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Protective antigen (PA) is aprotein producedbyBacillus anthracis. It formspart of theanthrax toxin and
is a key immunogen in US and UK anthrax vaccines. In this study, we have conducted experiments to
quantify PA in the supernatants of cultures of B. anthracis Sterne strain, which is the strain used in the
manufacture of the UK anthrax vaccine. Then, for the first time, we quantify PA production and
degradation via mathematical modelling and Bayesian statistical techniques, making use of this new
experimental data as well as two other independent published data sets. We propose a single
mathematical model, in terms of delay differential equations (DDEs), which can explain the in vitro
dynamics of all three data sets. Since we did not heat activate the B. anthracis spores prior to
inoculation, germination occurred much slower in our experiments, allowing us to calibrate two
additional parameters with respect to the other data sets. Our model is able to distinguish between
natural PAdecay and that triggeredbybacteria via proteases. There is promising consistencybetween
the different independent data sets for most of the parameter estimates. The quantitative
characterisation of B. anthracis PA production and degradation obtained here will contribute towards
the ambition to include a realistic description of toxin dynamics, the host immune response, and anti-
toxin treatments in future mechanistic models of anthrax infection.

Bacillus anthracis is the bacterial pathogen that causes anthrax. One of the
characteristic virulence factors that contribute to the pathogenic success of
B. anthracis is the production of three proteins that are collectively termed
anthrax toxin: protective antigen (PA), oedema factor (EF), and lethal factor
(LF). PAmolecules bind to receptors onhost cells and are cleaved inorder to
create a binding site for oneof the active components, EForLF.AlthoughEF
and LF are the components that exert a toxic effect on cells, they are not able
to enter cells and cause this toxicity in the absence of PA molecules1. EF, in
combinationwith PA forms the oedema toxin, and LF, in combinationwith
PA forms the lethal toxin.These two toxins causedifferent cellular responses
to suppress the host’s immune response during infection. Lethal toxin
disrupts cell signalling pathways of macrophages and some other cells,
leading to cell death. On the other hand, oedema toxin inhibits the pha-
gocytosis of bacteria by neutrophils2. The toxin proteins are also critical
components in two effective anthrax vaccines for humans: anthrax vaccine
adsorbed (AVA) in the USA and anthrax vaccine precipitated (AVP) in the
UK. These vaccines are composed of culture filtrates containing toxin

proteins expressed by avirulent vaccine strains of B. anthracis. They aim to
counter toxin action by initiating the body to generate antibodies
against PA3.

Mechanistic mathematical models of infection can provide significant
improvement in the understanding and quantification of key infection
mechanisms. Novel multi-scale models recently developed for the bacterial
pathogen Francisella tularensis have been parameterised using various
experimental data sets, enabling the estimation of parameters that describe
important aspects of its pathogenicity4,5. These models also allow predic-
tions for the probability of response, and mean time until response, of an
infected individual as a function of the initial infection dose. Data for B.
anthracis infection is fairly scarce. In particular, an important ingredient is
missing for the development of a within-host model that incorporates a
quantitative description of the role played by the anthrax toxins during
infection. The role of toxins was included in themodel byDay et al.6 but the
toxin level was only modelled in a qualitative way, without units. In this
paper, we make use of three independent in vitro experimental data sets to
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obtain a quantitative mathematical description of PA production by B.
anthracis. This will be instrumental for the future development of anthrax
models that incorporate a fullymechanistic description ofwithin-host toxin
dynamics. The mathematical model proposed here focuses only on the PA
component of anthrax toxin (and not EF or LF), since PA is the essential
toxin component that facilitates binding of EF and LF to cell surfaces.
Furthermore, PA is the component targeted by two FDA-approved specific
anti-PA treatments (Raxibacumab and Obiltoxaximab). Thus, quantifica-
tion of PA production and degradation is valuable for the development of
mathematical models that incorporate this type of treatment.

Previous experimental studies have been conducted to determine the
biological activities of the anthrax toxin proteins and evaluate the quantities
expressed by different B. anthracis strains in culture conditions. For
example, Zai et al.7 conducted experiments to explore the expression of PA
and LF by the A16R strain and the Sterne strain of B. anthracis. Both these
strains are un-encapsulated but retain the ability to produce the toxin
proteins. The human anthrax vaccine in China uses live-attenuated B.
anthracis spores of the A16R strain, whereas the Sterne strain is used for the
manufacture of the UK acellular anthrax vaccine. In the experiments by Zai
et al.7, the growth kinetics of the bacteriawere observed to follow a sigmoidal
growth curve, reaching a stationary phase of around 107 viable cells per ml.
They found that the amount of LF and PA increased as the bacteria grew,
peaked after around 12–16 hours of bacterial growth, and then declined
rapidly. This rapiddeclinemaybe causedby thedownregulationof the toxin
genes due to the depletion of glucose in the culture8. Zai et al.7 suggested that
an accumulation of proteases in the culture could be an alternative reason
for the decrease in the levels of toxin proteins. This is because it has been
shown that certain proteases secreted by B. anthracis, such as immune
inhibitor A1 (InhA1), can cleave the anthrax toxin proteins9. Indeed, when
protease inhibitors were added to the culture, Zai et al.7 observed that the
amountofPAandLF increasedand thenmaintainedahigh level rather than
decreasing. Charlton et al.10 have simulated theAVP vaccinemanufacturing
process, and measured the bacterial growth as well as PA and LF con-
centrations for up to 32 hours. They observedmuch higher levels of PA and
LF in the culture supernatants compared with those of Zai et al.7, which
could bedue to different experimentalmethods.Charlton et al.10 alsodidnot
observe an increased breakdownof the toxin proteins after the peak. In their
experiment, once the glucose was exhausted, the bacteria appeared to use
amino acids as an alternative carbon source. In this study, we have con-
ducted similar experiments to quantify PA in the supernatants of cultures of
B. anthracis Sterne strain,whichwere carriedout at theDefence Science and

Technology Laboratory (Dstl, UK) in Porton Down. Our experimental
methods differ in somewayswith respect to those of Zai et al.7, andCharlton
et al.10. A particular strength when using the experimental data to para-
meterise a mathematical model is that we did not heat activate the B.
anthracis spores. This meant that germination occurred at a more natural
rate, allowing us to calibrate additional model parameters that describe the
germination dynamics of the spores.

We mathematically model the dynamics of PA production by B.
anthracis in vitro via a system of delay differential equations (DDEs) and fit
this model to data from two previously published in vitro experimental
studies (Zai et al.7 andCharlton et al.10) and to the new experimental data set
obtained at Dstl. The same mathematical model is used to explain the
dynamics observed in each of the three data sets, just under slightly different
assumptions to represent different experimental conditions. The model
considers germination of B. anthracis spores, maturation of newly
desporulated bacteria into vegetative bacteria, logistic growth of vegetative
bacteria, production of PAbyvegetative bacteria, anddecay of PA (naturally
and due to proteases produced by the bacteria). DDEs are considered to
represent the delay of PA production and protease production. Further-
more, the model considers the depletion of nutrients (e.g. glucose) in the
culture medium, where the production rate of PA is assumed to be pro-
portional to these nutrient levels. The mathematical model is calibrated to
each of the three data sets separately, using approximate Bayesian compu-
tation sequential Monte Carlo (ABC-SMC)11, and the parameter estimates
obtained for thedifferent data sets are compared.Our results show thatmost
of the parameter estimates are fairly consistent across all experiments.
However, in the Dstl experiment, the bacteria were able to divide faster and
grow to a higher concentration, which is reflected in the corresponding
parameter estimates. Also, the maximal per CFU production rate of PA is
estimated to be higher for the Charlton et al.10 data set.

Results
We fit the mathematical model in Fig. 1 (described in detail in theMethods
section) to data from two previously published in vitro experimental studies
(Zai et al.7 andCharlton et al.10) and to a newexperimental data set obtained
at Dstl. The experimental methods are described in the Methods section.

The parameter calibration is performed using the ABC-SMC
algorithm11. The ABC method involves sampling parameter values from a
chosen prior distribution, simulating the model using those parameter
values, comparing themodel output to the experimental data via a specified
distance function, and accepting the parameter set into the posterior sample

Fig. 1 | A schematic representation of the model.
Black arrows represent species transitioning from
one state to another, coloured arrows indicate that a
population contributes to a particular reaction, and
the dashed arrow represents PA production.
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if the corresponding distance is less than some chosen threshold.ABC-SMC
involves carrying out multiple iterations of the ABC algorithm, in order to
refine posterior samples in each iteration while more efficiently exploring
the parameter space. In particular, at each iteration, parameter values are
sampled from the posterior distribution of the previous iteration and are
perturbed with a kernel function. Here we use a component-wise uniform
perturbation kernel, so that each component of the parameter set is per-
turbed independently in a uniform interval. The perturbed parameter set is
then used to obtain a model prediction and is accepted if the distance
between themodel prediction and thedata falls below thedistance threshold
for that iteration.We use a sequence of decreasing distance thresholds, such
that the distance threshold at each iteration is some quantile of the distances
from the accepted parameter sets in the previous iteration. In this manner,
one obtains a set of distributions for the parameters that converge to the
posterior distribution.

Uniform priors are used for each parameter (log-transformed in some
cases) over the ranges in Table 1. During the model simulation step of the
ABC-SMCalgorithm,we addnoise to each simulateddatapoint, to take into
account measurement errors in the observed data12. These added errors are
independent Gaussian with zero mean and standard deviation equal to the
standard deviation of the experimental data at the corresponding timepoint.
Since the model is simultaneously being fitted to data sets of different types
(bacterial CFU measurements and PA measurements) with different units

(CFU vs ng/ml), it is necessary to ensure that the calculation of the distance
between the model and the data is not affected by scale differences between
the data types. Therefore, we define the following distances to compare
model predictions with observed values.

D1 ¼
X
t

log10
B�
t

BðtÞ

� �� �2

þ log10
S�t

SðtÞ þ ð1� f ÞS�0

� �� �2

; ð1Þ

D2 ¼
X
t

P�
t � PðtÞ� �2

; ð2Þ

where SðtÞ þ ð1� f ÞS�0, B(t) =N(t)+V(t), and P(t) are the model predic-
tions (see Eq. (6)) plus noise for the amount of spores (desporulating and
dormant), total bacterial CFU, and PA, respectively, at time t. B�

t is the
geometric mean observed number of bacterial CFU at time t, and P�

t is the
mean amount of PA observed at time t. S�t is the geometric mean observed
number of spores at time t, which we only use for the Dstl data set. At each
iteration of theABC-SMCalgorithm, twodistance thresholds are generated,
and parameter sets are only accepted if D1 and D2 both fall below their
respective distance thresholds.

In Table 2, we report summary statistics (median and 95% credible
intervals) for the posterior distributions obtained from the different data
sets, in order to facilitate comparisons. A visual comparison between the

Table 1 | Parameters in the mathematical model, along with their descriptions, units, and prior distributions

Parameter Description Unit Prior

f Fraction of initial spores that are able to germinate - f ~U(0, 1)

g Germination rate of spores into newly desporulated bacteria h−1 log10g∼Uð�3; 1Þ
ε Fraction of initial bacterial CFU that are newly desporulated - ε ~U(0, 1)

m Maturation rate of desporulated spores into vegetative bacteria h−1 log10m∼Uð�3; 1Þ
λ Rate of vegetative bacterial growth h−1 log10λ∼Uð�1; 1Þ
K Bacterial carrying capacity (per ml) CFU log10K ∼Uð6; 9Þ
α Rate that bacteria use up nutrients (CFU·h)−1 log10α∼Uð�12;�3Þ
β PA production rate ng·(CFU·h)−1 log10β∼Uð�7; 0Þ
ν0 PA natural decay rate h−1 log10ν0 ∼Uð�6; 0Þ
ν PA decay rate due to proteases (CFU·h)−1 log10ν ∼Uð�15;0Þ
τ1 Time delay in PA production h τ1 ~U(0, 15)

τ2 Time delay in protease production h τ2 ~U(0, 24)

Table 2 | A comparison between themedians and 95% credible intervals of the posterior distributions for each parameter after
fitting the mathematical model to each data set

Parameter Zai (A16R) Zai (Sterne) Charlton (Sterne) Dstl (Sterne)

f N/A N/A N/A 0.996 (0.988, 0.999)

g N/A N/A N/A 1.92 (1.15, 4.79)

ε 0.55 (0.13, 0.87) 0.44 (0.05, 0.90) 0.51 (0.08, 0.91) 0.51 (0.06, 0.94)

m 0.14 (2 × 10−3, 4.6) 0.17 (3 × 10−3, 4.6) 0.08 (2 × 10−3, 4.7) 0.10 (2 × 10−3, 6.3)

λ 0.54 (0.47, 0.62) 0.63 (0.57, 0.68) 0.50 (0.47, 0.55) 0.97 (0.70, 1.34)

K 9 × 106 (8 × 106, 107) 107 (107, 1.1 × 107) 6 × 106 (4 × 106, 107) 108 (5 × 107, 3 × 108)

α 2 × 10−7 (5 × 10−8, 3 × 10−6) 4 × 10−10 (2 × 10−12, 3 × 10−8) 3 × 10−6 (10−7, 7 × 10−5) 2 × 10−10 (2 × 10−12, 7 × 10−8)

β 10−4 (3 × 10−5, 2 × 10−3) 2 × 10−5 (2 × 10−5, 4 × 10−5) 3 × 10−2 (10−3, 5 × 10−1) 4 × 10−6 (10−6, 2 × 10−4)

ν0 2 × 10−4 (3 × 10−6, 10−2) 2 × 10−4 2 × 10−4 2 × 10−4

ν 3 × 10−6 (4 × 10−8, 4 × 10−5) 7 × 10−7 (2 × 10−7, 3 × 10−6) 7 × 10−12 (3 × 10−15, 3 × 10−7) 4 × 10−8 (2 × 10−9, 5 × 10−6)

τ1 3.8 (0.8, 8.4) 0.5 (0.1, 1.7) 7.9 (1.3, 13.9) 8.8 (5.1, 13.5)

τ2 16.5 (7.9, 19.2) 10.8 (8.7, 13.5) 12.6 (1.6, 22.7) 20.6 (14.0, 23.8)

The values of ν0 in bold indicate fixed values that were used.
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posterior distributions of each data set is shown in Fig. 2. For the parameters
that determine the bacterial growth (the bacterial growth rate, λ, and the
carrying capacity, K), the estimates from the Zai et al.7 and Charlton et al.10

data sets seem fairly consistent, while the estimates from the Dstl data seem
to be slightly different. However, estimates for λ across all experimental data
sets are roughly consistent with the growth rate estimate of λ = 0.89 per
hour, which was obtained from the study by Kalns et al.13.

For parameters that influence the PA production and degradation (α,
β, ν), estimates from the Zai et al.7 and Dstl data seem consistent, while
estimates from the Charlton et al.10 data differ slightly. Estimates for the
delay parameter τ1 are consistent between the Charlton et al.

10 andDstl data
sets, whereas the delay until PA production is estimated to bemuch shorter
for the Zai et al.7 data, possibly due to the fact that the bacteria had already
been growing for 24 hours prior to inoculation. The delay until protease
production, τ2, is estimated to be between 10 and 25 hours across all
data sets.

When comparing the parameter estimates for the Sterne and A16R
strains (experiments from Zai et al.7), we can observe that the Sterne
strain bacteria seem to divide slightly faster (i.e., larger λ) and grow to a
higher concentration (i.e., larger K), which is consistent with findings
and discussions in ref. 7. On the other hand, we obtain rather different
estimates for the rate,α, at which nutrients are consumed by the bacteria.
This is because there are two different areas of parameter space that can
capture the observed Sterne strain data, which accounts for the varia-
bility in the posterior distribution of α. These two areas roughly corre-
spond to two different mechanisms which could explain the rapid decay
in PA concentration observed in these data sets at late times. Differences
between the predicted PA dynamics -and corresponding parameter
estimates- for the two strains are discussed in detail in the following
section.

Model fits to the data and kernel density estimates of the posterior
distributions for each data set and parameter are shown in the following
sections, where differences between data sets and possible reasons for these
differences are discussed in more detail.

Zai et al.7 data set
Zai et al.7 conducted experiments (described in the Methods section) using
two different strains of B. anthracis—A16R and Sterne. For each strain
separately, we fit the mathematical model (see Eq. (6)) to the data of viable
counts and PA concentrations that they obtained, shown in ref. 7 [Figs. 1B
and 4A, respectively].

For each strain, the first data measurements given are at 4 hours, and
the initial conditions are not specified. We have assumed that there would
initially be noPApresent. In order to set the initial condition for the number
of bacteria, we have fixed the number of bacteria at 4 hours in the model to
be equal to the data point at that time. Then by assuming exponential
growthof vegetative bacteria in the time interval 0–4 hours, we haveworked
backwards to obtain the initial condition

B�
0 ¼

B�
4

1� λε
λþm

� �
e4λ þ λε

λþm e
�4m

; ð3Þ

where B�
4 is the data value at 4 hours. Furthermore, we have assumed that

there are no desporulating spores present, since it is reasonable to assume
that all desporulating spores would have already desporulated during the
24 hours of bacterial growth prior to inoculation into the assay culture. This
means that we do not calibrate the parameters f and g for the Zai et al.7 data
sets, since these parameters determine the dynamics of desporulating
spores. The initial conditions of themodel are taken to be, S(0) = 0,Nð0Þ ¼

Fig. 2 | Box-plots comparing posterior distributions between data sets. The box-plots show the median, interquartile range, and range of each marginal posterior
distribution.
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εB�
0 (where B�

0 is calculated from Eq. (3)), Vð0Þ ¼ ð1� εÞB�
0, G(0) = 1,

and P(0) = 0.

A16R strain. For the A16R strain, an additional experiment was carried
out by Zai et al.7, where a protease inhibitors cocktail was added to the LB
culture medium. The measurements of PA concentration corresponding
to this experiment are shown in ref. 7 [Fig. 7]. In order to model the PA
concentration in this experiment, we add the following equation to the
system in Eq. (6),

dPiðtÞ
dt

¼ βVðt � τ1ÞGðt � τ1Þ � ν0PiðtÞ; ð4Þ

with initial condition Pi(0) = 0. The variable Pi represents the PA con-
centration in an experiment in which protease inhibitors have been added.
This follows the same equation as P(t), but we set ν = 0 to represent the
assumption that proteases will not be contributing to the degradation of PA
in the experimentwith protease inhibitors. To include this additionalmodel
variable and data into the distance function, we have

D2 ¼
X
t

P�
t � PðtÞ� �2 þ P�

i;t � PiðtÞ
� �2

; ð5Þ

where Pi(t) is the model prediction (plus noise) for the amount of PA in an
experiment with protease inhibitors at time t and P�

i;t is themean amount of
PA observed at time t in the experiment by Zai et al.7 using the A16R strain
with protease inhibitors.

From the marginal posterior distributions of each parameter, pre-
sented in Fig. 3, one can see that it has been possible to learn significantly
about most of the parameters. However, ε and m have relatively wide
posterior distributions. These parameters determine the fraction of bacterial
CFU that are initially newly desporulated bacteria, and the rate at which
these progress into vegetative bacteria, respectively. We have not been able
to learn significantly about these parameters, since the type of data usedhere
does not allow one to distinguish between newly germinated and vegetative
bacterial CFU. Some parameter pairs are significantly correlated in the
posterior sample. For example, α and β have a correlation coefficient
approaching 1, and each has a correlation coefficient with τ1 of around 0.96.

The parameter α determines how quickly nutrients are depleted in the
media and therefore, how quickly the per CFU production rate of PA
reduces over time,while theparameterβ represents the initial (maximal) per
CFUproduction rate of PA.Thedelay parameter τ1 is equivalent to the time,
t, that the overall PAproduction rate changes fromzero toβV(0). Therefore,
a similar time-dependentPAconcentration canbeobtainedby increasingor
decreasing these three parameters simultaneously. Hence these parameters
are not individually identifiable, given the data used.

Figure 4 shows the predicted amount of bacteria and PA versus the in
vitro observations for theA16R strain. The solid lines represent the pointwise
medianof themodel predictions fromall parameter estimates in theposterior
sample obtained via ABC-SMC, and the shaded regions represent the 95%
credible intervals (CI) of thesemodel predictions.Model predictions seem to
agreewell with data for all variables, where ourmathematicalmodel is able to
successfully explain the exponential bacterial growth reaching a carrying
capacity, the increase and peak of PA concentration, and the impact of
protease inhibitors in preventing a rapid decline in PA concentration. Figure
4 also shows the posterior predictions for the nutrient level. The nutrients are
consumed by the bacteria, and the depletion of nutrients reduces the PA
production rate, resulting in the levelling off of the PA concentration in the
predictions corresponding to the experiment with protease inhibitors.

Sterne strain. From the measurements in ref. 7 [Figs. 1B and 4A], the
Sterne strain bacteria seem to replicate faster and produce more PA than
the A16R strain. Hence we would expect most of the model parameter
values to differ slightly between the two strains. The data from the
experiment with protease inhibitors was very useful in the A16R cali-
bration because the absence of protease effects on the PA decay allowed
us to more accurately estimate the production rate of PA. This kind of
data is not available for the Sterne strain. However, the value of the
natural decay rate of PA, ν0, which was estimated using the A16R data,
should be intrinsic to the PA protein itself and, in theory would not
change depending on which strain produced the PA. Therefore, we
leverage the information on the natural decay rate of PA obtained from
theA16R calibration to set a value for this parameter when calibrating the
model to the other data sets. In particular, from now on we set ν0 to be
equal to the median value from the posterior in Fig. 3, giving
ν0 = 2 × 10−4 h−1.

Fig. 3 | Posterior distribution corresponding to the Zai et al. A16R data set. Prior distributions are shown in grey and kernel density estimates of the marginal posterior
distribution of each parameter in green. This posterior distribution was obtained by fitting the model in Eq. (6) to the A16R strain data from Zai et al.7.
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In general, the posterior distributions in Fig. 5 for the Sterne strain
calibration are narrower than the ones in Fig. 3 for theA16R strain, and this is
reflected in narrower 95% credible intervals for the posterior predictions in
Fig. 6. It can be observed from the viable counts that the Sterne strain bacteria
seem to divide slightly faster and grow to a higher concentration, which is
reflected in the posterior distributions of the corresponding parameters, λ and
K. Furthermore, thePAconcentrationdata shows ahigher peak for the Sterne
strain than the A16R strain. Although the maximal per CFU PA production
rate, β, is not estimated to be larger in the Sterne strain experiment, the rate of
depletion of nutrients, α, as well as the delay until PA production is initiated,
τ1, are estimated to be very small. This results inmodel predictions that show
an increased PA yield. However, these parameter estimates lead to very dif-
ferent predictions for the nutrient level and for the PA concentration in the
presenceofprotease inhibitors compared to those for theA16Rstrain inFig. 4.

In Fig. 7, we distinguish between two parameter regions in the posterior
sample that both capture the observed data, but lead to rather different
predictions for unobserved variables. In the scatter plots in Fig. 7, the points

represent individual parameter sets in the Sterne strain posterior sample and
are coloured according to whether the value of α is below the minimum
accepted value in the A16R strain posterior sample. There is no significant
correlationbetween thevalueofα and the valueofβor ν in the regionwhereα
is small (purple), but when the value of α falls within the range accepted for
theA16R strain (green), a positive correlationbetweenα andβ, and anegative
correlation between α and ν, emerge. This is because if nutrients are con-
sumed more quickly, a larger maximal PA production rate and a slower rate
ofPAdegradationareneeded todescribe thedata. In thebottomrowofFig. 7,
one can see that for the parameter setswith large values ofα, the nutrient level
decreases to zero, similar to the predictions corresponding to theA16R strain
data set in Fig. 4. In this case, PA production eventually stops, and the PA
concentration subsequently declines due to PA degradation. On the other
hand, when the nutrients are consumed very slowly, the impact of PA
degradation by proteases is estimated to be much larger, in order for the
model predictions to still capture the observed decline inPAconcentration. If
ν is set to zero to represent the presence of protease inhibitors, the first case

Fig. 4 |Model posterior predictions corresponding to the Zai et al. A16R data set.
Pointwise medians (solid lines) and 95% credible intervals (shaded regions) of the
model posterior predictions are shown for B(t) = N(t)+V(t), P(t), Pi(t), and G(t)
(from left to right, respectively) using the parameter posterior distribution in Fig. 3.

The A16R strain experimental data used to fit the model are presented as mean ±
standard error (SEM) from three independent experiment runs, extracted from ref. 7
[Fig. 1B (viable counts), Fig. 4A (PA concentration), and Fig. 7 (PA concentration in
the presence of protease inhibitors)].

Fig. 5 | Posterior distribution corresponding to the Zai et al. Sterne data set. Prior distributions are shown in grey and kernel density estimates of the marginal posterior
distribution of each parameter in green. This posterior distribution was obtained by fitting the model in Eq. (6) to the Sterne strain data from Zai et al.7.
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(with larger values of α) predicts a levelling off of the PA concentration,
similar to that observed in the experiment byZai et al.7 using theA16R strain.
For the parameter sets with smaller values of α, the model instead predicts a
much higher PA concentration in the presence of protease inhibitors, which
seems unlikely to be realistic, given the observations from the A16R strain
experiment. Thus, although data from an experiment using protease inhi-
bitorswould be essential in order to determinewhichof these two cases better
reflects reality, our results and parameter estimates seem more consistent
across the different experimental data sets when the depletion of nutrients is
themain cause behind the observed rapid decay in PA levels at late times (i.e.,
green parameter estimates in Fig. 7).

Charlton et al.10 data set
Here we fit the mathematical model (see Eq. (6)) to the data of bacterial
counts and PA concentrations obtained by Charlton et al., presented in
ref. 10 [Figs. 1 and 4]. It can be seen in ref. 10 [Fig. 1] that the spore counts of

eachbottle remained fairly constant throughout the 32hours, at ~30%of the
number used to inoculate each bottle. This is likely to be because the spores
were heat activated prior to inoculation, so they would have germinated
quickly on contact with the glucose and amino acids of the culture media,
and therefore the only remaining spores by the time the first CFU mea-
surements were obtained were those spores that would not go on to ger-
minate during the timescale of the experiment. Therefore the spore data are
not used in the subsequentmodel calibration, and thus we do not calibrate f
and g from this experiment.

Similarly to the Zai et al.7 data, we have fixed the number of bacteria at
2 hours in the model to be equal to the data point at that time. We then set
the initial conditions to S(0) = 0, Nð0Þ ¼ εB�

0 , Vð0Þ ¼ ð1� εÞB�
0, and

P(0) = 0, where

B�
0 ¼

B�
2

1� λε
λþm

� �
e2λ þ λε

λþm e
�2m

:

Once again, wefix the value of the natural PAdecay rate to ν0 = 2 × 10−4 h−1,
which is the median value obtained from the posterior in Fig. 3.

By comparing the posterior distributions in Fig. 8 to those in Figs.
3 and5,onecan see that theestimates formostparameters are fairly consistent
between the experiments of Charlton et al.10 and Zai et al.7. However, the rate
of depletion of nutrients, α, and themaximal per CFUPA production rate, β,
are estimated to be higher in the Charlton et al.10 experiment. It has been
found that agitationcan influencePAproductionbyB.anthracis, possiblydue
to a change in the dissolved oxygen concentration of the assay culture14.
Therefore, a possible explanation for the increase inPAproduction rate could
be the method of static incubation implemented by Charlton et al.10.

The parameter ν representing the rate of PA decay triggered by bac-
terial proteases is estimated to be lower in the Charlton et al.10 experiment
than in the Zai et al.7 experiments, and has a relatively wide posterior
distribution. This is because a rapid decay in PA concentration has not been
observed in theCharlton et al.10 data set,which is crucial for the estimationof
ν. Furthermore, due to the absence of an observed peak and subsequent
decline in PA concentration, calibration with the Charlton et al.10 data set
hasnot allowedus to learn about the value of τ2, representing thedelay in the
production of proteases by the bacteria. In Fig. 9, the model predictions of
PA concentration corresponding to an experiment in which proteases are
inhibited (i.e., ν = 0) are not significantly altered compared to the

Fig. 6 |Model posterior predictions corresponding to theZai et al. Sterne data set.
Pointwise medians (solid lines) and 95% credible intervals (shaded regions) of the
model posterior predictions are shown for B(t) = N(t)+V(t) (left) and P(t) (right),
using the parameter posterior distribution in Fig. 5. The Sterne strain experimental
data used to fit the model are presented as mean ± SEM from three independent
experiment runs, extracted from ref. 7 [Fig. 1B (viable counts) and Fig. 4A (PA
concentration)].

Fig. 7 |Distinguishing between parameter regimes
corresponding to a fast or slow decline in nutrient
level, for the Zai et al. Sterne posterior distribu-
tion. Top row: scatter plots of the parameter sets in
the posterior sample from the calibration with the
Zai et al.7 Sterne strain data set. The value of α is
plotted on the x axis, and on the y axis is β (left) or ν
(right). Points are coloured green if the value of α is
larger than the minimum value of α in the posterior
sample from the calibration with Zai et al.7 A16R
strain data set (log10α ¼ �7:6), and are coloured
purple if the value of α falls below this threshold.
Bottom row: pointwise medians (solid lines) and
95% credible intervals (shaded regions) of themodel
posterior predictions for G(t) (left) and Pi(t) (right)
using the posterior parameter sets with log10α≥ �
7:6 (green) or log10α<� 7:6 (purple).
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predictionswith non-zero values of ν. This is becausemost parameter sets in
the posterior sample have very large values of τ2 or very small values of ν,
resulting in a low decay rate of PA. Hence, these results predict that the
plateau in the PA concentration observed in the experiment is likely to be
due to depletion of nutrients rather than PA degradation. However, the
model predictions and data presented in Fig. 9 also show that the bacterial
growth curve takes longer to reach the carrying capacity, comparedwith the
Zai et al.7 experiments, since the initial amount of bacterial CFU is several
orders of magnitude lower. Therefore, it could be that the accumulation of
proteases is also delayed in this experiment, which has not been measured.
Thus, it cannot be discounted that if measurements had been taken beyond
32h, a PA decay might have been observed.

Dstl data set
Herewefit themathematicalmodel (seeEq. (6)) to theDstl data set obtained
in this study, which is reported in Table 3. In this study, the spores were not
heat treated prior to inoculation into the assay culture andwere observed to
germinate muchmore slowly than in the Charlton et al.10 experiment. This
has allowed us to make use of the spore counts to additionally calibrate the
germination rate of spores, g, as well as the fraction of initial spores that are
able to germinate, f. Furthermore, initial spore and bacterial counts were

Fig. 8 | Posterior distribution corresponding to the Charlton et al. data set. Prior distributions are shown in grey and kernel density estimates of the marginal posterior
distribution of each parameter in green. This posterior distribution was obtained by fitting the model in Eq. (6) to the Charlton et al.10 data.

Fig. 9 |Model posterior predictions corresponding to the Charlton et al. data set.
Pointwise medians (solid lines) and 95% credible intervals (shaded regions) of the
model posterior predictions are shown for B(t) = N(t)+V(t), P(t), Pi(t), and G(t)
(from left to right, respectively) using the parameter posterior distribution in Fig. 8.

The experimental data used to fit the model are presented as mean ± standard
deviation from three independent Thompson bottles, obtained from ref. 10 [Fig. 1
(bacterial counts = viable counts−spore counts) and Fig. 4 (PA concentration)].

Table 3 | Data for the spore counts, bacterial counts, and PA
concentration (mean ± standard deviation) obtained at Dstl
following the experimental methods in the Methods section

Time (hours) log10(spores/ml) log10(bacterial CFU/ml) PA (ng/ml)

0 4.44 ± 0.09 4.34 ± 0.20 -

1.5 3.33 ± 0.14 4.73 ± 0.10 -

3.5 2.25 ± 0.18 5.48 ± 0.24 -

4.25 1.96 ± 0.59 5.74 ± 0.19 -

5 1.44 ± 0.12 6.20 ± 0.23 -

6 1.98 ± 0.64 7.05 ± 0.02 -

7 1.64 ± 0.66 7.45 ± 0.12 -

16 - 7.94 ± 0.06 194 ± 24

18 - 8.02 ± 0.03 386 ± 161

20 - 8.14 ± 0.02 1227 ± 511

22 - 8.18 ± 0.06 1950 ± 403

24 - 8.21 ± 0.14 2359 ± 289

40 - 7.96 ± 0.07 161 ± 0
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obtained as soon as possible after inoculation (1–2minutes), so thatwewere
able to fix the initial conditions of the model using experimental measure-
ments, instead of inferring them by using a later time point. The initial
conditions are therefore set to Sð0Þ ¼ fS�0 ; Nð0Þ ¼ εB�

0 ; Vð0Þ ¼
ð1� εÞB�

0 ; Gð0Þ ¼ 1; Pð0Þ ¼ 0; where S�0 and B
�
0 are the number of spores

and bacterial CFU measured at time zero, respectively. Once again, we fix
the value of the natural PA decay rate to ν0 = 2 × 10−4 h−1.

Themarginal posterior distributions are shown inFig. 10. Estimates for
the germination rate, g, are slightly higher than previous estimates of this
rate obtained by Williams et al.15, but the order of magnitude is similar.
Furthermore, our results predict that almost all initial spores will germinate,
with f estimated to be very close to 1. This is in contrast to the observations
from Charlton et al.10, where ~30% of spores did not germinate.

The model predictions and data in Fig. 11 show quicker bacterial
growth and a higher steady-state level of bacteria compared with the other
experiments. The vegetative bacterial growth curve is determined by the
parameters λ and K. While the estimates for these parameters are fairly
consistent between the Zai et al.7 and Charlton et al.10 experiments, we

estimate a faster bacterial growth rate, λ, and a higher carrying capacity, K,
for theDstl data set.Onepossible explanation is that the richer BHImedium
used in the Dstl experiment may have enabled the bacteria to divide faster
and grow to a higher concentration. Most of the other marginal posterior
distributions shown inFig. 10 are fairly consistentwith those of theZai et al.7

Sterne strain data set. Similar to what we observed from the calibration with
the Zai et al.7 Sterne strain data set, Fig. 12 shows that we can again identify
twoparameter regions that showdifferent correlations betweenα andβor ν.
These twoparameter regions lead to contrasting predictions for the nutrient
level and the PA concentration in the presence of protease inhibitors. For
parameter sets that have values of α consistent with the posterior sample
from theZai et al.7 A16R strain calibration, themodel predicts that nutrients
will become fully depleted and that the PA concentration will plateau in the
absence of PA degradation by bacterial proteases (i.e., in the presence of
protease inhibitors). On the other hand, accepted parameter sets withmuch
smaller values of α correspond to continual production of PA, but a larger
estimated degradation rate by bacterial proteases means that the model can
still capture the observed decline in PA in the Dstl experiment.

Fig. 10 | Posterior distribution corresponding to theDstl data set. Prior distributions are shown in grey and kernel density estimates of themarginal posterior distribution
of each parameter in green. This posterior distribution was obtained by fitting the model in Eq. (6) to the Dstl data in Table 3.

Fig. 11 | Model posterior predictions corresponding to the Dstl data set. Point-
wise medians (solid lines) and 95% credible intervals (shaded regions) of the model
posterior predictions are shown for S(t)+(1–f)S*0 (left), B(t) = N(t)+V(t) (middle),
and P(t) (right), using the parameter posterior distribution in Fig. 10. The

experimental data used to fit the model are presented as mean ± standard deviation
from three independent experiment runs, obtained from the Dstl experiment
described in the Methods section.
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Wenote that the delay inPAproduction by eachbacterial CFUand the
delay in the production of proteases by the bacteria, given by τ1 and τ2,
respectively, are estimated to be slightly longer in our experiment. Thismay
be because spores were directly inoculated into the assay culture at the start
of the experiment,whereasZai et al.7 used abacterial culture thathadalready
been growing for 24 hours. Furthermore, we did not heat activate the spores
prior to inoculation, as was done by Charlton et al.10.

Discussion
We propose a DDE model of the in vitro dynamics of B. anthracis growth
andPAproductionanddegradation.Makinguseof anewexperimental data
set obtained at Dstl during this study, as well as two other independent data
sets by Zai et al.7 and Charlton et al.10, we have carried out parameter
calibration for each data set by means of ABC-SMC11. We used a common
set of mathematical equations to model each data set, which is flexible
enough to describe the dynamics of different strains and culture conditions.
Wehave then compared the estimatedparameter values across data sets and
explained possible reasons for the observed differences. Many of the para-
meters are consistently estimated across different data sets, but there are a
fewnotable differences (see Fig. 2). For example, as discussed above, the data
from theDstl experiment shows quicker bacterial growth, reaching a higher
steady-state level.We hypothesise that this could be due to differences in the
culture medium used in the experiments. Furthermore, a much higher PA
yield was obtained in the Charlton et al.10 experiment, which is reflected in
the corresponding parameter estimates. This may be due to the method of
static incubation implemented by Charlton et al.10. It is unclear why we
observed strain differences between Sterne andA16R regarding growth rate
and time to PA or protease production. However, one plausible explanation
might be that Sterne’s rich history in laboratory studies and vaccine pro-
duction has passaged it into being better suited for growth under these
conditions. It is noteworthy, however, that the differences observed between
strains within the study by Zai et al.7 are not more significant than the
differences between the different experimental studies using the same strain.
This indicates that, as predictors for growth and PA production, strain
differences are only as influential as themany and small nuances associated
with inter-laboratory practices.

An important feature of themathematical model proposed here is that
it distinguishes between natural PA decay and that caused by proteases
secreted by the bacteria, such as InhA1. Decay due to proteases is implicitly
included in themodel via a term inwhich the rate of PA removal is assumed
to be proportional to the number of vegetative bacteria that were present in
the culture τ2 hours ago, where τ2 represents a delay taken for the bacteria to
produceproteases. In the studybyZai et al.7 using theA16R strain, data from

the experiment with protease inhibitors allowed us to more accurately
estimate the PAdecay rate in the absence of protease effects, given by ν0.We
then leveraged the information gained about the natural decay rate of PA to
set a value for ν0 when calibrating themodel to the other data sets. However,
when calibrating the model to data sets that did not include data from an
experiment using protease inhibitors, we found that the observed decline in
PAcouldbe explainedby twodifferent parameter regimes, corresponding to
a fast or slowdecline in nutrient level. If the nutrients are consumed quickly,
PA production eventually stops, and the PA concentration decreases due to
PA degradation. On the other hand, if nutrients are consumedmore slowly
(and hence the PA production rate only decreases slightly), a much higher
rate of PAdegradation is needed to capture the decline in PAconcentration.
Additional experiments could help to choose among these different para-
meter regimes that have been identified, and the specific mechanisms that
can explain the observed PA decay. However, our preliminary results seem
to favour the depletion of nutrients as themainmechanismbehind the rapid
decay in PA concentration observed in most data sets at late times.

In our mathematical model, protease concentration is not explicitly
modelled as a variable, since we are limited in the available experimental
data. However, if future experiments were able to additionally obtain pro-
tease measurements, then the model could be adapted to include a more
detailed description of the production of proteases, and their action on
proteins produced by the bacteria (e.g. PA). In addition to in vitro experi-
ments, future work should aim to discover whether these enzymes are also
produced in vivo. The PA production rate predicted by the in vitro mod-
elling results presented here may also be accurate in vivo. However, the
degradation of PA is more uncertain within a host because there will likely
be some degradation due to bacterial proteases, as well as proteases pro-
duced by the host.

The model variable that represents nutrient level is normalised by the
initial nutrient level for each experiment, so thatG(0) = 1.However, the type
and amount of nutrients available to the bacteria will have varied sig-
nificantly between thedifferent studies.This implies that the estimatedvalue
of the maximal per CFU PA production rate, β, will depend on the nutrient
availability in each individual experiment. In future, incorporating mea-
surements of specific nutrients would help to unify the interpretation of
parameters across studies. Furthermore, the model assumes that the per
CFU PA production rate is proportional to the amount of nutrients.
However, the relationship between nutrient level and PA expression by B.
anthracis is likely to be more complicated than this. For instance, inter-
mediate nutrient levels may provide the best environment for maximal PA
production. Further experiments could be carried out with different spe-
cifiednutrient levels, to quantitatively investigate the impact of nutrient level

Fig. 12 | Distinguishing between parameter
regimes corresponding to a fast or slow decline in
nutrient level, for the Dstl posterior distribution.
Top row: scatter plots of the parameter sets in the
posterior sample from the calibration with the Dstl
data set. The value of α is plotted on the x axis and on
the y axis is β (left) or ν (right). Points are coloured
green if the value of α is larger than the minimum
value of α in the posterior sample from the calibra-
tion with Zai et al.7 A16R strain data set
(log10α ¼ �7:6), and are coloured purple if the
value of α falls below this threshold. Bottom row:
Pointwise medians (solid lines) and 95% credible
intervals (shaded regions) of the model posterior
predictions for G(t) (left) and Pi(t) (right) using the
posterior parameter sets with log10α≥ � 7:6 (green)
or log10α<� 7:6 (purple).
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on PA expression. This would assist in the calibration of parameters that
describe the relationship between nutrient level and PA expression and
would also help to incorporate a more realistic description of this rela-
tionship into a mathematical model.

Production of the anthrax toxin proteins is a key factor in the within-
host survival ofB. anthracis. Lethal toxin andoedema toxin contribute to the
severe symptoms suffered by a host infected by B. anthracis, since they
impact numerous functions of the immune system, for example, by inhi-
biting the phagocytosis of bacteria by neutrophils. Quantifying PA pro-
duction and degradation in vitro is an important step towards gaining a
fuller understanding of in vivo toxin dynamics, since PA is the essential
toxin component that facilitates binding of the other toxin proteins to cell
surfaces. A benefit of the mechanistic modelling approach used here is that
the underlying mechanisms of the model can be extended and modified as
new scientific knowledge and data are generated. Furthermore, the math-
ematicalmodel proposed here, and the parameter estimates obtained, could
form a preliminary framework to be used in future within-host mathema-
tical modelling efforts for anthrax. For instance, preliminary estimates
obtained here for the bacterial growth rate and production rate of PA could
be used to informprior distributionswhencalibrating awithin-host anthrax
model with data from animal studies16. The understanding of PA dynamics
gained through this studywill also be valuable for the development of future
mechanistic within-host models that incorporate medical treatments for
anthrax, such as anti-toxin treatments. These types of models could be
developed through coupling pharmacokinetic (PK) data that describes how
thewithin-host concentration of the treatmentwill change through time17,18,
with a pharmacodynamic (PD) description of the binding rate of PA as a
function of anti-PA antibody concentration.

Methods
Dstl data set: growth of bacteria and viable counts
In this study, B. anthracis Sterne strain 34F2 from the Porton Down strain
collectionwas used. Sterne (pXO1+, pXO2-) is un-encapsulated but retains
the ability to produce toxins. 500 μl of Sterne spores, from a working stock
containing 107 CFU/ml, was inoculated into 50ml Brain Heart Infusion
(BHI) broth in a 250ml Erlenmeyer flask to produce a culture containing
105 CFU/ml. To this, sodium bicarbonate (Sigma-Aldrich) was added to a
final concentration of 48mM19. The culture was contained in a Biojar and a
CO2 gas generator sachet (Scientific Laboratory Supplies) was added. The
CO2 sachet was replaced after 24 hours of use as per the manufacturer
instructions. Sodium bicarbonate and CO2 were added because both have
been shown to increase the production of PA in vitro19,20 by helping to
simulate the in vivo environment21. The culture was incubated at 37 °Cwith
continuous shaking at ~182 rpm. Three independent growth experiments
were performed in duplicate. In the first experiment, the culture was sam-
pled at 0, 1.5, 3.5, 4.25, 5, 6, and 7 hours post-inoculation, in order to
measure spore germination and bacterial growth. In the other two experi-
ments, the culture was sampled at 16, 18, 20, 22, 24, 40, and 48 hours post-
inoculation. At each time point, total viable counts were obtained by plating
serial 10-fold dilutions (100 μl aliquots) onto L agar in triplicate. To obtain
differential counts of the number of spores and vegetative bacteria in the
culture, a sample was taken at each time point, diluted, and then heated to
70 °C for 30 minutes with vigorous shaking to kill vegetative cells22. The
number of vegetative cells in the original sample was then calculated by
subtracting the number of spores from the total CFU/ml. In the experiments
where the culture was sampled at the 16, 18, 20, 22, 24, 40, and 48 hour time
points, the culture was also filter sterilised at each time point by passing
through a 0.22 μm syringe filter and stored at−20 °C before analysis using
the automated western blot system, JessTM SimpleWestern (ProteinSimple,
San Jose CA, USA).

Dstl data set: automated western blot
JessTM SimpleWestern was used to quantify the production of PA during B.
anthracis Sterne growth. JessTM automates the separation, probing, and
detection of protein in a single hands-free assay. Recombinant PA

(PharmAthene, Inc.) was diluted in 0.1 × Sample Buffer and Fluorescent
5 ×master mix (ProteinSimple) tomake samples with a final concentration
ranging between 5 μg/ml–0.04 μg/ml to generate a standard curve. Filter
sterilised supernatant from B. anthracis Sterne culture was mixed neat with
Fluorescent 5 ×mastermix at a ratio of 4:1.All sampleswere thendenatured
by heating to 95 °C for 5 minutes. For all assays the 12–230 kDa Separation
module (SM-W004, ProteinSimple) and Anti-Mouse Detection Module
(DM-002, ProteinSimple) were used. Reagents were diluted and pipetted
into the assay plate as per themanufacturer instructions. JessTM aspirates the
reagents into glass capillaries before separating the HRP-conjugated MW
ladder and sample by size. The sample proteins were immobilised to the
capillary wall before immunoprobing with 1 μg/ml monoclonal PA4 pri-
mary antibody (2D4J, produced at Dstl) and HRP-conjugated anti-mouse
secondary antibody. Luminol-Peroxide was added, and the chemilumi-
nescent signal intensity from the PA target protein was represented gra-
phically and as a virtual blot in the Compass Simple Western software
(version 6.1.0, ProteinSimple). The signal intensity generated by PA was
then interpolated against the standard curve to determine the concentration
of PA at each time point of the Sterne growth experiment. Default assay
conditions for a chemiluminescent 12–230 kDa size assay were chosen in
the Compass Simple Western software, this included a sample separation
time of 25 minutes and antibody incubation time of 30minutes. Two
negative system controls were run per assay, one containing no sample and
the other containing no primary antibody, to check for cross-reactivity of
reagents.

Additional data sets
In addition to the experiments carried out at Dstl, described above, we have
used data from two previously published studies, by Zai et al.7 and Charlton
et al.10.

Zai et al.7 conducted similar experiments to the ones described above
and measured bacterial growth and PA concentration for the A16R strain
and the Sterne strain of B. anthracis, which are both un-encapsulated but
retain the ability to produce the toxin proteins. Specifically, Erlenmeyer
flasks each containing 100ml of Luria-Bertani (LB) liquid medium were
sterilised by autoclaving at 121 °C for 15min and then warmed to 37 °C
prior to inoculation with 1ml of B. anthracis culture. The flasks were then
incubated at 37 °C with vigorous agitation for up to 28 h. Culture super-
natant samples were taken throughout the time course and used to obtain
viable counts and quantify PA concentration. The viable counts of each
strain are shown in ref. 7 [Fig. 1B] and the PAconcentrations for each strain
are shown in ref. 7 [Fig. 4A]. Zai et al.7 used a traditional western blot
technique to qualitatively detect PA and then used an ELISA to quantify the
concentration of PA,whereaswe used a new automatedwestern blot system
(JessTM) to quantify PA concentration.

Charlton et al.10 simulated the UK anthrax vaccine manufacturing
process, which uses the Sterne 34F2 strain, and obtained in vitro data on
bacterial growth and PA concentration. Specifically, Thompson bottles
containing 450ml of basal mediumwere sterilised by autoclaving at 121 °C
for 15min and then warmed to 37 °C prior to inoculation with 50ml of a
spore suspension that had a concentration of 2 × 104 CFU/ml, giving an
initial spore concentration in the Thompson bottles of 2 × 103 CFU/ml.
These Thompson bottles were then incubated statically at 37 °C for up to
32 hours. At various time points, three Thompson bottles were sacrificed,
and the numbers of spore and bacterial CFU in the culture were measured.
The PA concentration of the culture supernatants of each sacrificed bottle
was determined using antigen-capture ELISA. Individual bottle sacrificing
was used because repeated sampling from the same bottle was found to
disturb the growing cultures. The viable counts are shown in ref. 10 [Fig. 1]
and the PA concentrations are shown in ref. 10 [Fig. 4].

One of the main differences between our experimental methods and
the ones used by Zai et al.7 is that they grew the B. anthracis bacteria for
24 hours before inoculating into the assay culture, whereas we did not grow
the bacteria prior to inoculation and instead directly inoculated spores into
the assay culture. Charlton et al.10 also directly inoculated spores into the
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assay culture, however, the spores had previously been heat-activated by
heating the spore suspension at 60 °C for 60minutes, whereas the sporeswe
used had not been heat-activated. Another key difference between the
experimental methods of the three studies is the type of culture medium
used. Zai et al.7 inoculated bacteria into 100ml of LB liquid medium,
Charlton et al.10 used basal medium, and we used 50ml of BHI broth and
also added sodiumbicarbonate andCO2. Finally, it may be important when
interpreting the data to note that Charlton et al.10 incubated statically,
whereas we and Zai et al.7 incubated with vigorous agitation.

Mathematical model
We propose a deterministic, DDE model of the in vitro experiments
described above, given by the following system of DDEs:

dSðtÞ
dt ¼ �gSðtÞ;

dNðtÞ
dt ¼ gSðtÞ �mNðtÞ;

dVðtÞ
dt ¼ mNðtÞ þ λVðtÞ 1� VðtÞ

K

� �
;

dGðtÞ
dt ¼ �αVðtÞGðtÞ;

dPðtÞ
dt ¼ βVðt � τ1ÞGðt � τ1Þ � ðν0 þ νVðt � τ2ÞÞPðtÞ:

ð6Þ

The model includes time-dependent variables to represent the number
of germinating spores, S(t), newly desporulated bacteria,N(t), vegetative
bacterial CFU,V(t), and the PA concentration (ng/ml),P(t), at time t ≥ 0.
Due to the observation in all three in vitro data sets that the bacteria seem
to down-regulate the production of PA at some point, and since it has
been hypothesised to be due to a lack of resources such as glucose or
amino acids in the culture medium8,23, we include an equation to
represent the nutrient level, G(t), as a fraction of the initial level,
with G(0) = 1.

B. anthracis spores cannot replicate, but first must undergo pro-
cesses to convert into a vegetative cell24. These processes are collectively
called germination, and they result in a delay before vegetative growth
can occur. Once in a vegetative state, B. anthracis grows into chains of
rod-shaped cells, with each chainmeasured as 1 CFU in the experiments.
However, when a single spore first germinates, it takes time for the
resulting newly desporulated bacterium to grow into a chain of cells.
Thus, in themodel, spores germinate (or desporulate) at rate g to become
newly desporulated bacteria. The newly desporulated bacteria grow into
vegetative bacterial chains with rate m. Then proliferation of the vege-
tative bacterial CFU ismodelled by logistic growth, and these bacteria are
assumed to use up nutrients in the culture medium with rate α, in order
to produce PA. It is assumed that PA is produced by vegetative bacterial
CFU, but it is not produced by the newly desporulated bacteria. The rate
β can be interpreted as the maximal production rate of PA per bacterial
CFU.When nutrients are in excess (i.e.G(t) ≈ 1), bacteria are assumed to
produce PA at their maximal rate. As nutrients are used up by the
bacteria, the per CFU production rate of PA reduces, proportional to the
variable G(t).

Two terms contribute to the removal of PA. Firstly, the PAdecreases at
a rate proportional to the current amount of PA,where ν0 is the rate atwhich
PAnaturally decays. Secondly, it is believed that some of the PAwill actively
be digested due to proteases produced by the bacteria7,9. Therefore, a second
mechanism of PA degradation is included in themodel, in which the rate of
PA removal is assumed to also be proportional to the number of vegetative
bacterial CFU. Two time delays have been included in the PA equation. The
delay τ1 represents the delay taken for bacteria to produce PA. The delay τ2
represents the delay taken for the bacteria to produce the proteases that
degrade PA, where proteases are not explicitly modelled as a variable since
no data is available for these.

The initial conditions of the model variables are given by,

Sð0Þ ¼ fS�0 ; Nð0Þ ¼ εB�
0 ; Vð0Þ ¼ ð1� εÞB�

0 ; Gð0Þ ¼ 1; Pð0Þ ¼ 0;

where S�0 and B
�
0 are the number of spores and bacterial CFUmeasured (or

inferred) at time zero, respectively. These depend on the experiment that is
being modelled. It has been observed in these types of experiments that
often, some small proportion of the initial spores never desporulate.
Therefore, the parameter f represents the fraction of initial spores that are
able to desporulate, which are the ones represented by variable S(t) in the
model. Theparameter ε represents the fractionof initial bacterialCFUthat is
in the newly desporulated state.

Theonly steady-stateof themodel is (S∞,N∞,V∞,G∞,P∞) = (0,0,K, 0, 0).
This state is stable, since all initial germinating spores and newly depopulated
bacteria will eventually become vegetative bacteria, and the population of
vegetative bacteria will approach the carrying capacity, K. Since the nutrients,
G(t), are being used up by the vegetative bacteria, this variable will approach
zero, at which point nomore PA can be produced, and the PAwill also decay
to zero.

Reporting summary
Further information on research design is available in the Nature Research
Reporting Summary linked to this article.

Data availability
The data generated in this study is provided in Table 3.

Received: 27 September 2023; Accepted: 5 March 2024;

References
1. Horiguchi, Y. & Mekada, E. Toxin receptors. In: The comprehensive

sourcebook of bacterial protein toxins, 106–119 (Elsevier, 2006).
2. Banks, D. J., Barnajian, M., Maldonado-Arocho, F. J., Sanchez, A. M.

& Bradley, K. A. Anthrax toxin receptor 2 mediates Bacillus anthracis
killing of macrophages following spore challenge. Cell. Microbiol. 7,
1173–1185 (2005).

3. Splino, M., Patocka, J., Prymula, R. & Chlibek, R. Anthrax vaccines.
Ann. Saudi Med. 25, 143–149 (2005).

4. Carruthers, J. et al. A novel stochasticmulti-scalemodel ofFrancisella
tularensis infection to predict risk of infection in a laboratory. Front.
Microbiol. 9, 1165 (2018).

5. Carruthers, J. et al. Stochastic dynamics of Francisella tularensis
infection and replication. PLoS Comput. Biol. 16, e1007752 (2020).

6. Day, J., Friedman, A. & Schlesinger, L. S. Modeling the host response
to inhalation anthrax. J. Theor. Biol. 276, 199–208 (2011).

7. Zai, X. et al. Quantitative determination of lethal toxin proteins in
culture supernatant of human live anthrax vaccine Bacillus anthracis
A16R. Toxins 8, 56 (2016).

8. Puziss, M. & Wright, G. G. Studies on immunity in anthrax: VII.
Carbohydrate metabolism of Bacillus anthracis in relation to
elaboration of protective antigen. J. Bacteriol. 78, 137–145 (1959).

9. Pflughoeft,K. J., Swick,M.C., Engler,D. A., Yeo,H.-J. &Koehler, T.M.
Modulation of the Bacillus anthracis secretome by the immune
inhibitor A1 protease. J. Bacteriol. 196, 424–435 (2014).

10. Charlton,S. et al. A studyof thephysiologyofBacillus anthracisSterne
during manufacture of the UK acellular anthrax vaccine. J. Appl.
Microbiol. 103, 1453–1460 (2007).

11. Toni, T., Welch, D., Strelkowa, N., Ipsen, A. & Stumpf, M. P.
Approximate bayesian computation scheme for parameter inference
and model selection in dynamical systems. J. R. Soc. Interface 6,
187–202 (2009).

12. Alahmadi, A. A., Flegg, J. A., Cochrane, D. G., Drovandi, C. C. & Keith,
J. M. A comparison of approximate versus exact techniques for
Bayesian parameter inference in nonlinear ordinary differential
equation models. Royal Soc. Open Sci. 7, 191315 (2020).

13. Kalns, J., Morris, J., Eggers, J. & Kiel, J. Delayed treatment with
doxycycline has limited effect on anthrax infection in BLK57/B6mice.
Biochem. Biophys. Research Commun. 297, 506–509 (2002).

https://doi.org/10.1038/s41540-024-00357-1 Article

npj Systems Biology and Applications |           (2024) 10:33 12



14. Mukhopadhyay, T.K.Rapidvaccinedevelopment usingamicro-scale
platform (University of London, University College London (United
Kingdom), 2008).

15. Williams, B. et al. A stochastic intracellular model of anthrax infection
with spore germination heterogeneity. Front. Immunol. 12,
688257 (2021).

16. Williams, B. F. Mechanistic intracellular and within-host models of
bacterial and viral infections. Ph.D. thesis, University of
Leeds (2022).

17. Subramanian, G. M. et al. A phase 1 study of pamab, a fully human
monoclonal antibody against bacillus anthracis protective antigen, in
healthy volunteers. Clin. Infect. Dis. 41, 12–20 (2005).

18. Nagy, C. F., Leach, T. S., King, A. & Guttendorf, R. Safety,
pharmacokinetics, and immunogenicity of obiltoxaximab after
intramuscular administration to healthy humans. Clin. Pharmacol.
Drug Dev. 7, 652–660 (2018).

19. Sirard, J.-C., Mock, M. & Fouet, A. The three bacillus anthracis toxin
genes are coordinately regulated by bicarbonate and temperature. J.
Bacteriol. 176, 5188–5192 (1994).

20. Koehler, T. M., Dai, Z. & Kaufman-Yarbray, M. Regulation of the
bacillus anthracis protective antigen gene: Co2 and a trans-acting
element activate transcription fromoneof twopromoters. J. Bacteriol.
176, 586–595 (1994).

21. Koehler, T. M. Bacillus anthracis physiology and genetics. Mol. Asp.
Med. 30, 386–396 (2009).

22. Turnbull, P. C., Frawley, D. A. & Bull, R. L. Heat activation/shock
temperatures for bacillus anthracis sporesand the issueof sporeplate
counts versus true numbers of spores. J. Microbiol. Methods 68,
353–357 (2007).

23. van Schaik, W. et al. The global regulator cody regulates toxin gene
expression in bacillus anthracis and is required for full virulence.
Infect. Immun. 77, 4437–4445 (2009).

24. Setlow, P. Spore germination. Curr. Opin. Microbiol. 6, 550–556
(2003).

Acknowledgements
We would like to thank Dr. Sue Chartlon and Dr. Bassam Hallis for
providing us with their data from ref. 10 (Figs. 1 and 4) and for useful
discussions about their experiments. B.W. acknowledges support froman
UK Engineering & Physical Sciences Research Council (EPSRC) CASE
studentship [project reference 2345914] in partnership with Dstl under
contract number DSTLX-1000142022. J.P. acknowledges support from
an EPSRC CASE studentship [project reference 2274495] in partnership
with Dstl under contract number DSTLX-1000142027. P.A.J.

acknowledges support from an Impact Acceleration Account (EPSRC and
Dstl) project, reference number IAA3114.

Author contributions
All authors conceived the idea and designed the study. H.J.R.M. and T.R.L.
carried out the experiments described in the Dstl data set sections. B.W.,
J.P., and P.A.J. carried out the mathematical analysis and statistical
calibration, with support from M.L.G. B.W. obtained all figures and drafted
the first version of the manuscript with support from M.L.G. All authors
contributed to the article and approved the submitted version. B.W., J.P.,
and H.J.R.M. contributed equally to this paper and should be considered as
co-first authors.

Competing interests
The authors declare no competing interests.

Additional information
Supplementary information The online version contains
supplementary material available at
https://doi.org/10.1038/s41540-024-00357-1.

Correspondence and requests for materials should be addressed to
Martín. López-García.

Reprints and permissions information is available at
http://www.nature.com/reprints

Publisher’s note Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing,
adaptation, distribution and reproduction in anymedium or format, as long
as you give appropriate credit to the original author(s) and the source,
provide a link to the Creative Commons licence, and indicate if changes
were made. The images or other third party material in this article are
included in the article’s Creative Commons licence, unless indicated
otherwise in a credit line to the material. If material is not included in the
article’sCreativeCommons licence and your intended use is not permitted
by statutory regulation or exceeds the permitted use, you will need to
obtain permission directly from the copyright holder. To view a copy of this
licence, visit http://creativecommons.org/licenses/by/4.0/.

© The Author(s) 2024

https://doi.org/10.1038/s41540-024-00357-1 Article

npj Systems Biology and Applications |           (2024) 10:33 13

https://doi.org/10.1038/s41540-024-00357-1
http://www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/

	Quantifying in vitro B. anthracis growth and PA production and decay: a mathematical modelling approach
	Results
	Zai et�al.7 data�set
	A16R�strain
	Sterne�strain
	Charlton et al.10 data�set
	Dstl data�set

	Discussion
	Methods
	Dstl data set: growth of bacteria and viable�counts
	Dstl data set: automated western�blot
	Additional data�sets
	Mathematical�model
	Reporting summary

	Data availability
	References
	Acknowledgements
	Author contributions
	Competing interests
	Additional information




