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Immunomodulatory peptides, while exhibiting potential antimicrobial, antifungal, and/or antiviral
properties, can play a role in stimulating or suppressing the immune system, especially in pathological
conditions like breast cancer (BC). Thus, deregulation of these peptides may serve as an
immunotherapeutic strategy to enhance the immune response. In this meta-analysis, we utilized
single-cell RNA sequencing data and known therapeutic peptides to investigate the deregulation of
these peptides inmalignant versus normal human breast epithelial cells.We corroborated our findings
at the chromatin level using ATAC-seq. Additionally, we assessed the protein levels in various BC cell
lines. Moreover, our in-house drug repositioning approach was employed to identify potential drugs
that could positively impact the relapse-free survival of BC patients. Considering significantly
deregulated therapeutic peptides and their role in BC pathology, our approach aims to downregulate
B2M and SLPI, while upregulating PIGR, DEFB1, LTF, CLU, S100A7, and SCGB2A1 in BC epithelial
cells through our drug repositioning pipeline. Leveraging the LINCS L1000 database, we propose
BRD-A06641369 for B2M downregulation and ST-4070043 and BRD-K97926541 for SLPI
downregulation without negatively affecting the MHC complex as a significantly correlated pathway
with these two genes. Furthermore, we have compiled a comprehensive list of drugs for the
upregulation of other selected immunomodulatory peptides. Employing an immunotherapeutic
approach by integrating our drug repositioning pipeline with single-cell analysis, we proposed
potential drugs and drug targets to fortify the immune system against BC.

Breast cancer (BC), in general, has low immunogenicity1; however, immune
activation can be pivotal in BC prognosis and treatment2. Cancer immu-
notherapy, also known as immuno-oncology, is a form of cancer treatment
that educates, boosts or inhibits the immune systemcomponents to prevent,
control, or eliminate cancer3. Antimicrobial and immunomodulatory
peptides (AMPs) are a part of the innate immune system4. AMPs may
directly interact with pathogens and/or malignant cells or indirectly mod-
ulate the immune system leading to the elimination of target cells4,5. On the
other hand, AMPs that are capable of eliminating pathogens may promote
cancer progression6. Therefore, understanding the cancer-specific response
of AMPs and exploringmethods to enhance or suppress it can pave the way
for immunotherapy in precision medicine.

To better understand the immunotherapy targets, various tech-
niques are deployed to assess gene expression7 including conven-
tional bulk transcriptomics and single-cell transcriptomics (scRNA-
seq)8. Bulk transcriptomics measures the average of gene expression
across all cells. scRNA-seq deals with gene counts in each cell; hence,
it provides the opportunity to categorize and annotate the cell types
based on their expression profiles. Breast cancer is heterogeneous and
also comprises—beyond malignant cells—stromal and immune
tumor-associated cells. Although bulk transcriptomics still has its
own advantages in cancer immunotherapy8, for precision onco-
immunotherapy scRNA-seq provides higher resolution for both
malignant and immune cell profiling8,9.
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Single-cell studies have improved drug target and biomarker discovery
in immunotherapy10–12, while finding the potential drugs for these targets is
still challenging13. Drug repositioning against immunotherapy targets
explores the therapeutic use of existing clinically approved, off-patent drugs.
These chemicals have known modes of action and targets for another
indication. Thus, exploring them minimizes the cost of therapy, time and
risk14–17.

Deregulation of immunomodulatory peptides is considered as an
independent immunotherapy treatment or auxiliary to obtain better results
through combination therapy18,19. In this study, we aimed to investigate the
endogenous expression of, to the best of our knowledge, all so far known
human antimicrobial and immunomodulatory peptides in BC6. To do so,
we utilized BC and normal breast scRNA-seq data in addition to Assay for
Transposase-Accessible Chromatin using sequencing (ATAC-seq) data
fromBCcell lines. This in turn improved the resolution of our analysis aswe
could extract and comparemalignant versusnonmalignant epithelial cells at
different omics levels (i.e., chromatin and gene levels). Based on the role of
upregulated immunomodulatory peptides in cancer biology, we proposed
drugs that can deregulate a subset of these peptides.

Results
Extracting the transcriptomics profiles of epithelial cells
In this study, we aimed to investigate the deregulation of antimicrobial and
immunomodulatory peptides in malignant versus nonmalignant human
breast epithelial cells at different omics levels. Hence, we would be able to
predict the potential candidate drugs that can change the expression of these
peptides in favor of patients (Fig. 1). We retrieved two publicly available
scRNA-seq datasets (details in Data Availability) from 13 normal20 and 20
BCpatients1 (3HER2+ , 9 ER+ and 8 TNBC subtypes). The cells in the BC
dataset were previously annotated for cell types. Besides, the epithelial cells,
as themost common site for the development of BC21, were categorized into
malignant and nonmalignant cells. The classification of epithelial cells was
done by identifying evidence for large-scale chromosomal copy number
variations22. This in turn increased the resolution of our analysis, resulting in
24489 malignant epithelial cells extracted from tumor samples.

To acquire the normal epithelial cells,first we classified all cells using an
unsupervised clustering method (see material and methods). Next, using
Human Primary Cell Atlas (HPCA)23 and Blueprint Epigenomics (BP)24 as
two previously annotated cell references, we could investigate the distribu-
tion of label scores among cells, (Supplementary Fig. 1A). We observed
distinct scoring profiles among cells, demonstrating unambiguous con-
cordance between cells and reference annotations and allowing us to
accordingly assign labels to cells. In order to investigate the probable outliers
in each labeled cluster, we examined the delta values for each cell, i.e., the
difference between the score for the assigned label and themedian across all
labels for each cell. Few outliers were observed and the label assignments
were deemed to be accurate (Supplementary Fig. 1B). Afterwards, to com-
pare the concordance between the two independent methods of unsu-
pervised clustering and cell label assignment,we investigated thedistribution
of cell labels in each cluster.We observed strong agreement between the two
methods (Supplementary Fig. 1C).Accordingly, we assigned the determined
annotations to clusters (Supplementary Fig. 1D) and subsequently extracted
the 21698 normal epithelial cells for downstream analysis.

Differential gene expression analysis to track AMPs
For joint analysis of data frommultiple scRNA-seqdatasets (e.g., differential
gene expression analysis betweenmalignant and normal epithelial cells), we
need to harmonize them into a single reference in order to remove technical
artifacts. To do so, we used the canonical correlation analysis (CCA) for
scRNA-seq data integration25. We identified cell pairwise correspondences
between single cells in two sets, henceforth termed “anchors”. Anchors
represent the cellular relationships across datasets, which can be used for
scRNA-seq data integration by recovering the matching cell states (See
material andmethods)25. The integrated data is illustrated in Fig. 2A.A clear
seperation of malignant and normal epithelial cells can be seen.

After data integration, we performed differential gene expression
(DEG) analysis (BC subtypes vs normal) to explore deregulated genes
encoding immunomodulatory peptides in BC (Fig. 2B, C). AMPs were
retrieved from UDAMP6 (Supplementary Table 1). Among the AMPs in
UDAMP datasets, we identified 29 deregulated immunomodulatory genes,
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Fig. 1 | scRNA-seq provides single-cell resolution to compare different cell states.
Using scRNA-seq, it is possible to extract the desired cell types in condition A (top
left panel: malignant epithelial cells) and compare them to the same or different cell
types in condition B (top right panel: nonmalignant epithelial cells). We studied the
deregulation of endogenous therapeutic peptides derived from the University of

Debrecen Antimicrobial and Immunomodulatory Peptide (UDAMP) database at
different omics levels in BC epithelial cells. Next, we investigated the available
perturbagens on BC cell lines in the Library of Integrated Network-based Cellular
Signatures (LINCS) database and proposed candidate drugs that can change the
expression of these peptides to eliminate the malignancy.
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14 downregulated, and 15 upregulated inBC subtypes (Fig. 2B).We showed
the significancy (-Log10P) and the log of fold changes of deregulation of
these genes in Fig. 2C.

Eight immunomodulatory peptides were selected for downstream
analysis. The expression of PIGR, DEFB1, LTF, CLU, SCGB2A1 and
S100A7, while having a positive role in cancer elimination, were either
downregulated or not changed in all or some of the BC subtypes (Table 1).
The role of SLPI and B2M in cancer progression and metastasis has been
shown before and theyr are known as promissing drug targers26. These two
peptides were upregulated in some of the BC subtypes (Table 1).

The selected AMPs are a part of the innate immune system with a
therapeutic effect against pathogens (Table 1). However, their role as
immunomodulatory peptides against cancer is variable. We categorized
these nine AMPs into two groups based on their association with cancer
biology. The first group contains the genes that are connected with inva-
siveness, poor survival, disease severity, cancer cell proliferation, and
metastasis.We aimed to decrease the expression of genes in this groupusing
drug repositioning. The second group contains the genes associated with
less aggressive behavior,more favorable outcomes in cancer and relapse-free
survival.We attempted to elevate their expression using drug repositioning.
The rest of the genes in Table 1 are either cancer markers or show dual
behavior in differentmalignancies.Wedidnot consider these genes for drug
repositioning.

Chromatin accessibility analysis
While chromatin accessibility is not the sole determinant of gene dereg-
ulation, it contributes valuable insights into thepotential sources of variation

in gene expression under both normal and pathological conditions. To
complement our scRNA-seq data findings at the chromatin level, we
acquired ATAC-seq data for four distinct breast cancer (BC) epithelial cell
lines: two triple-negative breast cancer (TNBC) cell lines (MDA-MB-231
and MDA-MB-436) with repetitions27, one estrogen receptor-positive BC
cell line (MCF7) with repetitions28 and two normal MCF-10A breast epi-
thelial cell lines29,30.

Among the immunomodulatory peptides chosen for drug reposi-
tioning, the accessibility peaks for DEFB1 and CLU were notably higher in
normal cells (Fig. 3), elucidating their downregulation in malignant epi-
thelial cells compared to normal cells (Table 1, Fig. 2). LTF exhibited similar
peak patterns for the ER+ BC cell line compared to normal (Fig. 3), sup-
porting the observation of nonsignificant deregulation of LTF in the ER+
subtype. Elevated peaks for SCGB2A1 in the ER+ cell line compared to
normal further substantiate the upregulation of this gene at the tran-
scriptomics level. Regarding S100A7, thehigher peaks inATAC-seqdata for
TNBC and a similar pattern in ER+ versus normal (Fig. 3) support the
upregulation and nonsignificant gene changes for TNBC and ER+ BC
subtypes, respectively (Table 1).

Proteomics analysis
In order to investigate the distribution of protein expression of selected
AMPs across different BC subtypes, we used the proteomics profiles of 26
BC cell lines.Weperformed the dimentionality reduction and illustrated the
seperation of four HER2+ , seven ER+ , and fifteen TNBC using UMAP
visualization (Supplementary Fig. 2A). Among the selected AMPs, only
B2M, SLPI, CLU and LTF were available in proteomics data. We showed

Fig. 2 | Immunomodulatory peptdeis are deregu-
lated across BC and normal epithelial cells. A The
UMAP from integrated data. B Expression of
upregulated AMPs across different BC subtypes.
C Up and downregulated AMPs in different BC
subtypes versus normal epithelial cells.
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significant upregulation of B2M, SLPI and LTF while downregulation of
CLU proteins in TNBC compared to HER2+ and ER+ BC subtypes.

Drug repositioning
Ourgoal of drug repositioning is toderegulate the candidateAMPsbasedon
their role in cancer biology. Hence, we need to know which pathways we
may interveneduring this process. In order to study the functional aspects of
candidate APMs, we performed a correlation followed by Gene Ontology
(GO) analysis. The correlation was calculated among the top 3000 variable
genes in the scRNA-seq dataset. The top 50 significantly correlated genes
with each candidate AMP were extracted if the correlation was more than
0.3 and adjusted pvalue (Bonferroni correction) awas less than 0.05 (Sup-
plementary Table 2). Next, these gene sets were applied to GO pathway
analysis by selecting the topfive significantly enriched terms (p-value < 0.05,
Benjamini-Hochberg correction). Among the AMPs with identified GO
terms in Fig. 4, we found that B2M is correlated with HLA genes and
consequently participates in theMHCprotein complex. On the other hand,
SLPI is correlated with B2M and enrolls in MHC pathway (Supplementary

Fig. 2).Thus,weneed tobe cautious aboutdownregulationofB2MandSLPI
in a way that repurposed drugs only target these two genes and not the
correlated MHC genes.

To explore the effect of previously approved drugs against candidate
AMPs in BC, we extracted all available perturbagen data for all BC cell lines
in theLINCSL1000database. LINCSL1000 is an actively growing collection
of gene expression profiles for thousands of perturbagens at a variety of time
points, doses, and cell lines31. Among the BC cell lines in LINCS L1000, we
chose MCF7 for downstream analysis. The rationale behind our selection
was the number of available perturbagens for eachBCcell line. According to
the data availability in LINCSL1000, among theBC cell lines, the number of
perturbagens for MCF7 is considerably higher than other cells (Supple-
mentary Fig. 2C). Hence, it provides a great opportunity to discover
potential drugs out of ~30000 perturbagens that can be repurposed in
our study.

We computed the LFC values for all MCF7 drug perturbagens versus
DMSO as control (see material and methods). Next we extracted the LFC
values of the candidateAMPs across all ~30000 perturbagens.We identified

Table 1 | Deregulation of immunomodulatory peptides can be an immunotherapy strategy

Candidate peptides Therapeutic role Deregulation Association in BC biology DR/ Direction Ref

ER+ HER2+ TNBC

SERPINA1 Antimicrobial NA — — Prognostic marker (favorable) No 61

ATP5F1B Antibacterial, — — — Prognostic marker (unfavorable) No 62

CCL20 Antibacterial — — — Cancer progression and migration No 63

CXCL2 Antibacterial — — — Metastasis No 64

PI3 Antibacterial — — — Recurrence No 65

LCN2 Antibacterial — NA — Tumorigenesis and progression No 66

PIGR Antimicrobial — NA — Survival Yes/Up 67

DEFB1 Antibacterial — — NA Tumor-suppressor Yes/Up 68

CXCL3 Antibacterial — — NA Tumor cell migration and invasion No 69

CXCL1 Antibacterial — — NA Advanced cancer stage, lymph node metastasis and poor
survival

No 70

ISG20 Antiviral — — NA Tumor progression and metastasis No 71

LTF Antimicrobial NA — NA Survival Yes/Up 72

CXCL6 Antibacterial, Antiparasitic — NA NA Metastasis No 73

CXCL8 Antibacterial — NA NA Metastasis No 73

AZGP1 Antimicrobial + — — Prognostic marker (favorable) No 74

CLU Antimicrobial + — NA Regulates the infiltration of immune cells Yes/Up 75

H2AFJ Antibacterial, Antifungal NA + NA Relapse-free survival No 76

CXCL13 Antibacterial + NA NA Tumor progression No 77

SCGB2A1 Antimicrobial + NA NA Less aggressive behavior and a more favorable outcome Yes/Up 78

ZG16B Antimicrobial + NA NA Tumor marker No 79

SLPI Antibacterial, Antifungal,
Antiviral

NA + NA Gene target to stop the metastasis Yes/
Down

26

BST2 Antiviral + + + Invasiveness, poor Survival, disease severity No 41

GAPDH Antibacterial, Antifungal NA + + Cancer cell proliferation No 42

HMGN2 Antibacterial, Antiviral,
Antifungal

+ + + Metastasis No 80

S100A7 Antibacterial NA + + Decreasemigration and proliferation; wound healing in breast
cancer

Yes/Up 48

HMGB1 Antimicrobial NA NA + Cancer progression and drug resistance No 81

S100A8 Antifungal — NA NA Progression, poor prognosis and overall survival No 82

S100A9 Antibacterial — NA + Progression, poor prognosis and overall survival No 82

B2M Antimicrobial NA NA + Tumor cell growth/Gene target Yes/
Down

83

Based on the association of nine upregulated immunomodulatory peptides in cancer biology, we determined a strategy for drug repositioning.
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the top 50 perturbagens capable of deregulating candidate AMPs in favor of
BC patients (Fig. 5A) and compiled its metadata and LFC values in Sup-
plementaryTable 3 and 4, respectively.While presenting this list illuminates
the alternative effects of established drugs on new targets, it is crucial to
consider the impact of these drugs on other selected AMPs to mitigate
potential negative off-target effects. Consequently, we refined our selection
by filtering drugs that exhibit a beneficial effect on the deregulation of one
AMPwhile compromising the effect on others in BCpatients (Fig. 5B). This
process allowed us to propose potential drugs for repurposing, specifically
tailored to deregulate immunomodulatory peptides in favor of BC patients.

Based on the correlation of B2M and SLPI with genes associated with
the MHC complex (Fig. 4), we generated plots illustrating the impact of
drugs selected for the downregulation of B2M and/or SLPI on the available
MHC complex-related genes. Additionally, we included drugs chosen for
other AMPs that show a positive role in the downregulation of B2M and/or
SLPI. Among the drugs targeting B2M, Oxaprozin, Paroxetine, and Inda-
traline, along with Cytarabine and MDL-73005EF targeting SLPI, notably
decreased the expression of HLA-DMA. However, with the exception of
BRD-A30455275 and Cytarabine, the remaining drugs did not consistently
demonstrate downregulation for MHC complex genes. Consequently, for
B2M, BRD-A06641369, and for SLPI, ST-4070043 and BRD.K97926541,
illustrated the least conflict with MHC complex genes (Fig. 5C).

Discussion
BC arises from breast epithelial cells that acquire specific genetic variations
leading to the subsequent loss of tissuehomeostasis32.However, not all of the
epithelial cells are malignant in a cancerous tissue1. To raise the accuracy of
our analysis, we extracted only the transcriptomics profiles of malignant
epithelial cells in cancer patients and subsequently compared them to
normal epithelial cells extracted from healthy patients. The same approach
has been frequently used in different cancer studies using InferCNV
method33–35. This gave us the opportunity to investigate the changes in the

expression of, to the best of our knowledge, all so far known human
endogenousAMPs6 inmalignant compared tonormal breast epithelial cells.

We showed the overexpression of eight immunomodulatory peptides
in gene level of BC epithelial cells versus normal and supported these results
in chromatin level. The elevated expression of these AMPs in different
cancer is also reported previously26,36–39. However, the therapetuic use of
these peptide against BC by manipulationg their expression is yet to be
explored.

Pavlicevic et al.19 introduced the AMPs as a promising source for drug
discovery. These components are a complex class of bioactive peptides with
diverse effects on both innate and adaptive immunities. The main focus of
Kumar et al.6 on data curation of AMPs in UDAMP database was on their
antimicrobial, antifungal and antiviral features. Hence, we used this source
to study the elevated immunomodulatory peptides in BC to see if they are
potential to be anticancer, cancer driver or ineffective in cancer progression
(Table 1).

AMPs may have single or multiple functions6,40 and conflicts among
these roles can arise. For instance, an antimicrobial peptide may promote
the cell growth of malignant cells (Table 1). For instance, certain anti-
microbial peptides (AMPs) may unexpectedly stimulate the growth of
malignant cells, as mentioned in Table 1. For instance, B2M, SLPI, BST2,
GAPDH, S100A8, S100A9, and HMGB1, despite their beneficial roles in
various infections (Supplementary Table 1), they contribute to cancer cell
proliferation, invasiveness, reduced survival, and increased disease severity
across different cancers18,41–46. However, not all of these peptides can be
considered viable drug targets, owing to their involvement in cellular
homeostasis. For instance, GAPDH plays a crucial role in glycolysis, and its
downregulation can impede the glycolytic cycle, affecting cellular metabo-
lism in both malignant and healthy cells47.

To effectively target AMPs, understanding the actions of
immunomodulatory peptides in breast malignant epithelial cells and
devising strategies to deregulate these peptides in favor of patients is
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Fig. 3 | Chromatin accesibility may explain the deregulation of genes. An illus-
tration of crhomatin accisibility using ATAC-seq data for four distinct breast cancer
(BC) cell lines including two triple-negative breast cancer (TNBC) cell lines (MDA-

MB-231 and MDA-MB-436) with repetitions27, one estrogen receptor-positive BC
cell line (MCF7) with repetitions28 and two normal MCF-10A breast epithelial cell
lines29,30.
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essential. S100A7 exhibits dual behavior in various malignancies. In
cervical cancer and BC37,38,48 S100A7 promotes increased and
decreased cancer cell proliferation, respectively, while also func-
tioning as an antibacterial peptide6. B2M emerges as a promising
therapeutic target for cancer in various solid tumors, including

human lung, breast, renal, and prostate cancers39. In addition, SLPI is
a potential target for inhibiting metastasis of triple-negative breast
cancers49. Additionally, SLPI represents a potential target for inhi-
biting metastasis in triple-negative breast cancers. The role of other
AMPs in pathology of cancer is summerized in Table 1.
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https://doi.org/10.1038/s41540-024-00359-z Article

npj Systems Biology and Applications |           (2024) 10:37 6



The application of the LINCS L1000 project31 in drug repositioning for
immunotherapy has been previously explored50,51. While various studies
have attempted to repurpose non-human immunomodulatory peptides52

and immunomodulatory drugs for different disorders53. our research
represents the effort to focus on repurposing drugs to modulate the
expression of human immunomodulatory peptides for the
elimination of BC.

The anticancer effects of several drugs depicted in Fig. 5C have already
been substantiated against breast cancer (BC). Sirolimus, for instance, has
been identified as a potentially effective treatment option for patients with
hormone receptor-positive advanced breast cancer54. Kim et al. (2010)
demonstrated the inhibitory effect of oxaprozin on the proliferation of
MCF7cell lines55.Additionally,Cho et al. (2019) established that paroxetine,

an antidepressant drug, induces apoptosis in MCF-7 cells56. Wang et al.
(2022) provided evidence that sodium pentobarbital suppresses the growth
of BC cells57.

There are several steps that can enhance the robustness of our
study findings. These include conducting wet lab validations and
utilizing a multiomics platform to capture both scRNAseq and
scATACseq data from the same patients. It is essential to note that
results obtained from cancer cell lines may not be entirely transla-
table to human studies.

In summary, the safetyprofiles of all proposeddrugs and the anticancer
features of some have already been verified. Further investigation into the
remaining repurposed drugs holds the potential for effective treatment in
breast cancer patients.

B

A

Others

SPLI drugs

B2M drugs

Drug 
categories

CSelecting the candidate drugs
ene

G

Fig. 5 | Drug repositioning can find new indications for previously
approved drugs. A The heatmap depicts the impact of selected drugs on candidate
genes. In the legends, “D” and “U” preceding the gene names represent the planes for
drug repositioning, signifying downregulation and upregulation, respectively.BThe

drugs were filtered by excluding those with contradictory impacts on each other,
aligning with the drug repositioning plane.CThe figure illustrates the effect of drugs
that downregulate B2M and/or SLPI on MHC complex-associated genes.
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Methods
Data collection and filtering
The processed data for 20 BC patients was obtained from the study
conducted by Wu et al.1. Cells were previously filtered based on
percentage of mitochondrial genes, high and low number of features
and doublets1. In addition, epithelial cells were distinguished as
normal or malignant. The classification of epithelial cells in these
patients was performed using the InferCNV R package33. InferCNV
can identify evidence for large-scale chromosomal copy number
variations by exploring expression intensity of genes across positions
of the genome in comparison to the average or a set of reference
normal cells33. The processed data for 13 normal breast samples was
retrieved from the study conducted by Pal et al.20. The percentage of
mitochondrial genes in each cell was calculated using Percentage-
FeatureSet from Seurat package (Version 4.1.0)58. According to Pal
et al. 2021, no more than 20% mitochondrial reads were generally
allowed per cell, although the upper limit was increased as high as
40% for a small number of libraries. Cells with exceptionally high
numbers of reads or genes detected were also filtered to minimize the
occurrence of doublets. An average of 5000 cells per sample remained
after this quality filtering.

NormalizedATAC-seqdata for fourBCcell lineswere retrieved. These
cells included two TNBC cell lines, i.e MDA_MB_231 andMDA_MB_436
with one repetition27, MCF7 as an ER+ BC cell line with a repetition28, and
two MCF10A as normal breast epithelial cell lines29,30. The Integrative
Genomics Viewer (IGV) was employed to visualize the chromatin acces-
sibility of candidate genes across six breast cancer (BC) cell lines and two
control samples. Proteomics profiles of breast cancer cell lines (4HER2+ , 7
ER+ , and 15 TNBC; refer to Data Availability) were sourced from the
Cancer Cell Line Encyclopedia (CCLE)59.

Transcriptomics data was processed in the Seurat R package (Version
4.1.0). The top 3000 features by variance across the datasets were selected
using variance-stabilizing transform (VST) method and scaled using the
default parameters of the ScaleData function of Seurat. Finally, dimen-
sionality reduction was performed based on these scaled features using
default parameters of RunPCA and RunUMAP functions of the Seurat58.
The principal components, accounting for the predominant portion of
variation in the data, were chosen through the utilization of the ElbowPlot
function within the Seurat R package. We used a Shared Nearest-neighbor
(SNN) graph construction method using FindNeighbors function in addi-
tion to a modularity optimization of SNN results using FindClusters
function of the Seurat R package with default parameters to do an unsu-
pervised clustering and categorize the normal breast single cell dataset. We
plotted the reduced dimentions using Uniform Manifold Approximation
and Projection (UMAP).

Cell annotation
The BC dataset was previously annotated. To annotate the single cells from
normal breast samples in the query set, we employed the SingleR package
(Version 1.8.1)with theHumanPrimaryCellAtlas (HPCA)23 andBlueprint
Epigenomics (BP)24 as two pre-annotated references. The integration and
processing of these references were performed using Seurat. Subsequently,
theHPCAandBP referencesweremerged, and their labels were transferred
to the query dataset. To illustrate the annotation results, PlotScoreHeatmap
of the SingleR R package shows the assigned label scores to each cell. The
package pheatmap (version 1.0.12) was used to depict the consistency
between unsupervised clustering and supervised cell annotation. PlotDel-
taDistribution plots the distribution of delta values for each cell, i.e., the
difference between the score for the assigned label and themedian across all
labels for each cell. Finally, the results fromall these stepswere transferred to
the defined clusters of normal breast samples.

Data integration
Normal and malignant epithelial cells were extracted from normal and BC
datasets and then merged and normalized using the LogNormalization

method. Next, top 5000 variable features between two datasets were defined
by the FindIntegrationFeatures function for data integration. Based on these
variable genes we used the FindIntegrationAnchors function to determine
the cell pairwise correspondences across single cells datasets25. Finally, the
IntegrateData was used to perform data integration by pre-computed
anchor set.

Differential gene expression
Differential gene expression analysis between malignant and normal
epithelial cells was done on integrated object. DEGs were defined
using FindMarkers function by pairwise comparison of BC subtypes
and normal epithelial cells, separately. In order to remove the batch
effects in DEG computation, the MAST method60 was considered by
setting the latent.vars parameter to patients in BC and normal
datasets. Next, all so far known immunomodulatory peptides were
extracted from University of Debrecen Antimicrobial and Immu-
nomodulatory Peptide (UDAMP) database6. Deregulation of these
genes were investigated among DEGs and illustrated by Enhanced-
Volcano plot (Version 1.12.0). Afterwards, the role of deregulated
AMPs in BC biology were determined; i.e the genes that are in the
favor of cancer progression and the genes associated with positive
outcome and cancer elimination.

Drug repositioning
The metadata for all BC cell lines in LINCS L1000 database were
extracted and categorized based on BC subtypes i.e, TNBC, HER2+
and ER+ . Number of available perturbagens with 10 μm dose and
24 hours treatment duration for each BC cell line was investigated by
the Slinky R package (Version 1.12.0). The BC cell line with the most
number of perturbagens based on aforementioned criteria was
selected for downstream analysis. The control expression profiles
were considered as treated with DMSO with the same dose and
duration criteria. Next, the LFCs for the effect of each drug on the
expression profile of the selected BC cell line was calculated. To do so,
first the mean of gene expression for the effect of each drug across the
repetitions was calculated for both control and treatment. Next, we
computed the log2 of the mean of gene expressions and finally, the log
transformed results for control and treatments were subtracted.

We selected a subset of AMPs which have a positive or negative role in
BC elimination. The Log Fold Changes (LFCs) of the candidate AMPs
across all drugs were extracted from the log fold changematrix. The profiles
were categorized to the drug repositioning purposes based on the role of
these genes in cancer biology i.e, “Down” (downregulation drug reposi-
tioning strategy) and “Up” (upregulation drug repositioning strategy). For
the genes that should be up or downregulated through drug repositioning,
the profiles were sorted descending and ascending, respectively. Hence, top
20 drugs that upregulate or downregulate the genes were chosen based on
the purpose of drug repositioning. Finally, the effect of the proposed drugs
on deregulation of genes were plotted.

Reporting summary
Further information on research design is available in the Nature Research
Reporting Summary linked to this article.

Data availability
The scRNA-seq data for breast cancer and normal patients are publicly
available through the Gene Expression Omnibus under accession numbers
GSE176078 and GSE161529, respectively. The ATAC-seq data for BC cell
lines used in this study are publicly available through the Gene Expression
Omnibus under accession numbers GSE114964, GSE174152, GSE89013,
and GSE121370.

Code availability
We uploaded the scripts in R programming language to GitHub: https://
github.com/ElyasMo/Drug.rep_BC.
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