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Understanding thebiological functionsof proteins is of fundamental importance inmodern biology. To
represent a function of proteins, Gene Ontology (GO), a controlled vocabulary, is frequently used,
because it is easy to handle by computer programs avoiding open-ended text interpretation.
Particularly, the majority of current protein function prediction methods rely on GO terms. However,
the extensive list of GO terms that describe a protein function can pose challenges for biologists when
it comes to interpretation. In response to this issue, we developed GO2Sum (Gene Ontology terms
Summarizer), amodel that takes a set ofGO terms as input and generates a human-readable summary
using the T5 large language model. GO2Sum was developed by fine-tuning T5 on GO term
assignments and free-text function descriptions for UniProt entries, enabling it to recreate function
descriptions by concatenating GO term descriptions. Our results demonstrated that GO2Sum
significantly outperforms the original T5model that was trained on the entire web corpus in generating
Function, Subunit Structure, and Pathway paragraphs for UniProt entries.

Elucidating the function of proteins is one of the most essential and
important tasks in molecular biology, biochemistry, genetics, as well as
bioinformatics. Conventionally, the function of proteins is described in
free-text, such as those which we see in public protein and gene
databases1,2 as it is natural and versatile for biologists to describe various
aspects of functions and behaviors of proteins. However, a drawback of
text representation is that it is challenging for computer programs to
extract and use function information in various tasks, such as finding
proteinswith a particular function froma genomeor comparing functions
of different proteins and defining functional similarity. To achieve
machine-readable unified function description, gene ontology (GO)3,4 a
structured vocabulary for describing protein functions, has been devel-
oped about two decades ago, which is now well-established. GO classifies
protein functions into three primary categories: biological process (BP),
which pertains to pathway information; cellular component (CC),
describing subcellular locations; and molecular function (MF), focusing
on biochemical reactions of proteins. Using GO, the function of a protein
can be represented as a list of GO terms. As each functional term is
tokenized, GO has significantly facilitated computational studies of pro-
tein functions, such as quantitative comparison of protein functions and
GO enrichment analysis5, which is indispensable for proteomics and
genomics studies.

Protein function prediction is one of the research areas which has
substantially benefited fromGO6. Although the function of a protein needs
to be ultimately determined by wet lab experiments, computational pre-
diction serves as a valuable tool by providing hypotheses and guiding
biologists in designing experiments. Conventionally, computational func-
tion annotation (prediction) uses sequence database search7,8 as a source of
function information. Methods were developed that use sequence infor-
mation with more thorough function information mining techniques9–12.
Other information used includes protein domain composition in protein
sequences13,14, protein tertiary structures15, protein networks16, literature16–19,
and combinations of multiple sources19–21. The progress of computational
functionpredictionhas beenobjectivelymonitored by the community-wide
function prediction assessment, the Critical Assessment of Function
Annotation (CAFA)22.

Most of the contemporary protein functionpredictionmethods rely on
GO.An output of protein function prediction comprises a list of GO terms,
which can often be long, sometimes exceeding several dozen terms, and
difficult for researchers to comprehend. In fact, the presentation of a list of
GO terms has frequently led to questions and confusion among users of our
protein function prediction web servers23.

In this study, our primary objective is to transform a list of GO terms
into human-readable text, utilizing a recent advancement in natural
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language processing (NLP) techniques. NLP, a field within computer sci-
ence, has experienced significant progress, thanks to deep learning
technologies24. With the use of transformer models, particularly large lan-
guage models (LLMs), we can now perform a multitude of NLP tasks,
including translation, summarization, andquestion answering, at a practical
and efficient level25. The work we present here, GO2Sum, takes as its input
short text descriptions of a set of GO terms that annotate a protein and
produce a text summary describing the protein’s function. To achieve this,
we fine-tuned an LLM, the base version of Text-To-Text Transfer Trans-
former (T5)26, on UniProt27 entries with their GO annotations and func-
tional descriptions.

LLMs have been increasingly used in bioinformatics domains. A pre-
trained BERT language model28 that was trained on the general text was
further fine-tuned on biomedical literature to perform tasks such as
sentence classification, dependency parsing29, biomedical relation
extraction, biomedical question answering30, sentence similarity, and
relation extraction31. PubMedBERT32 is a BERT model trained on
PubMed abstracts and performs tasks including relation extraction,
question answering, and document classification. Instead of BERT, a text-
to-text transfer transformer model, T526, as used in SciFive33, which was
trained on biomedical corpora and performed language generation tasks
such as relation extraction, natural language inference, and question
answering.

LLMs were also used for summarization tasks in the bioinformatics
domain. Xie et al.34 used a knowledge infusion training framework to
enhance multiple PLMs for summarizing biomedical literature. Bidirec-
tional and Auto-Regressive Transformers (BART)35 and the domain-aware
pre-trained languagemodel inBioBERTSum36were used for abstractive and
extractive summarization of biomedical evidence, respectively.

In GO2Sum, we employ T5 to summarize the functional descriptions
from a list of GO terms. To the best of our knowledge, his work represents
the pioneering effort in performing summarization within the protein
function prediction domain. When selecting a technique for this general
summarization task, we opted for T5 due to its superior performance
demonstrated by the encoder-decoder-based architecture, outperforming
earlier techniques26,37,38. FromUniProt entries, we extracted three functional
descriptions, Function, Subunit Structure, and Pathway. For each of these
descriptions, we trained a separate T5 model. We showed that the fine-
tuned T5 model performed significantly better than the pre-trained vanilla
T5 in reproducing these function descriptionswhenwe evaluatedwith three
embedding-based metrics, BERT28, MiniLM39, and BioSentVec40 as well as
three sentence distance-based metrics, WMS41, SMS41, and W+ SMS41.
Moreover, inGO2Sum,weprovide a confidence level of output summaryby
considering the probability ofmultiple variations of summary texts in beam
search. Finally,we appliedGO2Sumto thepredictedGOterms generatedby
Phylo-PFP9 and demonstrated that, inmost cases, the summaries produced
by GO2Sum exhibit sufficient accuracy even when derived from predicted
GO terms.

Results
Framework of GO2Sum
The GO2Sum workflow, illustrated in Fig. 1, begins with a set of input GO
terms, each accompanied by a text description. For instance, GO:0000049 is
associated with the description ‘Binding to a transfer RNA.’These GO term
descriptions are concatenated into a document, serving as the input for the
summarizer model, T5. The summarizer then generates a paragraph that
elucidates the function of the input protein.

The dataset of GO terms and protein text descriptions was sourced
from SwissProt (Release: 11 February 2022). Out of the 542,953 proteins
included in this SwissProt release, we selected 518,422 proteins that had at
least one GO term annotation. For each GO term, we obtained the text
description from the Gene Ontology Consortium (Release: 16 November
2021). The length of these GO term descriptions ranged from 3 to 7,836
words,with anaverageof 310words.Meanwhile,wegathered threedifferent
paragraphs that described the function of each protein from their SwissProt
entries. These paragraphs included the general function description, usually
presented at the top of the UniProt entry (referred to as “Function in
UniProt”). We also collected two additional paragraphs: one related to
“Subunit Structure”, which details molecular interactions with other pro-
teins, and the other providing “Pathway Information”, explaining the
metabolic pathways associated with the protein. These three paragraphs
served as the ground truth for the protein’s function description. For
reference, someexamples of these three functiondescriptionparagraphs can
be found in Supplementary Information 1.

To reduce the redundancy of proteins of similar function, we filtered
out proteins that had 90% or more identical GO term annotations. This
process reduced the dataset to 109,658 proteins from 542,953. As an entry
often does not have all three functional descriptions of Function, Subunit
Structure, andPathway,we constructed three separate datasets for each.The
dataset for Function, Subunit Structure, and Pathway had 97,600, 62,340,
14,600 proteins, respectively.

Here we explain more about the rationale behind this GO term-
centric dataset construction process. Usually, when we construct a
non-redundant dataset for bioinformatics studies, such as a dataset for
protein structure prediction or protein function (GO term) prediction,
redundant proteins are identified with a sequence identity of
25–40%15,42. However, through a close examination, we noticed that
there are noticeable number of protein pairs where protein sequence
similarity is low but have a very similar set of GO term set annotation
and function description. For instance, Protein Q88YN8 (phospho-
noacetaldehyde hydrolase) and Q183T0 (bifunctional phosphonoa-
cetaldehyde hydrolase) have a sequence identity of 15.2%, but their GO
annotations and function description are quite similar. The overlap
between their GO annotations was 100% when considering the
annotation of the former protein and 75% using the latter protein. To
remove such redundancy, we decided to define redundancy based on
GO term annotations, which would be more reasonable because GO

Fig. 1 | GO2Sum workflow.
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terms are the actual input information for GO2Sum. To determine the
cutoff for GO term annotation similarity, we collected protein pairs
with varied degrees of GO term overlap, ranging from 50% to 100%
with intervals of 5%. (We computed the GO term overlap of two
proteins with GO terms of either protein as the denominator, choosing
the larger value.) Upon examination, we found that when the GO term
overlap exceeded 90%, the textual descriptions of the functions became
substantially similar. Therefore, we clustered the proteins using the
90% GO term overlap and randomly picked one protein from each
cluster to construct the dataset. This reduces the dataset to 109,658.

Following earlier studies of text summarization43,44 we opted for
an 80/10/10 split for training/validation/testing. Therefore, the
training/validation/test sets of the Function dataset included 78,080/
9760/9760 entries, Pathway had 11,680/1460/1460 entries, and

Subunit had 49,872/6234/6234 entries, respectively. Due to the lim-
itation of the size of GPU memory, we used, up to 1024 tokens or
words were used from a concatenated GO document if it exceeded
the size.

Among several T5 models with different parameter sizes, we used the
T5-base model with 220 million parameters, 12 transformer layers, and 12
attention heads. Computation of training was performed on NVIDIA
RTX5500 24GB memory, and inference was performed on NVIDIA RTX
A6000 GPU with 48GB memory. We trained three models, each for pro-
ducing paragraphs for Function, Subunit structure, and Pathway sections in
UniProt, respectively. Supplementary Fig. 1 shows how loss changed during
the training process of the models. For the loss function, token-level cross-
entropy loss between the predicted summary and the ground truth sum-
mary was used.

Fig. 2 | Evaluation scores for UniProt function paragraphs. a–c Comparison
between GO2Sum and the vanilla T5 using the three embedding-based scores,
a BERT, b MiniLM, and c BioSentVec. The number of UniProt entries used was
9760. d Comparison between MiniLM and BioSentVec. The correlation coefficient
was 0.886. The dashed line is y = x line, and the solid line is the regression line.
eComparison between GO2Sum and the vanilla T5 using the three Sentence Mover
(SM)’s similarity-based metrics, WMS, SMS, and S+WMS. The number of wins
(i.e., entries where GO2Sum produced closer paragraph to ground truth than the
vanilla T5) are shown in blue. f impact of reducing GO terms. From a set of proteins,
we reduced GO terms from their annotations randomly and observed how the

average embedding score changed. The number of proteins in the dataset for BP, CC,
and was 215, 130, and 55, respectively. The x axis shows the number of remaining
GO terms in GO annotations after removal of a certain number of GO terms. For
each target, 1, 2, 3,…, and 7 GO terms were removed randomly three times, and the
embedding score was averaged over the three trials. Then, the value from each target
was averaged across all the targets and plotted along the y axis. g impact of adding
GO terms. We added randomly selected GO terms to their annotations. The
number of proteins in the dataset for BP, CC, andwas 296, 165, and 227, respectively.
The x axis shows the number of GO terms added randomly. The y axis is the average
embedding score from three trials.
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Summarization performance assessment
In order to assess the summarization performance across the three cate-
gories, i.e., function, subunit structure, andpathway,we employed two types
of scoringmethods: embedding-based scores and sentence-mover distance-
based similarities.

Embedding-based scores provide a quantitative comparison between
the output generated by GO2Sum and the ground truth Function para-
graphs obtained from UniProt entries. These scores are more suitable over
traditional ones that rely on n-gram overlaps, such as ROUGE45 and
BLEU46, as embedding takes into account word meaning and semantic
context. We used three different embedding models, BERT28, MiniLM39,
andBioSentVec40 embeddings. BERTandMiniLMare pre-trained language
models for general natural language processing (NLP) tasks, while Bio-
SentVec is specially designed for biomedical texts. Using these embeddings,
paragraph similarity is quantified through cosine similarity with a score
range from -1.0 (complete irrelevance) to 1.0 (perfect match).

For the second type of score, mover distance-based similarity, we used
three metrics, Word Mover’s Similarity (WMS)41, Sentence Mover’s Simi-
larity (SMS)41, and Sentence and Word Mover’s Similarity (S+WMS)41.
WMS combines bag-of-word histogram representations with word
embedding similarity. SMS treats documents as bags of sentence embed-
dings and solves a linear optimization problem. S+WMS represents each
document as a collection of words and sentences, solving the same linear
equation as WMS. These similarity scores, produced by SMS, WMS, and
S+WMS, are relativemeasures of similarity between twodocuments. They
fall within the range of 0 to 1 and indicate the minimum cost required to
transform one document into the other.

GO summary for UniProt function
In Fig. 2a–c, we compared the performance of GO2Sum relative to the
vanilla T5 in reproducing UniProt Function. Across all three embedding-
based scores, GO2Sum’s generated summaries achieved higher scores than
vanilla T5 for the majority of UniProt entries. Specifically, GO2Sum’s
summaries outperformedvanillaT5 for 95.5%, 96.7%, and98.0%ofUniProt
entries with BERT, MiniLM, and BioSentVec embeddings, respectively.
These scores are highly correlated, as illustrated in Fig. 2d, where the cor-
relation between MiniLM and BioSentVec had a Pearson’s correlation
coefficient of 0.886 (for additional score pairs, refer to Supplementary
Fig. 2). Given this high correlation, we use the average score of the three for
evaluation in the rest of the discussion.

In Fig. 2e, we used the three mover distance-based similarity scores to
compare GO2Sum and vanilla T5. The results show that the summary by
GO2Sumwasmore similar to the ground truth than vanilla T5 for almost all
UniProt entries, 95.3%, 97.3%, and 97.0% of the cases by WMS, SMS, and
S+WMS, respectively. When we took a close look at the remaining cases
whereGO2Sum is less similar toUniProt Function, typically those are cases
in which both GO2Sum and T5 failed to produce meaningful paragraphs.
For example, The UniProt entry Q4R7M2 describes the protein as a
dipeptidase that is capable of hydrolyzing cystinyl-bis-glycine, but unable to
hydrolyze leukotrieneD4 into leukotriene E4.Neither T5 norGO2Sumwas
successful for this target. T5 produced paragraph “a phospholipid bilayer
and associated proteins. a phospholipid bi,”while GO2Sum produced “Has
a role in meiosis”, both of which were irrelevant to the actual function. The
average embedding-based score of GO2Sum and T5 were 0.21 and 0.28 for
suchcaseswhereGO2Sumlost overT5, indicating that the summaryofboth
GO2Sum and T5 was of a very poor quality.

We also compared GO2Sum with SciFive33 in Supplementary Fig. 3.
SciFive is aT5-based languagemodel thatwasfine-tuned onbiomedical and
biological text corpus. Although SciFive was not trained specifically for
summarization, the code is capable of performing summarization.GO2Sum
had higher score for 91.52% of targets in terms of BERT, 98.01% for
MiniLM, and 96.76% for BioSentVec, respectively. As shown in Supple-
mentary Fig. 4, the vanilla T5 and SciFive performed quite similarly on the
summarization task. To investigate the impact of the number of GO terms
onGO2Sum’s Function summary generation, we conducted an experiment

depicted inFig. 2f, g.We systematically removed (Fig. 2f) or added (Fig. 2g) a
fixed number of GO terms from the target protein’s GO annotation and
examined the average of the three embedding scores. For this experiment,
we curated datasets of protein targets for each of the three GO categories for
the deletion and addition experiments. In the case of the BP category for the
deletion experiment dataset, we selected proteins with exactly eight GO
terms within their annotation, at least one GO term for each of the other
categories (CCandMF, anda total countofGOterms ranging from10 to24.
This procedure yielded datasets of 215, 130, and 59 proteins for BP,CC, and
MF, respectively. From these datasets, we randomly removed a fixed
number of GO terms (ranging from 1 to 7) from each protein’s GO
annotation. Subsequently,we ranGO2Sumwith the remainingGO terms to
generate Function summaries and evaluated the summaries using the
average of the three embedding scores. To account for randomness, we
repeated this experiment three times and averaged the results for each
protein. For the addition experiment, we prepared a different dataset
because addingmore GO terms can exceed the length of tokens (up to 1024
tokens) our system can handle. For BP, we selected protein targets with
exactly five BP GO terms, at least one GO term for each of CC and MF
categories, and the total GO terms ranging from 7 to 15. A protein was
removed if it still has >512 tokens in their original annotation becausemore
GOtermswere going tobe added to it.Thisprocedure yieldeddatasetof 296,
165, and 227 proteins for BP, CC, and MF, respectively. Similar to the
deletion experiment, we added 1 to 10 randomly selected irrelevant GO
terms three times and averaged the results.

In the GO deletion experiment (Fig. 2f), starting from the score of
around 0.80 when there were eight GO terms (full annotation), the
embedding score gradually declined as more GO terms were removed,
ultimately reaching around 0.70 to 0.75 when only one GO term of that
category remained. It’s worth noting that the score did not drop further
becauseGO terms of other categorieswere retained throughout the removal
process. This effect varied among different ontologies. Removing BP terms
had a more pronounced impact, resulting in a rapid decline in the
embedding score. With an initial eight BP terms, the mean average
embedding score was 0.83, decreasing to 0.70 when only one BP term
remained. In contrast, CC terms had the least impact on Function anno-
tation, with an average embedding score of 0.81 with all eight GO terms,
decreasing to 0.74 when one GO term remained.

In theGOaddition experiment (Fig. 2g), starting from the score of 0.79
(BP), 0.82 (CC), and 0.77 (MF), when there were exactly five original GO
term annotations, the embedding score gradually declined as more GO
terms were added, ultimately reaching 0.72 (BP), 0.70 (CC), and 0.68 (MF).
The results are similar to what was observed in the deletion experiment. A
score reduction of around 0.1 was observed after adding 10 irrelevant
GO terms.

In Table 1, we present several examples of generated summaries.
Each example includes a Function paragraph from UniProt, which is
compared with the summaries produced by GO2Sum and the vanilla
T5. The first three examples (UniProt ID: P0DMN7, Q86A79, and
Q15438) showcase cases where GO2Sum achieved impressive average
embedding-based scores ranging from 0.93 to 0.98. As demonstrated,
with these high scores, GO2Sum generated summaries that closely
matched the ground truth, with only negligible differences. These
differences were typically minor, such as the absence of a specific
protein name or slight variations in wording with the same meaning.
In contrast, the vanilla T5 produced shorter, incomplete phrases,
making the disparity between GO2Sum and T5 evident.

The next two examples, Q03233 and Q9ET67, are cases where
GO2Sum had a moderate average embedding-based score of 0.69 to 0.74.
These proteins have relatively brief function descriptions inUniProt.While
GO2Sum’s summaries correctly capture the protein functions, there are
differences in wording and expression compared to the UniProt descrip-
tions. In contrast, the vanilla T5 model provides fragmented phrases.
Notably, T5’s summary forQ03233 is incorrect as it fails tomention protein
degradation.
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The next three examples, A3KFM7, P46500, and P05318 are cases
where GO2Sum had average embedding scores between 0.4 to 0.6 and were
lower than T5. Typical situations for this are that both T5 and GO2Sum
captured the general idea of the function correctly, but T5’s scorewas higher
because it output a particular keyword. For example, A3KFM7 has a
function summary that reads, “DNA-dependent ATPase that plays a role in
chromatin remodeling. Regulates transcription by disrupting nucleosomes
in a largely non-slidingmanner which strongly increases the accessibility of
chromatin. Activates transcription of specific genes in response to oxidative
stress through interaction with NFE2L2.” GO2Sum’s summary for this
entry was “Probable transcription regulator”, which had a score of 0.479,
while T5 output “The basal transcriptionmachinery. A transcription factor.
ATP hydrolysis.” with a score of 0.583. In this case, T5’s mention of ATP
hydrolysis probably made the higher score than GO2Sum. Protein P46500,
also known as Skn-1 dependent zygotic transcript 15 protein, has function
“May be involved in embryogenesis”. GO2Sum’s summary stating it’s

“Required for zygotic survival” is accurate, supported by its annotation
GO:0009792, which indicates its necessity for embryo development leading
to birth or hatching. Despite this accuracy, GO2Sum scored lower (0.47)
compared to T5, possibly due to the presence of the keyword “embryonic”.
Similarly, for protein P05318, T5 scored higher (0.61) thanGO2Sum (0.58),
possibly because T5 mentioned the keyword “ribosome.” However,
GO2Sum’s summary, highlighting the protein’s significance in the elon-
gation step of protein synthesis, would be more informative.

For P46605 and P60154, GO2Sum’s summaries obtained low scores of
0.37 and 0.19, respectively. In the case of P46605, GO2Sum’s summary
captures essentially correct information, although the ground truthprovides
more specific details, indicating its interaction with a particular DNA ele-
ment. The next entry, Inactive ribonuclease-like protein 9 (P60154), is an
interesting example, where GO2Sum has a low average embedding score of
0.19, indicating that the generated summary is dissimilar to the ground
truth. For this entry, UniProt only added a short Function description that

Fig. 3 | Comparison of GO2Sum and the vanilla T5 on the UniProt Subunit
structure paragraphs and Pathway paragraphs. aThe average embedding score for
Subunit structure paragraphs. GO2Sum outperforms vanilla T5 for 99.2% of cases.
b The Sentence mover’s similarity for Subunit structure paragraphs. The number of
wins for GO2Sum for SMS, WMS, and S+WMS is 95.3%, 96.4%, and 96.8%,

respectively. c the average embedding score for Pathway paragraphs. GO2Sum
outperforms vanilla T5 for 99.8% of cases. d The Sentence mover’s similarity for
Pathway paragraphs. The number of wins for GO2Sum for SMS, WMS, and S+
WMS was 99.5%, 99.3%, and 99.5%, respectively. e The cumulative distribution of
the average embedding score for function, subunit, and pathway paragraphs.
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negates the ribonuclease activity despite the sequence similarity, whichmay
not be comprehensive summary of the known functional activity of this
protein. On the other hand, the GO document of this entry, i.e., the con-
catenated explanations of GO terms read “Binding to a nucleic acid. The
space is external to the outermost structure of a cell. For cells without
external protective or external encapsulating structures, this refers to space
outside of the plasma membrane. This term covers the host cell environ-
ment outside an intracellular parasite. The process in which the controlled
movement of a flagellated sperm cell is initiated as part of the process
required for flagellated sperm to reach fertilization competence.”. Thus,
there are publications47 that indicate the involvement of sperm, specifically
sperm mobility, from which these GO terms are assigned. Therefore, the
summarygenerated byGO2Sumwould actually be a better summary for the
mentioned document as it accurately captures the main concepts related to
the function of this protein, which is involved in spermmotility and acts as a
signaling molecule necessary for the proper movement of spermatozoa.

The last example, T-cell antigen CD7 (P09564) has a similar story as
the previous example. UniProt describes its function as “Not yet known”,
which is obviously uninformative, despite the fact that this protein has seven
GO term annotations (GO:0016020, GO:0005886, GO:0038023,
GO:0002250, GO:0006955, GO:0042110, GO:0007169). The summary by
GO2Sum has a low average embedding-based score of 0.16. However,
considering the annotated GO terms and references48 of this entry, we see
that GO2Sum’s summary, “Receptor for TNFSF13B/BLyS/BAFF and
TNFSF13/APRIL. Promotes B-cell activation and differentiation.” is accu-
rate and more informative than UniProt Function description.

GO summary for UniProt subunit structure
Next, we discuss the summary for the Subunit structure section in UniProt.
As shown in Supplementary Information 1, paragraphs of Subunit structure
tend to be shorter compared to the Function paragraphs. The paragraphs
contain information related to subunit structure, such as protein

interactions (e.g., interaction with some protein), stoichiometry e.g.,
homotetramers and homotrimers. They often use specific protein names
and IDs that canmake it challenging for themodels to produce it accurately.

Figure 3a illustrates the performance of GO2Sum in comparison to the
vanilla T5, using the average of the three embedding-based scores. Similar to
the findings in the Function section reported in Fig. 2, GO2Sum achieved a
higher score than T5 in 99.2% of the entries. The results for the three
individual scores (BERT, MiniLM, and BioSentVec) are detailed in Sup-
plementary Figure 6. In comparison with SciFive, shown in Supplementary
Fig. 5b,GO2Sumshowed ahigher average embedding score than SciFive for
98.89% of the entries. In Fig. 3b, we present an evaluation using mover
distance-based similarity scores. GO2Sum’s summaries were found to be
closer to the ground truth in UniProt entries compared to the vanilla T5 for
96.4%usingWordMover’s Similarity (WMS), 95.3%using SMS, and 96.8%
using Sentence and WMS (S+WMS).

In Supplementary Table 1, we provided examples of summaries gen-
erated by GO2Sum and T5. In some cases, GO2Sum’s summaries are
generally in good agreement with the ground truth but lack specific protein
names. This is attributed to the absence of such specific information in the
GO descriptions.

GO summary for UniProt pathway
The last UniProt sections to examine is Pathway descriptions. As shown in
Fig. 3c, d, paragraphs made by GO2Sum clearly have a higher average
embedding score than the vanilla T5 (Fig. 3c) and also in terms of the SMS
scores (Fig. 3d) for almost all the entries. In comparison with SciFive,
GO2Sum surpassed SciFive in about 99.79% of the entries for the average
embedding score (Supplementary Fig. 5c). Therefore, to summarize, con-
sistently for all three UniProt sections, Function, Subunit, and Pathway,
GO2Sum made more meaningful and correct paragraphs. Examples of
GO2Sum’s outputs are provided in Supplementary Table 2. Similar to the
examples shown in Supplementary Table 1 for Subunit structure, GO2Sum

Fig. 4 | Expert human evaluation and the confidence score of paragraphs gen-
erated by GO2Sum. a Pearson correlation coefficient between pairs of human
evaluators for the dataset of 100 evenly distributed entries. b Comparison between
the average embedding score and the average of human evaluators score. The score
correlation for the 100 proteins entry dataset has an average embedding score
between 0.1 to 1.0. c the second dataset of 45 protein entries with a high average

embedding score between 0.8 to 1.0.dDistribution of the confidence score for entries
classified into three classes based on the average embedding score. High, [0.8, 1.0];
moderate, [0.5, 0.8); low, [0, 0.5). Function paragraphs. 4591, 4400, and 769 proteins
were included in the high, moderate, and low score class, respectively. e Subunit
Structure paragraphs. 3046, 2806, and 382 in high, moderate, and low. f Pathway
paragraphs. 1329, 121, and 10 proteins in high, moderate, and low.
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performed fundamentally better than the vanilla T5. Often the average
embedding score of GO2Sum’s summary was low because it lacked specific
information.

Average embedding score distribution for the three UniProt
sections
In Fig. 3e, we present the distribution of average embedding scores for
GO2Sum’s outputs in the three UniProt sections to summarize its perfor-
mance. Notably, the Pathway section exhibited a distinct score distribution,
with 77.3% of entries achieving high scores between 1.0 and 0.95. In con-
trast, both Function and Subunit Structure summaries had only 25.3% and
30.0%, respectively, falling within the high score range. This divergence can
be primarily attributed to paragraph length, with Pathway paragraphs being
substantially shorter than those in the other two sections. On average, the
word lengths for Pathway, Subunit, and Function summaries were 7.8, 28.4,
and 56.1, respectively. Longer paragraphs, in general, tend to be more
complex and challenging to reproduce accurately than shorter ones.

Human evaluation
To validate the embedding scores used in our work, we conducted a com-
parison with evaluations by human biology experts. We focused on asses-
sing how the evaluations by human experts correlate with the embedding
scores, particularly when the embedding score indicates high quality, i.e.,
favorable GO2Sum outputs.We engaged six human biology experts, one of
whom holds a doctorate degree, three of whom hold master’s degrees in
biology, while the other two possess bachelor’s degrees in biology or related
fields such as biotechnology.Thehumanevaluators assigned scoresbetween
1 and 4, with 4 indicating the highest quality for each GO2Sum output.

We prepared two sets of protein targets for evaluation. The first set
included 100 proteins, evenly distributed based on their average embedding
scores.We randomly selected 10proteins for each 0.1 interval, ranging from

0.1 to 0.2, 0.2 to 0.3, and so on. The second set comprised 20 randomly
selected proteins with high average embedding scores between 0.8 and 1.0.
Weprovidedhumanexpertswith instructions, as detailed inSupplementary
Information 2. In Fig. 4a, we present the Pearson correlation coefficients
between human evaluators. Evaluator 3 exhibited a moderate correlation,
ranging from 0.32 to 0.45, with other evaluators. On the other hand, the
remainingfive evaluators demonstrated strong agreement,with correlations
ranging from 0.57 to 0.85.

InFig. 4b, c,we assessed the agreementbetween the average embedding
score we used and the evaluations by human experts. The y axis in Fig. 4b, c
represent the average score assigned by the six human evaluators. As shown
in Fig. 4a, the average embedding score demonstrates a strong correlation
with the assessments made by human experts, with a Pearson correlation
coefficient of 0.804. In Fig. 4b, we focused on 45 proteins with high average
embedding scores ranging from 0.8 to 1.0. This selection included 25 high-
scoring entries from dataset 1 and 20 proteins from dataset 2. Nearly all
entries received an average human evaluator score of 2 or higher, with an
overall average of 3.15. When considering entries with an even higher
embedding score range of 0.9 to 1.0, the average human score rose to 3.52.
Consequently, we can conclude that, on the whole, the average embedding
score aligns sufficiently with evaluations by human biologists. Notably,
high-scoring summaries generated by GO2Sum are highly reliable, as
confirmed by human evaluators.

Although the embedding score agrees well with human evaluation,
we observed two outliers where human evaluation differed from the
embedding score. In the first case, Protein A3DNG9, a ribosomal RNA
small subunit methyltransferase (Nep1), had a UniProt Function
description: ‘Methyltransferase involved in ribosomal biogenesis. Speci-
fically catalyzes the N1-methylation of the pseudouridine corresponding
to position 914 in M. jannaschii 16 S rRNA.’ GO2Sum summarized the
GO terms as: ‘Methyltransferase involved in ribosomal biogenesis.

Fig. 5 | Average embedding scores of predicted GO terms. Predictions were
produced by Phylo-PFP. 843, 116, and 632 proteins were used for function (a, d),
subunit structure (b, e), and pathway (c, f) paragraphs, respectively. a–cThe average
embedding scores of summaries computed for predicted GO terms relative to the

ground truth GO terms taken from UniProt. The color scale shows the number of
cases at each point. d–f The average embedding score relative to Fmax score, which
indicates the accuracy of predicted GO terms by Phylo-PFP.
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Specifically catalyzes theN1-methylation of pseudouridine at position 967
in 16 S rRNA. Is not able tomethylate uridine at this position.’Despite the
high average embedding score of 0.87, human evaluators assigned an
average score of 1.66 because the last sentence contradicted the preceding
sentences.

Another example, O74523 (Putative ATPase inhibitor, mitochon-
drial), presents an opposite case, where the average embedding score was
low (0.49), yet human evaluation scored it high at 2.66. The GO2Sum’s
output, ‘Thought to be a regulatory component of the mitochondrial ATP-
synthesizing complex in themitochondria,’ lackeda term indicating that the
protein ‘inhibits.’ However, aside from this omission, the overall function
was accurate.

Confidence score for summary outputs by GO2Sum
AsT5generates aparagraphusingbeamsearch, eachgeneratedparagraph is
associated with a probability value. These probability values enable us to
compute a score that reflects the confidence or dominance of a paragraph
compared to alternative paragraphs explored during the generation process.
The confidence score of a top-scoring paragraph i is defined as follows:

Confidence Score ið Þ ¼ ProbðiÞ
PN

j ProbðjÞ
ð1Þ

where N is the number of paragraphs generated at the last step of a beam
search, which was set to 4 in this work.

In Fig. 4d–f, we present the distribution of confidence scores for
UniProt summaries, categorized into three classes based on accuracy
determined by average embedding scores. The high-scoring class included
proteins with an average embedding score between 0.8 and 1.0, the mod-
erate class ranged from0.5 up to 0.8, and the low class included scores below
0.5. The plots reveal a clear trend: highly accurate summaries are typically
associated with high confidence scores. This trend holds true for all three
types of summary paragraphs (Function, Subunit, and Pathway). For
instance, in the Function paragraphs, 82.6% of proteins in the high-scoring
class have a confidence score exceeding 0.9. The proportion of highly
confident summaries with a score over 0.9 decreases to 45.0% for the
moderate class and 36.4% for the low-scoring class.

Applying GO2Sum for GO term predictions by Phylo-PFP
Finally, we applied GO2Sum to predicted GO terms obtained from Phyo-
PFP9, one of the highly accurate protein function prediction methods.
Predicted GO terms may not perfectly represent the actual functions of
proteins, posing a challenge to GO2Sum’s summarization. To assess
GO2Sum’s utility in describing predicted protein functions, we conducted
tests across a wide range of accuracy levels using a realistic scenario of GO
predictions. For the test set of proteins, we selected commonproteins shared
between the test set used in this study and the test set from the work of
ContactPFP15, encompassing a total of 9642 proteins. Among these, 843,
116, and 632 proteins were shared for function, pathway, and subunit
structure paragraphs, respectively.

In Fig. 5a–c, the average embedding score of summaries generated
from predicted GO terms was plotted relative to results from the ground
truth GO terms taken fromUniProt. Naturally, summaries generated from
predicted GO terms have a lower score for most of the cases (82.7% for
Function; 77.1% for Subunit, and 94.8% for Pathway). However, it is
noteworthy that the majority of summaries generated from predicted GO
terms still maintain a moderate average embedding score of 0.5 or higher,
the level that is practically accurate and useful for users. Specifically, for
Function paragraphs, 73.7% achieved a score of 0.5 or higher, while for
Subunit paragraphs, the figure was 79.9%, and for Pathway paragraphs, it
was 95.7%.

Figure 5d–f depict the correlation between the average embedding
score and the function prediction accuracy, as measured by the Fmax
score49. Fmax ranges from 0 to 1, with 1 for the perfect agreement with the
ground truthGO terms. The average embedding score exhibitsmoderate to

weak correlation with the Fmax score of GO terms, with the Pearson cor-
relation coefficient of 0.44 for Function, 0.28 for Subunit, and 0.28 for
Pathway. Of greater significance is the observation that even relatively low-
scoring GO predictions, with an Fmax score ~0.2, can achieve a moderate
average embedding score of 0.5.Wemanually examinedsuchcases indetails
and found that those typically occur because predicted GO terms include
one or more key informative GO terms.

Protein P04141 (Granulocyte-macrophage colony-stimulating factor),
which has UniProt Function annotation of “Cytokine that stimulates the
growth and differentiation of hematopoietic precursor cells from various
lineages, including granulocytes, macrophages, eosinophils, and ery-
throcytes”, is such an example. This protein is annotated with 36 GO terms
in UniProt, among which only 6 GO terms, GO:0006955, GO:0002376,
GO:0005615, GO:0008083, GO:0005125, and GO:0005129, were con-
fidently predicted by Phylo-PFP. The Fmax score of the GO prediction was
0.2, due to the small coverage of correct GO terms. However, GO2Sum
managed to generate a function summary of a high average embedding
score, 0.91. This was possible because one of the predicted GO terms,
GO:0005125 (cytokine activity) was informative, which describes the
activity of a soluble extracellular gene product interacting with a receptor to
control the survival, growth, differentiation, and effector function of tissues
and cells. GO:0005129 (granulocyte-macrophage colony-stimulating factor
receptor binding) was also helpful, which says binding to a granulocyte-
macrophage colony-stimulating factor receptor. With these GO terms’
information, GO2Sum produced the function description that is close to
UniProt: “Cytokine that stimulates the growth and differentiation of
granulocytes, macrophages, eosinophils, and erythrocytes.

A similar case occurred in Subunit Structure and Pathway summaries.
For Protein P46988 (Prefoldin subunit 1), the Fmax score was low, 0.20,
because only three out of seven GO terms were correctly predicted. But
Subunit Structure summary, “Heterohexamer of two PFD-alpha type and
four PFD-beta type subunits” was generated correctly by GO2Sum with an
average embedding score of 1.0, mainly thanks to the information provided
by the GO termGO:0016272 (prefoldin complex). This GO term contained
the details needed to predict the specific information about PFD-alpha type
and four PFD-beta type subunits. The other two correct GO terms,
GO:0006457 and GO:0051082, probably also provided the functional
context that goeswell withGO:0016272. For Pathway summary generation,
Protein Q9Y252 (E3 ubiquitin-protein ligase RNF6) is an illustrative
example.A lowcoverage (fiveoutof twenty-twoGOterms) gave a lowFmax
score of 0.35. Despite that, pathway summary was correctly generated as
“Protein modification; protein ubiquitination”, with an average embedding
score of 1.0, probably by contributions from GO terms, GO:0044314
(protein K48-linked ubiquitination), GO:0085020 (protein ubiquitination),
and GO:0045893 (protein K27-linked ubiquitination).

The results indicate that GO2Sum can provide readable and useful
summaries even for low-scoring GO predictions. According to CAFA
challenges22,50 recent prediction methods achieve a Fmax score of about 0.5
to 0.6 on average, which is sufficient for GO2Sum to produce meaningful
summary. For example, when the Fmax score is 0.5 or higher, 81.9% of
proteins have a summary with an average embedding score of 0.5 or higher
in Function paragraphs. Similarly, for Subunit Structure and Pathway, the
figures are 82.8% and 96.7%, respectively.

Discussion
Wehave developedGO2Sum, a fine-tuned variant of the T5model designed
specifically for summarizing the descriptions of GO terms into Function,
Subunit, and Pathway paragraphs in UniProt entries. The summaries gen-
erated by GO2Sum demonstrated a substantially higher level of agreement
withUniProt data when compared to the results obtained using the standard
T5 model. Our evaluation of the agreement with the ground truth UniProt
paragraphs primarily relied on embedding-based scoring methods, which
exhibited a strong correlation with assessments made by human evaluators.

While GO2Sum generally produces accurate summaries, a notable
limitation is its inability to mention specific protein names. This limitation

https://doi.org/10.1038/s41540-024-00358-0 Article

npj Systems Biology and Applications |           (2024) 10:29 9



arises from the fact that GO descriptions typically lack such specific details.
In contrast, UniProt’s Subunit paragraphs often contain specific protein
names. To address this limitation and enable the model to provide specific
information, it would require access to additional information sources, such
as protein-protein interaction data. Integrating GO terms with these
external sources represents an intriguing avenue for future research.
Another limitation of the current GO2Summodel is that it has amaximum
input token size of 1024 due to the available computational resources.
Applying pruning of GO terms or text compression can be a possible
solution to this problem. A further potential future improvement is
enhancing the model’s ability to discern which part of a summary corre-
sponds to each GO term description, possibly by implementing a Question
and Answering framework51,52.

Formany years, protein function prediction has relied onGO terms to
describe biological functions. However, recent advancements in language
models have allowed us to translate these predictions into human-readable
text, providing a more intuitive and user-friendly approach to describing
predicted functions. We believe that this development contributes sig-
nificantly to enhancing the interaction between humans and machine
learning models, particularly in the context of assisting biologists and
medical scientists in their daily research endeavors.

Methods
Network architecture
Text-to-Text Transfer Transformer, or T526 has been used as the neural
network architecture in GO2Sum. The T5 model is based on standard
transformer layers, which use self-attention to understand long-range
dependencies in text. Furthermore, T5 follows an encoder-decoder archi-
tecture, where the encoder is assigned to extract a rich latent representation of
the text, irrespective of the task, and the decoder aims at generating task-
specific output based on the encoder embeddings. T5 is a competent model
for several text-specific tasks including summarization, translation, question
answering, etc. GO2Sum uses the baseline 220 million parameter version of
the T5model, i.e., T5-base. Both the encoder and decoder stages consist of 12
blocks each,where each block comprises a self-attention layer, a feed-forward
layer, and an optional cross-attention layer. All the attention layers use 12
attention heads, and the dimensionality of keys, queries, and values is 64. The
embedding dimensions of all the layers are fixed to 768. However, the feed-
forward layers use an inner dimension of 3072 for increasing expressivity.
Additionally, a dropout of 0.1 is used for regularization purposes.

Network training
The models were initialized with the pre-trained T5 weights and were fine-
tuned for 100 epochs. The standard cross-entropy was used as the loss
function, and the Adam optimizer was used with a learning rate of 0.0001.
Themodels were trained on batch sizes of 4, and an early stopping criterion
was used to prevent overfitting. Due to computational limitations, we
limited the input token length to 1024, and the target maximum token
length was kept at 256.

Reporting summary
Further information on research design is available in the Nature Research
Reporting Summary linked to this article.

Data availability
The data used to train GO2Sum is publicly available at SwissProt https://
www.uniprot.org/uniprotkb?query=reviewed:true. The trained GO2Sum
models can be downloaded from https://kiharalab.org/GO2Sum/ and
https://doi.org/10.5281/zenodo.10719085. All other data can be obtained
from the corresponding author upon reasonable request.

Code availability
The source code of GO2Sum is available at https://github.com/kiharalab/
GO2Sum.
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