can produce the input target pattern.

The fitness of a GRM scores its ability to stably form the target spatial
pattern and is defined with an error function (see Methods for its mathe-
matical expression). The error of a GRM is computed at the last time step of
the simulation as the sum of the average difference between each domain
location (pixel) in the target and the developed pattern plus the maximum
concentration change (penalizing patterns not in equilibrium). Two
thresholds (parameters α and β, respectively, in the error function) are
defined for both measurements to avoid overfitting and bloating. In this
way, GRMs with concentration and stability scores below these thresholds
have an error of zero, which avoids further complexification of the GRMs

Fig. 2 | A versatile modeling framework for gene
regulatory mechanisms. Using Hill equations
combining different terms, continuous non-linear
regulatory interactions can be modeled as positive
(point arrow) or negative (blunt arrow) and can be
grouped as necessary (solid line) or sufficient
(dashed line) manner. Illustrative mechanisms are
shown with one or two interactions between two
input genes (‘g’ and ‘r’) regulating the rate of
expression of a reporter gene (‘b’).A. Single positive
regulation. B. Single negative regulation. C. Double
necessary positive regulation (AND logic). D. Dou-
ble sufficient positive regulation (OR logic). E. Double
negative regulation (NOR logic). F. Double positive
and negative regulation (NIMPLY logic). Three or
more regulatory genes can be combined in a similar
fashion to produce complex regulatory interactions.
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Fig. 3 | Automatic methodology based on evolutionary computation for the
design of gene regulatory mechanisms producing a given spatial expression
pattern. The method takes as input a target spatial pattern (a square shape in this
example), iteratively generates a population of candidate mechanisms by crossing

and mutating them, simulates and computes their errors as their ability to produce
the target pattern, and discards those with the highest errors. This iterative process
repeats until a regulatory mechanism with zero error is discovered.

Fig. 4 | Evolutionary dynamics for the design of a GRM producing a triangle
pattern. A. Average error of the best GRM across three independent runs of the
algorithm, all reaching zero error after ~20 h of execution. The shaded area repre-
sents the standard deviation. Error parameters: k ¼ 5, α ¼ 0:1, β ¼ 0:001. B.

Representative candidate GRMs at different generations during the evolutionary
search, showing the gradual increase in complexity and improvement in their
capacity to produce the target triangle pattern.
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without meaningful improvements in fitness. Importantly, the spatial pat-
tern fidelity required for the designedGRMs can be adjusted in themethod,
since sharp and complex pattern boundaries may require excessively
complex GRMs for a given application. Before calculating the fitness, both
the target and developed patterns are processed with a box blur kernel
convolution to eliminate sharp spatial features. Similar to the concentration
and equilibrium thresholds, the strength of the convolution function can be
adjusted with a parameter defining the kernel size (parameter k; higher

values representing more approximate patterns). Thus, the fidelity of the
GRM to produce the target pattern can be adjustedwith error parameters at
the concentration, equilibrium, and spatial levels.

Inferred GRMs for geometric patterns
We tested the proposed methodology for the design of GRMs that can
produce different geometric target spatial patterns. Figure 4 shows an
illustrative example of the evolutionary dynamics of the algorithm across

Fig. 5 | Automatically designed GRMs for differ-
ent geometric target shapes. The simulation of a
GRM starts with all the genes at zero concentration
except the input signals (green and red), which form
static orthogonal gradients. All the resulting GRMs
correctly produce a steady-state target pattern (blue)
with zero error for each geometric shape, including a
square (A), circle (B), triangle (C), and diamond
(D). The dynamics of the output and intermediate
genes reveal the spatial computations performed by
each mechanism to produce their target patterns.
Expression colors in the simulation correspond to
the node colors in the GRM network diagrams.
Error parameters: k ¼ 7, α ¼ 0:25, β ¼ 0:001.
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three independent runs for the design of a GRM to develop a spatial pattern
with a triangle shape. The initial models are random and produce patterns
far from the target, hence with high error scores. After many generations of
crossover andmutations, including adding de novo intermediate nodes, the
models increase their complexity in terms of number of genes and links and
their ability to produce the target spatial pattern. After ~5000 generations
taking ~20 hours of computation time, the evolutionary process finds
GRMs that can produce the target triangle pattern with zero error (for the
given error thresholds).

The regulatory links and intermediate genes automatically added by
the evolutionary algorithm perform the necessary spatial computations to
produce the target spatial patterns. Figure 5 shows examples of the resultant
GRMs discovered by the automated methodology for four different target
geometric shapes, all found in less than 35 hours of computational time and
23,500 generations (Supplementary Fig. 1 and Supplementary Movies).
Target patterns with edges parallel to the orthogonal gradients (Fig. 5A;
square pattern) require less complexGRMs than patterns with oblique lines
(Fig. 5C-D; triangle and diamond). To produce curved edges (Fig. 5B,
circle), the algorithmtakes advantage of regulatory interactionswith gradual

slopes, which produce softer responses at the edges. Possible synthetic
realizations of the discoveredGRMs are illustratedusing SBOLnotation67 in
Supplementary Fig. 2.

The simulation dynamics show how the regulatory interactions
designed in the GRMs translates into spatial computations to produce the
target patterns. For the square pattern (Fig. 5A), the negative regulations
between the input gradient signals (red and green) and the output reporter
gene (blue) prevent the latter from being expressed at high input con-
centrations (top and left sides of the domain). In addition, the input signals
positively regulate with a low threshold an intermediate gene (‘a’), resulting
in no expression in the bottom and right areas. Then, a positive regulation
between the intermediate and output gene defines the bottom and right
edges of the square pattern. TheGRMfor the circle pattern (Fig. 5B) extends
this design with an additional gene (‘b’) at the end of the pathway that
together with more gradual regulatory interactions produce the curved
edges needed for the circle pattern. The discovered GRMs for the triangle
and diamond patterns (Fig. 5C-D) include three and five intermediate
genes, respectively, that define intermediate expression patterns at different
domain locations to produce the target geometric shapes.

Fig. 6 | The method includes tolerance parameters
to control the complexity of the designed GRMs.
The kernel size (k) and error concentration thresh-
old (α) parameters determine the complexity of the
designedGRMs and their precision in producing the
target patterns. A–D. Lowering the tolerance para-
meters results in more complex GRMs but with
more precise patterns as compared to Fig. 5. Error
parameters: k ¼ 5, α ¼ 0:1, β ¼ 0:001. E. Time
needed by the algorithm to design simple (Fig. 5) or
complex (A–D) GRMs with zero error. Each con-
dition was run three times. Error bars denote stan-
dard deviation.
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Adjusting the complexity and pattern precision of the
designed GRMs
The tolerance of the proposed method can be adjusted for different design
needs, from complex regulatorymechanisms that produce exact patterns to
simple mechanisms that produce approximate patterns. For this, different
values can be set for the kernel size (k) and concentration threshold (α)
parameters used in the error fitness function. Figure 6 shows the results of
lowering these parameters to design more complex GRMs for the same
geometric target shapes as for the previous simpler networks, all with zero
error.While the simplerGRMsproduced approximate patternswith diffuse
edges (Fig. 5), especially those that are not parallel to the gradient signals, the
complex GRMs produced precise patterns with sharp edges, even at dif-
ferent angles to the gradient signals or forming curves (see also Supple-
mentary Movies). Conversely, the time needed by the algorithm to design
complexnetworks that canproduceprecise patternswas significantly longer
(about 5x) than for designing simpler networks to produce approximate
patterns (Fig. 6E).

The complexity of the GRMs designed consistently depends on the
target pattern and the toleranceparameters used. Figure 7 shows the average
complexity of GRMs for the square, circle, triangle, and diamond target
patterns obtained with different values of kernel size and error concentra-
tion thresholds. The results illustrate how the complexity of the discovered
GRMs for each pattern decreases as the kernel size and the error con-
centration threshold parameters increase. The effect of these parameters is
more acute in the case of complex patterns (Fig. 7D) as compared to simpler
ones (Fig. 7A). Moreover, increasing the error concentration threshold
results in more diffuse edges in the developed patterns, while increasing the
kernel size results in less precise shapes (Supplementary Figs. 3–6).

To test the ability of the method to design constrained GRMs in terms
of interaction types and genes, we performed runs limiting the Hill

coefficients (which define the slope of the interactions) or the maximum
number of genes. The results demonstrated that with a limited set of Hill
coefficients (1, 2, 4, 8, or 10) the method is still able to find both simple and
complex GRMs with zero error for all the target geometric shapes (Sup-
plementary Fig. 7). Limiting the maximum number of genes below the
minimum required to form a particular pattern results in GRMs with error
values proportional to the number of genesmissing (Supplementary Fig. 8).
Crucially, setting the limit higher than the minimum number of genes
required still results in GRMs containing the minimum number of genes.

Designing GRMs for arbitrary shapes and biological patterns
To test the ability of the method to design GRMs for arbitrary shapes, we
applied it to discover models that can produce gradients, periodic shapes,
symbols, and characters. Figure 8 shows the developed expression patterns
producedby thedesignedGRMs, all reaching zero error (see Supplementary
Figs. 9,10 and Supplementary Movies for the target patterns and the
expression of intermediate genes). The complexity of the discovered net-
works varies from 29 to 91 (as the number of edges plus three times the
number of genes). The results show how the method can design GRMs for
complex shapeswithfine details such as gradients, curved lines, and pointed
ends—all produced by the interpretation of two orthogonal morphogen
gradients (red and green).

To assess the capability of the automatedmethodology todesignGRMs
for biological patterns—including multiple output reporter genes—we
sought to reverse engineer the gap gene expression pattern observed during
early Drosophila development. The input and target gene expression pat-
terns used in the method are wild-type concentrations of the protein pro-
ducts at the late syncytial blastoderm stage of Drosophila melanogaster
(cleavage cycle 14 A, t = 62min), as reported in68. The products include the
two input signals Bicoid (Bcd) and Caudal (Cad) (Fig. 9A, red and green),

A

C D

B

Fig. 7 | Complexity of the designed GRMs discovered by the automated search
method for the geometric shapes with different tolerance parameters. The
complexity of a GRM was measured as the number of links plus three times the
number of genes. Three runs were performed for each target pattern, including the

square (A), circle (B), triangle (C), and diamond (D), and parameter values for
kernel size (k) and error concentration threshold (α). Error bars denote standard
deviation.
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which form gradients from the anterior (left) and posterior (right) sides,
respectively. These two signal gradients provide positional information to
develop the target gap gene patterns, including the expression levels ofGiant
(Gt), Hunchback (Hb), Knirps (Kni), and Kruppel (Kr) (Fig. 9A, cyan, blue,
yellow, and magenta, respectively). Candidate GRMs include the input
genes, the gap genes, and any number and type of regulatory interactions
from the input to the gap genes and between gap genes. Figure 9C shows the
GRM discovered by the method, which when simulated can successfully
produce the target gap gene expression pattern with zero error (Fig. 9D and
SupplementaryMovies). Furthermore, the designed GRM is very similar to
recently published models69–71, and includes the characteristic double-
negative feedback loops between Hb/Kni and Kr/Gt.

Discussions
To streamline the design andunderstandingof gene regulatorymechanisms
(GRMs) capable of producing spatial patterns in response to morphogen
gradients, here we proposed a novel methodology integrating a framework
tomodel arbitrary genetic circuitswith evolutionary computation andhigh-
performance computing. The method can design synthetic GRMs—
including all the necessary genes, regulatory links, and parameters—that
when simulated develop a given target spatial pattern in response to
orthogonalmorphogengradient signals. Crucially, aGRMis formalized as a
PDE system, which allows the simulation of the dynamics of spatially dis-
tributed systems such as those forming spatial patterns. We demonstrated
the capacity of the method to design GRMs able to interpret the positional
information provided by the signal gradients and produce a variety of target
patterns, including geometric shapes, symbols, and characters. Themethod
is generic and could be adapted to particular applications spanning diverse
size and time scales. For example, the discovered synthetic networks could
be engineered in bacteria to form in 24 h such spatial patterns with

approximate dimensions of 1x1 cm5,66, while the patterns inDrosophilahave
approximate dimensions of 0.5x0.2mm and develop in 1 h68. Crucially, the
precision of the designed GRMs to produce a given pattern can be adjusted
with a convolution-based fitness function that evaluates their ability to
recapitulate the targetpattern.The results showedhow these parameters can
modulate the trade-offs between the precision of the produced pattern, the
complexity of the designed mechanism, and the speed of the machine
learning method. Hence, while the presented methodology can design very
complex GRMs, it is also flexible enough to automatically limit the com-
plexity of such networks for a variety of applications and studies.

The proposed methodology is highly versatile but could be
extended with other functionality in future work. The products of
intermediate genes are restricted to intercellular pathways, but the
methodology could include intermediate genes that produce diffusive
signals, such as ligands acting intracellularly. This would allow more
complex spatial regulation involving dynamic morphogens, as found
in developmental processes72 and novel synthetic biology
applications73. Indeed, this study is focused on morphogen gradients
as the input signals to produce spatial patterns, but such diffusible
morphogens could pave the way to automatically designing self-
regulated mechanisms for pattern formation, such as Turing systems
for the engineering of synthetic spots, stripes, and other periodic
patterns74,75. The framework is currently limited to two-dimensional
domains and target spatial patterns, but it could be easily expanded
to three-dimensional pattern systems76. The machine learning
method can explore and use a large range of in silico regulatory
interactions and degradation rates. However, the method could be
constrained with a predetermined set of standard biological parts to
facilitate the engineering of the automatically designed GRMs into
synthetic biological circuits11,77,78. The presented method starts with

Fig. 8 | Patterns produced by GRMs discovered by the automated methodology applied to arbitrary shapes. The patterns tested for arbitrary shapes include: (A)
gradients, flag, checkerboard, and symbols; (B) logo and characters. Parameters: k ¼ 5; α ¼ 0:1; β ¼ 0:001.
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random initial mechanisms. However, to improve its efficiency, the
initial population could contain models including genes and inter-
actions of known necessary pathways, or specific GRMs known to
produce related patterns. Finally, the algorithm is limited to return a
single GRM for each run. However, multiple GRMs could lead to the
formation of the same pattern (see Supplementary Fig. 8). Indeed, a
major challenge for complex phenotypes is to discover a compre-
hensive set of GRNs that can develop a given gene expression pattern,
i.e., an atlas of regulatory designs21,79. Future work will extend the
presented methodology with evolutionary multi-objective and
diversity-preserving algorithms80 for the discovery of a comprehen-
sive set of GRMs that can produce a given spatial pattern.

In conclusion, the capacity of the presented method to automatically
design GRMs for spatial patterns could be essential to transition from our
current ability to understand and implement synthetic small modules to be
able to identify and assemble larger scale systems81. Recent advancements
havemade it possible to streamline the engineering of synthetic GRMs for a
given arbitrary circuit82. The presented methodology expands these
approaches by automating also the design of such circuits for producing
complex spatial patterns, which could potentially be applied to current
bioengineering problems—from the synthesis of complex bioproducts in
industrial, pharmaceutical, and biomaterial applications83 to the construc-
tion of multicellular synthetic systems84. In addition, these advancements
could streamline the systematic study of natural genetic circuits towards the
discovery of complexmechanisms controlling tissue spatial behaviors85 and
whole-body patterns86 from morphogen gradients. Indeed, it is a current
challenge to produce mechanistic hypotheses in terms of GRMs that can
recapitulate observed spatial phenotypes. The methodology presented here
could be employed to automatically infer such hypotheses directly from
datasets of curated experimental gene expression patterns87,88. Overall, the

presented method to aid in the design of GRMs able to produce arbitrary
gene expression patterns has the potential to both enable the understanding
of complex developmental processes as well as the design of complex
dynamic synthetic systems.

Methods
Simulation of GRMs
Wedeveloped a simulator ofGRMs for spatial pattern formation based on a
system of nonlinear partial differential equations (PDEs). Gene regulations
are based on Hill equations and a GRM consists of two input morphogens,
intermediate genes, and a reporter gene. The two input morphogens (red R
and green G) have a constant gradient distribution given by
MR ¼ dj;MG ¼ di, where d ¼ 0:93 and (i,j) is the cell position in the
domain. Intermediate genes can be activated or repressed by other genes
except for the output gene,which can be regulated but cannot regulate other
genes—since it represents a reporter signal that defines the output pattern
producedby theGRM.Geneproducts are confined intracellularly anddecay
over time.

Each gene in a GRM includes four parameters: production, decay,
diffusion, and basal expression. Each regulatory interaction is modeled as
positive (activating) or negative (inhibiting) with a Hill equation including
two parameters: Hill coefficient (modulating the link sensitivity) and
binding constant (modulating the link strength). Genes can be regulated by
several other genes simultaneously, and these regulations can be grouped as
necessary or sufficient. Necessary positive regulations are combined with a
multiplication operator (AND logic), while sufficient positive regulations
are combined with both a multiplication and summation operation (OR
logic). Negative regulations are combined with a multiplication operator
(AND logic). This methodology guarantees that the strength of any reg-
ulation lies within the range [0,1]. The illustrative examples of single and

Fig. 9 | GRM discovered by the automated meth-
odology for the Drosophila gap gene system. A.
Two input morphogens Bcd and Cad (red and
green) form anti-parallel gradient signals across the
anterior-posterior axis in a Drosophila embryo
(anterior to the left). B. The target pattern includes
the expression levels of four gap genes Gt, Hb, Kni,
and Kr (cyan, blue, yellow, and fuchsia, respectively)
obtained experimentally. C. Resultant GRMs dis-
covered by the automated methodology. D. Simu-
lation of the designed GRM results in the formation
of the correct target biological pattern with zero
error. Regulatory interactions can act as positive
(point arrow) or negative (blunt arrow) and can
affect the same gene as necessary (solid line) or
sufficient (dashed line). Expression colors in the
simulation correspond to the node colors in the
GRM network diagram. Domain size: 58×29. Error
Parameters: k ¼ 5, α ¼ 0:1, β ¼ 0:001.

C

D

A

B
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double regulations shown in Fig. 2 are modeled by the following equations:

Single positive regulation Fig: 2A
� �

:
∂b
∂t

¼ α1g
� �η1

1þ α1g
� �η1 ð1Þ

Single negative regulation Fig: 2B
� �

:
∂b
∂t

¼ 1

1þ α1g
� �η1 ð2Þ

Double necessary positive regulation Fig: 2C
� �

:
∂b
∂t

¼ α1g
� �η1 α2r

� �η2

1þ α1g
� �η1� �

1þ α2r
� �η2� �

ð3Þ

Double sufficient positive regulation Fig: 2D
� �

:
∂a
∂t

¼ α1g
� �η1 α2r

� �η2 þ α1g
� �η1 þ α2r

� �η2

1þ α1g
� �η1� �

1þ α2r
� �η2� �

ð4Þ

Double negative regulation Fig: 2E
� �

:
∂b
∂t

¼ 1

1þ α1g
� �η1� �

1þ α2r
� �η2� �

ð5Þ

Double positive and negative regulation Fig: 2F
� �

:
∂b
∂t

¼ α1g
� �η1

1þ α1g
� �η1� �

1þ α2r
� �η2� �

ð6Þ

where ηi is the Hill coefficient and αi is the binding constant in the reg-
ulatory interaction i ðηi ¼ 10andαi ¼ 2 for all regulations shown in Fig. 2).

In this way, the rate of change of a gene can integrate any combination
of interactions. For example, the following PDEdescribes a gene a regulated
by two activators b and c as sufficient, two activators d and e as necessary,
and an inhibitor f:

∂a
∂t

¼ ρa
βa þ α1b

� �η1 α2c
� �η2 þ α1b

� �η1 þ α2c
� �η2� �

α3d
� �η3 α4e

� �η4

1þ α1b
� �η1� �

1þ α2c
� �η2� �

1þ α3d
� �η3� �

1þ α4e
� �η4� �

1þ α5f
� �η5� �� λaaþ Da∇

2a

ð7Þ

where ρa is the gene production constant, βa is the gene basal
expression level, ηi are the regulation Hill coefficients, αi are the
regulation binding constants, λa is the gene decay constant, and Da is
the gene diffusion constant. All parameter units are arbitrary. The
basal expression level is zero when a gene receives at least one
positive regulation; otherwise, it is one to model a constitutive pro-
moter that can be inhibited by other genes.

GRM fitness error
The error of a developed expression pattern is calculated at the last time step
of the simulation (100 steps with dt=1 in this work) by comparing it to the
input target expression pattern with a kernel-based method. In this
approach, both the developed and target patterns are first blurred by a box
blur kernel convolution. The error of a candidate GRM is then calculated as
the sum of the average log difference between each domain location (pixel)
in the simulated pattern from the candidate GRM and the target pattern,
plus the maximum concentration change at the last time step, which
penalizes patterns not in equilibrium. In this way, the fitness function
represents an approximate comparison between the developed and target
images, ignoring small details. Hence, the error between a developed
expression pattern D at the last time step in the simulation and the input

target expression pattern T is calculated as:

error D;Tð Þ ¼ 1
w � h

Pw

i¼1

Ph

j¼1
log 1þ ω � Dð Þi;j � ω � Tð Þi;j

���
���� α

� �þ	 


þ ΔD � β
� �þ

ð8Þ

wherew andh are the simulationdomainwidth andheight, respectively, k is
the kernel size, ω is the box blur kernel defined as ω ¼ 1

k Jk, where Jk is the
unit matrix,is the error concentration threshold, ΔD is the maximum con-
centration change in D at the last time step in the simulation, and β
represents the equilibriumpenalty threshold. ðxÞþ indicates thepositivepart
function of x, which outputs 0 if it is negative and x if x is nonnegative. f � g
represents the convolution of f and g.

Machine learning method
The machine learning method is based on evolutionary computation to
automatically design a GRM that can produce a given pattern. The algo-
rithm evolves a population of candidate regulatory mechanisms iteratively
by reproduction, fitness calculation, and selection to find an optimal GRM.
The population follows an island distribution approach89 to maximize
parallelism and ensure robustness and diversity of the candidate mechan-
isms. The method produces new GRMs by stochastically mixing existing
ones and adding random mutations in each generation.

A crossover creates two new children GRMs by randomly combining
two existing regulatorymechanisms in the population. For this, the genes of
both parents along with their regulatory links are distributed randomly to
the two children GRMs (without gene duplication or changes in kinetic
parameters). Next, mutations are applied randomly so that genes and reg-
ulations can be added, removed, and their parameters replaced with new
oneswithin their ranges froma randomuniformdistribution.The input and
output genes cannot be removed. Deletion mutations were set to a higher
probability than duplication mutations to bias the algorithm towards sim-
pler mechanisms and prevent bloating90. A deterministic crowding
method91 was used to select new offspring when their errors (fitness) are
equal or better than their closest parents. The algorithm runs until a GRM
with zero error is found and 250 additional generations have passedwithout
a decrease in its complexity (number of edges plus three times thenumber of
genes of the simplest GRM with zero error).

The parameter ranges for themutation operator uniform distributions
were set as follows: Hill coefficient (1,10), binding constant (1100), decay
constant (0.1,1), and production constant (0, 0.1), except for the input
morphogens, which is set to 0. Diffusion constants were set to zero for all
products, in which case they are considered exclusively intracellular. The
meta-parameters of the machine learning method were set as follows:
crossover rate 75%, mutation rate 1%, link/gene duplication rate 1%, link/
gene deletion rate 7.5%, equilibriumpenalty threshold 10�3. All search runs
used 32 subpopulations (islands) with 64 individuals each. Islands are
randomly paired, and their regulatory mechanisms are shuffled every 250
generations.

Implementation
The methodology was implemented in C++ with the standard, Eigen
(Gaël Guennebaud, Benoît Jacob, and others), Qt (The Qt Company Ltd.),
andQwt (Uwe Rathmann and JosefWilgen) libraries.We implemented the
Eulerfinite differencemethod92 to numerically solve the systemof PDEs in a
64 × 64 domain. The method used 48 parallel threads and was run on a
computer server with two 24-core Intel XeonGold 6240 RCPUs at 2.4 GHz
and 192 GB DDR4 RAM to evaluate its performance.

Reporting summary
Further information on research design is available in the Nature Research
Reporting Summary linked to this article.
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Data availability
The Supplementary Information includes the systemof equations for all the
GRMs presented and the Supplementary Movies file includes their
simulations.

Code availability
The source code for themethod is freely available inGitHub (https://github.
com/lobolab/grm-design).
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