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Data-driven energy landscape reveals
critical genes in cancer progression
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The evolution of cancer is a complex process characterized by stable states and transitions among
them. Studying the dynamic evolution of cancer and revealing themechanisms of cancer progression
based on experimental data is an important topic. In this study, we aim to employ a data-driven energy
landscape approach to analyze the dynamic evolution of cancer. We take Kidney renal clear cell
carcinoma (KIRC) asanexample. From theenergy landscape,we introduce twoquantitative indicators
(transition probability and barrier height) to study critical shifts in KIRC cancer evolution, including
cancer onset and progression, and identify critical genes involved in these transitions. Our results
successfully identify crucial genes that either promoteor inhibit these transitionprocesses inKIRC.We
also conduct a comprehensive biological function analysis on these genes, validating the accuracy
and reliability of our predictions. This work has implications for discovering new biomarkers, drug
targets, and cancer treatment strategies in KIRC.

The evolution of a biological systemcanbe conceptualized as a dynamic and
nonlinear system that changes over time1–3. Throughout the process of
evolution, multiple stable states are often established, and transitions occur
between these states4. Especially, for cancer research, it is crucial to correctly
identify the stable states and characterize the evolution process based on
experimental data, since the transition betweendifferent cell states in cancer
systems plays a pivotal role in the evolution of cancer, such as the pro-
gression of cancer cells through epithelial-mesenchymal transition
(EMT)5–9. Therefore, it is of great importance to effectively identify stable
states and corresponding transitions of cancer systems, as well as to unveil
the critical genes involved in these intricate processes.

Currently, cancer is one of the leading causes of death worldwide10. It
can occur in various organs and tissues of the human body, including but
not limited to the lungs, breasts, colon, prostate, and cervix. The develop-
ment of cancer typically involves abnormal cell proliferation and differ-
entiation, leading to the formation of malignant tumors11. To address the
challenges posed by cancer, extensive research has been conducted globally
with the aim of improving early detection rates12, developingmore effective
treatment methods13, and implementing prevention strategies14. However,
cancer remains a complex and challenging problem that requires inter-
disciplinary collaboration and sustained efforts to overcome its challenges.

Experimental studies play a vital role in investigating the biological
processes involved in cancer development, progression, and treatment
response15. Although experimental methods are essential, they can be costly

and influenced by various unstable factors. Advancements in sequencing
technologies have paved the way for data-driven approaches in cancer
research. This approach enables quantitative investigation of cancer evo-
lution, identification of stable states, and discovery of relevant genes.
Understanding themechanisms of cancer progression through quantitative
methods is critical, as it can provide valuable insights into the precise
characterization of disease evolution.

To study cancer dynamics, an important question is to identify the
stable state in the system and corresponding transitions between stable
states. For example, unsupervised learning techniques have been used to
study the transitiondynamics of epithelial-to-mesenchymal transitionusing
single-cell transcriptomic data6.Also, the gene-gene regulatory relationships
have been investigated to identify system states and their associated tran-
sition genes5. Additionally, the model-based energy landscape methods are
employed to study system evolution and quantify the transition path, along
with the exploration of gene regulatory networks4,16,17. So, data-driven
energy landscape may provide an effective approach to study the evolution
mechanism of cancer.

In this study, we employed a data-driven energy landscape algorithm18

to analyze the progression of cancer and investigated its significant transi-
tions, such as onset and deterioration. Using Kidney renal clear cell carci-
noma (KIRC) cancer as an example, we analyzed its evolutionary process.
KIRC is a common and deadly formof cancer. It is resistant to conventional
treatments19, heterogeneous20, and lacks curative options for metastatic
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cases. To understand the molecular mechanisms underlying KIRC, we
analyzed data from The Cancer Genome Atlas (TCGA) project. This large-
scale sequencing dataset provides unprecedented opportunities to uncover
new insights into cancer development.

We propose two novel indicators, based on transition probability and
barrier height (Supplementary Figure 1) to identify crucial promoting or
inhibitory genes in the transition process. Furthermore, we discover that
these genes are associated with important pathways or relevant biological
processes related to cancer. For instance, in the onset of KIRC cancer,
dopaminergic synapses21, and the cAMP signaling pathway22 were found
participating in this transition. In the deterioration of KIRC cancer, it was
observed that the Neuroactive ligand-receptor interaction, p53 signaling
pathway23, cell cycle24, and cAMP signaling pathway22 were enriched with a
significant number of genes.

We conducted a detailed analysis of two transition processes and
identified the critical genes using both indicators. Specifically, we observed
that these genes are primarily enriched in cancer-related processes. For
instance, during the transition from stage TA to I, KRT4 andMMP3 were
identified as critical genes. The expression of KRT4 and KRT17 can be used
to determine whether an individual has cervical cancer25. Additionally, the
expression of theMMP3 gene in keratinocytes promotes differentiation and
inhibits tumor formation26. During the transition from stage III to IV, the
critical genes identified were CALCA and NR0B2. Methylation of MGMT
and CALCA could be used as new molecular markers of prognosis in tes-
ticular germ cell tumors (TGCT)27. Furthermore, the orphan nuclear
receptor NR0B2 may represent a new susceptibility locus associated with
early-onset colorectal cancer28.

Results
Data-drivenenergy landscape revealsKIRCdiseaseprogression
KIRC cancer is a common and deadly cancer, and studying its evolutionary
mechanisms and proposing potential therapeutic strategies is a crucial
question. Now, with advances in sequencing technology, it is essential to
provide novel insights into cancer research based on experimental data. By
applying a data-driven energy landscapemethod (MuTrans)18, we analyzed
the KIRC cancer data to study its evolution (Fig. 1A). The KIRC dataset
contained tumor stage labels of patients (based on tumor size), which were
divided into 5 categories, i.e., tumor-adjacent (TA), stages I, II, III, and IV
(Supplementary Table 1). We used the Eigen-Peak Index (EPI) strategy
(Supplementary Note 1) to detect the number of attractors in the data, with
the number of attractors matching the number of labels (Supplementary
Figure 2). The attractor detection results obtained using the MuTrans
correspondwell to the patients’ staging information (Supplementary Figure
2), indicating that each stage of patients can be roughly characterized by the
corresponding attractor (middle panel of Fig. 1A). According to the clus-
tering results of the unsupervised learning algorithm Leiden, each stage
corresponded to a group while samples in stage I (attractor 1) tend to be
divided into two groups: group 1 and group 5 (right panel of Fig. 1A).
Furthermore, we constructed a three-dimensional energy landscape to
visualize the results of different stages (attractors), where each basin
represents an attractor (or a stable state), and the color depth represents the
energy value. From Fig. 1B, it can be observed that each stable state can be
well characterized.

Next, we aim to quantify the transition between different attractors
(stable states). We calculated the transition probability matrix between
attractors (Fig. 1C). As shown in the figure, the values on the diagonal were
significantly higher, indicating that the cells in the corresponding attractor
have the greatest probability of transition back to the original attractor, so
the corresponding attractor behaves more stable (i.e., reaching a stable
state). However, there are also noticeable transitions between different
attractors, such as transition between attractors 2 and 3. Furthermore, we
applied trajectory inference algorithms Most Probable Path Tree (MPPT)
and Maximum Probability Flow Tree (MPFT) to analyze the evolutionary
trajectory18. In the MPFT graph (Fig. 1D), we observed two distinct paths:
0- > 1- > 3- > 4 and 2- > 3- > 4. Among them, attractor 3 (stage III) is a

critical stable state, which is at the central node position. There are two
obvious transition pathways passing through attractor 3, which may indi-
cate that it is an intermediate state ofKIRC cancer evolution, and the cells in
attractor 3 may return to a benign state (stage I, II) with appropriate
intervention and treatment, or rapidly deteriorate to stage IV, if without
timely treatment. Therefore, there is an opportunity to identify corre-
sponding warning signals in stage III29.

With the MPPT method (Fig. 1E), we provide the initial point
(attractor 0; stage TA) and the endpoint (attractor 4; stage IV). The results
shown in the two-dimensional energy plane indicate that the transition
follows the path 0- > 1- > 3- > 4 and 0- > 1- > 4. Particularly, attractor 2
(stage II) seems tobe isolated andnoton the evolutionary trajectory, and this
stable state may also be an important intermediate state of KIRC, which is
more difficult to evolve into a malignant state. From the transition
streamlines, it can be inferred that attractor 1, as a bifurcation point, may
have significant implications, as many cases rapidly deteriorate from stage I
to stage IV. Combining both methods, it is hypothesized that the path 0-
> 1- > 3- > 4 represents a consistent differentiation pathway. Considering
the clinical significance, we found that attractor 0- > 1 (stage TA- > I) and
attractor 3- > 4 (stage III- > IV) correspond to cancer onset and cancer
progression, which is of great significance.

Identification of critical genes for transition from stage TA to I
In the above analysis,wediscovered themain evolutionarypathwayofKIRC
disease to be 0- > 1- > 3- > 4. During this process, the onset and progression
of the disease are crucial. In this section, we investigated the onset process of
KIRC and proposed two quantitative indicators, based on transition
probability and barrier height to identify the critical genes that play a critical
role in the onset of cancer. Furthermore, we conducted a biological func-
tional analysis to further explain the biological processes involved.

According to Fig. 2A, we can observe that different genes have dif-
ferent effects on the energy barrier height. We used simulated gene
knockout to study the effect of gene expression on barrier height. The
change of barrier height caused by the gene was defined as the barrier
height difference before and after the gene knockout (see Method). The
expression of some genes decreases the energy barrier height, while others
increase it. From biological perspective, this corresponds to promoting
and inhibiting the onset of diseases. The degree of each gene’s effect can be
quantified from the change in the energy barrier height. Similarly, from
Fig. 2B, we can also see that the effect of genes can be indicated by the
change in the transition probability. Therefore, it can be inferred that
when the transition probability increases (decreases) due to gene
expression change, it promotes (inhibits) the process.

We also identified the shared critical genes identified by the two
indicators (Fig. 2E), and found that for these shared critical genes, the
magnitude of our two indicators can also reflect their functional impor-
tance. For example, both KRT4 and ATP12A are among the top 10 genes
identified by both indicators as factors of promoting cancer onset.
However, ATP12A is significantly higher than KRT4 in both indicators
(ranking high, Fig. 2A, B), and from the gene expression distribution (Fig.
2E), ATP12A shows significantly higher expression in TA samples, while
KRT4 does not exhibit significant differential expression. As for the genes
MMP3 and ADH4, which are identified by both indicators as inhibitory
factors for cancer onset, they are both in the top 4 positions of both
indicators (Fig. 2A, B), indicating a strong inhibitory role in the KIRC
cancer onset process. Moreover, they both show significantly higher
expression in TA samples. For the ADH4 gene, it also shows significantly
higher expression in stage III samples, so may also participate in some
critical process in stage III, which confirms that stage III is a critical period
(consistent with the trajectory inference results in Fig. 1).

Moreover, as depicted in Fig. 2C and D, it is evident that several genes
crucial in the onset of KIRC are differentially expressed genes (DEGs).
Notably, the NROB2 and ATP12A genes exhibit significantly higher expres-
sion levels in the TA samples. Conversely, genes such asKRT4 (p_adj= 0.38)
andMC4R (p_adj = 0.98) do not display substantial upregulation in specific
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stages of the samples (see Supplementary Table 2 and Supplementary file for
detailed DEG analysis results). Consequently, our approach differs from the
conventional method of gene selection based on differential expression
analysis. Our method possesses the potential to identify genes that are not

differentially expressed, often disregarded in the initial screening using tra-
ditional approaches, yet playing a pivotal role in specific biological processes.
This capability is advantageous for the discovery of novel biomarkers, drug
targets, and innovative strategies for cancer treatment.

Fig. 1 | Data-driven landscape reveals KIRC disease progression. A Left: Tumor
stage labels of samples under t-SNE dimensionality reduction, which is divided
according to tumor diameter size, where TA refers to tumor-adjacent samples;
Middle: MuTrans classification results by attractors of the dynamical system; Right:
Unsupervised clustering algorithm Leiden based on gene expression data analysis of
the population results. It can be seen that the attractor has a general correspondence
with the staging label (Supplementary Figure 2), while the samples of stage I
(attractor 1) in the Leiden cluster tend to be divided into two categories: group 1 and
group 5.BThe three-dimensional energy landscape corresponding to the KIRC data
shows the results of different stages (attractors): the x-axis is t-SNE1, the y-axis is t-
SNE2, and the ordinate is the energy magnitude (see formula 8), where there is a

general correspondence between the staging information and the attractor, and each
attractor corresponds to a stable state.CTransition probability matrix between each
attractor: the color on the diagonal is darker and the other parts are lighter, indi-
cating that each attractor is relatively stable.D The trajectory inference of theMPFT
method: results were demonstrated in the two-dimensional energy plane. The color
shade represents the energy value, the arrow line indicates that there is a transition
path between the two attractors, and the obvious paths 0-1-3-4,2-3-4 can be seen in
the figure. E The trajectory inferred by theMPPTmethod: the arrows from attractor
A toB indicate thatA transits to B. There are two significant paths for 0- > 1- > 3- > 4,
and 0- > 1- > 4, where attractor 2 seems to be isolated.
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Identification of critical genes for transition from stage III to IV
In the previous section, we analyzed the onset process of KIRC cancer and
identified the corresponding critical genes. We also found that in clinical
practice, we mainly deal with patients who have already developed cancer,
and most of these patients are diagnosed at a late stage due to the lack of
significant early symptoms and early treatment. Therefore, studying how
cancer patients transition from benign tumors to malignant tumors is also
an important topic. In recent years, there have been studies on constructing
early warning signals for critical stages of diseases from data-driven or
model driven approaches30–33.

In this section, we primarily investigated the progression of KIRC
cancer from stage III to stage IV. We proposed two indicators to detect
critical genes involved in this process, as shown in Fig. 3A andB. The critical
genes in the figure were sorted by their effect size, and their gene expression

heatmaps were displayed in Fig. 3C and D. Some genes, such as NROB2,
HRG, PIK3C2G, and GATA4, are differentially expressed genes (DEGs),
while some genes such as COL2A1, CPB2, AQP10, KCNJ6 are non-
differentially expressed genes that were often overlooked. Additionally,
genes likeACVRL1 andMFAP4 exhibitedhigh expression in all stages of the
samples compared to other genes, suggesting their involvement in more
complex interactions.

CombinedwithFig. 3E,CALCAandCPB2were identifiedas genes that
promote the deterioration process. CALCA was differentially expressed in
stages TA and I samples, and with lower expression in other stages, which
may indicate that CALCA is involved in some complex regulatory
mechanisms and affects cancer exacerbation27.CPB2 gene was differentially
expressed in stages III and IV, whichmeans that its expressionmay directly
participate in cancer deterioration34. In addition,NROB2 andCOL2A1were

Fig. 2 | Critical gene analysis of the onset period (from stage TA to I). A The
barrier height indicator identified the top ten promoting and inhibitory genes in
cancer onset: among which the energy barrier height from TA to I was 4.6. ΔH
greater than 0 (blue column) represents corresponding gene promoting the cancer
onset process, and ΔH less than 0 (red column) represents corresponding gene
inhibiting the cancer onset process (see Methods for detailed definition of ΔH).
BThe transition probability indicator detected the top ten promoting and inhibiting
genes in cancer onset, in which the transition probability value was 81.3% when all
gene expression information was included in the process from stage TA to I (see
Methods for details). C The gene expression heatmap of the top ten promoting and

inhibitory genes detected by barrier height indicator. D The gene expression heat-
map of the top ten promoting and inhibitory genes detected by transition probability
indicator. EDistribution of gene expression data with shared critical genes identified
by the two indicators. Darker blue indicates lower expression, while darker yellow
indicates higher expression. The expression values of KRT4 gene were relatively
uniformly distributed. ATP12A was differentially expressed in TA samples but
significantly reduced in other samples, which may be related to the pathogenesis.
MMP3 showed significantly high expression in stages TA, III, and IV, while ADH4
was differentially expressed in stages TA and III.
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identified as inhibition of KIRC deterioration. NROB2 was differentially
expressed in TA, which may indicate the expression of NROB2 will inhibit
the tumor deterioration, while COL2A1 was differentially expressed in IV,
indicating that the expression of this gene may involve some other reg-
ulatorymechanisms to inhibit tumor deterioration. These two genes ranked
in the top three in the ordering from the two indicators, and the expression
level was more significant than other genes, indicating that they were
relatively active in KIRC tumor cells28,35.

We also compared the impact of different normalization methods on
barrier height and transition probability (Supplementary Figs. 3 and 4).We
found that using the normalizationmethod fromMethod 1 (utilized in our
work), the attractors identified correspondedwell to the stage of the sample,
while other normalizationmethods did not achieve a good correspondence,
resulting in biases in the calculated values of barrier height and transition
probability. Therefore, appropriate normalizationmethods are essential for
better associating attractors with stages of cancer, further characterizing the

evolution of cancer. Furthermore, we also conducted an exploration of the
potential correlation between barrier height and transition probability, and
we observed that both indicators exhibited a certain degree of linear rela-
tionship (Supplementary Fig. 5).

Functional analysis of critical genes
We have investigated the critical genes of different transition processes in a
data-driven manner. However, the specific biological significance of these
results still needs to be further validated through existing biological
experiments and enrichment analysis. In this section, we performed Gene
Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG)
functional enrichment analysis on the identified genes by the two indicators
to further elucidate their involvement in cancer mechanisms, providing a
reference for future research on KIRC cancer.

As shown in Fig. 4A and B, we performed GO functional analysis on
critical genes identified for the process of cancer onset and progression,

Fig. 3 | Critical gene analysis of the progression period (from stage III to IV).
A The barrier height indicator identified the top ten promoting and inhibitory genes
in cancer progression, among which the energy barrier height from III to IVwas 0.3.
ΔH greater than 0 (blue column) represents corresponding gene promoting the
cancer progression, and ΔH less than 0 (red column) represents corresponding gene
inhibiting the cancer progression (seeMethods for detailed definition ofΔH).B The
transition probability indicator detected the top ten promoting and inhibiting genes
in cancer progression, in which the transition probability value was 69.5% when all
gene expression information was included in the process from stage III to IV. C The

gene expression heatmap of the top ten promoting and inhibitory genes detected by
barrier height indicator. D The gene expression heatmap of the top promoting and
inhibitory genes detected by transition probability indicator. EDistribution of gene
expression data with shared critical genes identified by the two indicators. Darker
blue indicates lower expression, while darker yellow indicates higher expression.
CALCA was differentially expressed in stages TA and I samples, CPB2 was differ-
entially expressed in stage III samples,NROB2 was differentially expressed in stages
TA and IV, and COL2A1 was differentially expressed in stage IV.
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Fig. 4 | Functional analysis of critical genes in the KIRC onset and progression
period. A GO enrichment analysis of critical genes identified in the KIRC cancer
onset: The enrichment results of the top 20 promoting and inhibitory genes from
both indicators were analyzed in terms of Biological Process, Cellular Component,
andMolecular Function.BGO enrichment analysis of critical genes identified in the
KIRC cancer progression: The enrichment results of the top 20 promoting and
inhibitory genes from both indicators were analyzed in terms of Biological Process,

Cellular Component, andMolecular Function. KEGG pathway enrichment analysis
of critical genes (C) KIRC cancer onset and (D) KIRC cancer progression: The x-axis
represents Fold Enrichment, the color intensity represents the significance of
pathway enrichment, and the size of the circles represents the number of genes
enriched.Mapping of specific critical genes in KEGG pathway enrichment (E) KIRC
cancer onset and (F) KIRC cancer progression: Red (gray) indicates the specific
critical genes that are enriched (not enriched) in this pathway.
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individually. The analysis was conducted in three dimensions: Biological
process, Cellular component, and Molecular function. It was observed that
these genes are enriched inmany biological processes and functions related
to cancer, such as cell proliferation36, and plasmamembrane37. Additionally,
we conducted a KEGG pathway analysis on these genes. In the process of
cancer onset (Fig. 4C), we found that these pathways, such as the p53
signaling pathway23, are related to the mechanisms of cancer development.
On the other hand, pathways such as nicotine addiction are associated with
specific individual behaviors and previous studies have shown that beha-
viors like smoking greatly increase the risk of cancer38. In the progression of
the disease (Fig. 4D), these genes are involved in pathways, such as the cell
cycle24, and the p53 signaling pathway23, closely related to cancer. These
results further demonstrate the effectiveness of our model predictions.

In Fig. 4E and F, we provided a detailed display of the specific genes
enriched in thesepathways. In the onset ofKIRCcancer, itwasobserved that
the Neuroactive ligand-receptor interaction, Dopaminergic synapse21, and
the cAMP signaling pathway22 are enriched with a significant number of
genes. Furthermore, genes such as GABRA2, GRIA2, GABRA3,DRD2, and
KCNJ6 are found to be enriched in these pathways. In the deterioration of
KIRC cancer, it was observed that the Neuroactive ligand-receptor inter-
action, p53 signaling pathway23, cell cycle24, and the cAMP signaling
pathway22 are enriched with a significant number of genes. Additionally,
genes suchasCCNB2,CCNB1, andCHEK2 are found tobe enriched in these
pathways. In conclusion, our proposed method effectively identifies critical
genes that play a crucial role in KIRC cancer either for cancer onset or
disease progression.

In the subsequent analysis, we conducted a detailed investigation of
each transition process and identified the critical genes associated with each
process, as summarized inTable 1. Specifically,we found that theKRT4gene
plays a promoting role in the TA- > I transition process. Furthermore, the
expression of bothKRT4 andKRT17 can serve as indicators for the presence
of cervical cancer in individuals25. On the other hand,MMP3was identified
to have an inhibitory role in this transition process. Notably, the expression
ofMMP3 in keratinocytes enhances differentiation and effectively prevents
the establishment of tumors26. Moving on to the transition from stage I to
stage II,wediscovered that theCPB2geneplays apromoting role34, while the
INSM1 gene has an inhibitory effect39. In the subsequent transition from
stage II to stage III, both the GATA4 and AQP10 genes were identified to
have promoting roles40,41. In the transition from stage I to stage III, the
COL2A1 gene was identified to have a promoting role35, while the GRIA2
gene was identified to have an inhibitory role42. Finally, in the transition
from stage III to stage IV, the CALCA gene was identified to have a pro-
moting role27, while the NR0B2 gene was identified to have an inhibitory
role28. The relation between these critical genes identified by the two indi-
cators and cancer was demonstrated in Table 1.

Discussion
How to effectively quantify the dynamic processes of biological systems
using mathematical methods is an important issue. Nonlinear dynamical
system theory is commonly used to model biological systems, where the
stable states of the system can be represented by attractors of the dynamical
system.However, with the explosion of biological experimental data and the
characteristics of real data such as noise, large samples, and high dimen-
sionality, it has become quite difficult and urgent to construct interpretable
models based on data. For cancer research, it is also paramount to develop
data-driven approaches to study the mechanism of cancer dynamics, and
correctly identify the stable states and measure the evolution process.

In this work, we applied a data-driven energy landscape method to
learn the dynamical characteristics of nonlinear dynamical systems. With
KIRC as an example, we effectively identified the stable states (attractors) of
the system and trajectory inference methods (MPFT, MPPT) were used to
infer the transition trajectories between stable states and identify essential
transition paths. Additionally, we utilized the energy landscape method to
quantify the dynamic transition process for KIRC, where the points with
lower energy (higher probability density function) are more stable. T
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Furthermore, for each transition process, we proposed two indicators
to study the specific effect of each gene on the transition in terms of energy
barrier height and transition probability, determining whether it promotes
or inhibits the transition. In the disease progression, we found that the
NROB2 and ATP12A genes were significantly upregulated in stage TA
samples, suggesting their potential involvement in the pathogenesis. On the
other hand, genes such as KRT4 and MC4R did not show significant
upregulation in certain stages of the samples25. In the study of KIRC cancer
progression, CALCA and CPB2 were identified as genes that promote the
deterioration process, and CALCA showed significant expression in stage
TA and I samples, followed by a decrease in expression. This may indicate
the involvement of CALCA in complex regulatory mechanisms that affect
cancer progression. However, from the perspective of gene expression, we
found that the genes we identified are partially differentially expressed.

Genes identified with uniform distribution may interact with other
genes, but these interactions may vary across different attractors. In more
detail, when calculating the similarity matrix at the sample-sample level,
while the expressionof genes is relativelyuniform, themagnitudeof its effect
on each attractor may vary due to differences in the number of samples in
each attractor, resulting in changes in barrier height and transition prob-
ability. The mechanism of these critical gene’s role in KIRC cancer is more
complex. How to study these genes in more detail based on data and gene
regulatory networks is one of our future research directions. In addition, we
found that not only these critical genes identified by our indicators play a
significant role in the evolution of KIRC cancer but also some of them are
non-DEGs, often discarded by most researchers in the initial screening
stage. Therefore, it has the potential to find new biomarkers, drug targets,
and new cancer treatment strategies.

In further analysis, we performed biological functional analysis on the
selected critical genes. In the onset of KIRC cancer, it was observed that the
Neuroactive ligand-receptor interaction, Dopaminergic synapse21, and the
cAMP signaling pathway22 were enriched with a significant number of genes.
Furthermore, genes such as GABRA2, GRIA2, GABRA3, DRD2, and KCNJ6
were found to be enriched in these pathways. In the deterioration of KIRC
cancer, it was observed that the Neuroactive ligand-receptor interaction, p53
signaling pathway23, cell cycle24, and the cAMP signaling pathway22 were
enriched with a significant number of genes. Additionally, genes such as
CCNB2, CCNB1, and CHEK2 were found to be enriched in these pathways.

Our work involves determining the transition paths and investigating
the role of genes in each specific transition. However, the sequential
expression of genes or the effect of genes may change the barrier height and
transition probability, which may lead to changes in the selection of tran-
sitionpaths. For instance,when the expressionof a gene increases the barrier
height of a certain transition process or decreases the transition probability
of that process, it implies that the evolution of cancer may be more inclined
to avoid that process and choose an alternative path. Of course, this also
requires us to compare the barrier height and transition probability of this
transition path with those of other transition paths, which is an interesting
and meaningful research direction and will be a focus of our future work.

In summary,wehave applied a data-driven energy landscape approach
to study KIRC cancer. We have proposed two strategies to investigate two
important transition processes of cancer, identified critical genes, and
conducted corresponding biological functional analyses for their biological
significance. Our research contributes to understanding the evolutionary
process of KIRC cancer and the identification of critical genes involved in
this process. This provides valuable insights for clinicians and scientists in
finding newbiomarkers, drug targets, and novel cancer treatment strategies.

Methods
Theoretical background
Cellular evolution can often be modeled as a dynamical system using sto-
chastic differential equations (SDEs), as follows:

dXt ¼ f ðXtÞdt þ σ Xt

� �
dWt ð1Þ

whereXt 2 Rp is the gene expression value of the cell at themoment t, f ðXtÞ
is the drive force containing the interaction relationship between genes, etc.,
σðXtÞ is the noise size of the system, and Wt is the standard Brownian
motion. When the number of genes is small, f ðXtÞ can be estimated using
causal inferencealgorithms43.However,when thenumberof genes is too large
(typically exceeding the limit in single-cell sequencing), direct fitting or
solving of high-dimensional Eq. (1) is not feasible. In such cases, a multiscale
data-drivenmethod is employed to reconstruct the structureof thedynamical
system, where each steady state of the system is represented as an attractor.
This approach is further described in the following section.

The workflow of the MuTrans algorithm
TheMutrans algorithmaims touncover thedynamicsunderlying sequencing
data by considering three key aspects18: 1) Computing the random-walk
transition probability matrix (rwTPM) at the cell-cell level. 2) It focuses on
identifying the attractors of the nonlinear dynamical system, classifying each
cell accordingly, and computing the rwTPM at the cluster-cluster level. Then
lineage inference approach can be applied to infer the transition paths
between attractors (categories). 3) Computing the rwTPM at the cell-cluster
level. By using membership probability, we can denote the probability of the
cell belonging to the attractor. By addressing these perspectives, the Mutrans
algorithmprovidesvaluable insights into thedynamicsof the sequencingdata.

Computing the rwTPM at the cell–cell level
The transition probability matrix, measured at the cell–cell level using the
random walk model, can be directly calculated from the gene expression
data. It is defined as follows:

p x; y
� � ¼ w x; y

� �
d xð Þ ; d xð Þ ¼

X
z

w x; zð Þ ð2Þ

In this context, x; y represents the cell, and wðx; yÞ represents the
distance between cells x and y. The distance metric used can be Euclidean
distance, cosine similarity, correlation coefficient, or any other appropriate
measure. Under this definition, the stationary probability distribution of the

transition probabilitymatrix is denoted asμðxÞ ¼ dðxÞP
z
dðzÞ, and it satisfies the

detailed-balance condition μðxÞpðx; yÞ ¼ μðyÞpðy; xÞ.

Computing the rwTPM at the cluster–cluster level
In this step, the number of attractors needs to be determined. This can be
achieved by employing the EPI strategy (Supplementary Note 1; Supple-
mentary Figure 2) to assess the gene expression data. Alternatively, if the
label information of cells ormarker genes of cells is known, prior knowledge
about the numberof label categories canbeused todetermine thenumber of
attractors.

The transition probability matrix �P ¼ ð�PijÞK ×K
is first defined at the

cluster-cluster level, where �Pij represents the probability of attractor Si
transiting to Sj, K represents the number of attractors, and based on the
cluster-cluster random walk transition probability matrix (rwTPM)
�P ¼ ð�PijÞK ×K

, the cell-cell rwTPM is further constructed as follows:

�p x; y
� � ¼ X

i;j

1Si xð Þ�Pij1Sj y
� � μ y

� �
�μj

ð3Þ

where �μj ¼
P

y 1Sj ðyÞμðyÞ, and 1Sj ðzÞ is the indicator function, which
means that if the cell Z belongs to attractor Sj, then 1Sj zð Þ ¼ 1, other-
wise 1Sj zð Þ ¼ 0.

For cluster-cluster rwTPM �P ¼ ð�PijÞK ×K
and the attractor clustering

result, we can calculate them using the optimization method as follows:

min
SK ;P̂ij

���p SK ; �Pij

h i
� p

��2
μ

ð4Þ
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where μ is the stationary probability distribution of the cell-cell rwTPM p,

jjAjj2μ ¼
P

x;y
μðxÞ
μðyÞAðx; yÞ2, and this optimization problem can be solved

iteratively18. The optimized SK
�; �Pij

� obtained in this study measure the
stability of the system and its inter-transition characteristics using a
probabilistic model. Additionally, the Most Probable Path Tree (MPPT)
approach or Maximum Probability Flow Tree (MPFT) approach can be
applied to infer the transition paths between attractors.

Computing the rwTPM at the cell-cluster level
Constructing cell-cluster rwTPM by introducing membership function
qðxÞ ¼ ðq1ðxÞ; q2ðxÞ; ::; qK ðxÞÞ, where qi xð Þ represents the probability that
cell x belongs to attractor Si, and

P
i qiðxÞ ¼ 1. Based on �P ¼ ð�PijÞK ×K

obtained from the previous step, the cell-cell rwTPM can be constructed as
follows:

ep x; y
� � ¼ X

i;j

qi xð Þ�Pijqj y
� � μ y

� �
eμj ;eμj ¼ X

x

qj xð Þμ xð Þ ð5Þ

The solution for q xð Þ can be obtained by the following optimization
problem,

min
q

jjep q
� �� pjj2

μ ð6Þ

s:t: qðxÞ ¼ ðq1ðxÞ; :::; qK ðxÞÞ;
XK
i¼1

qiðxÞ ¼ 1

where �P ¼ ð�PijÞK ×K
is optimized when constructing the cluster-cluster

rwTPM, this problem can be solved by the quasi-Newton method18.

Inferring the transition path
In order to further quantify the evolution of the system, that is, the transition

paths between different attractors, combined with the SK
�; P̂ij

�
obtained by

theMutransmethod, the transition probability matrix P̂ ¼ ðP̂ijÞK ×K
is first

defined at the cluster scale,where P̂ij represents theprobability of attractor Si
transferring to Sj, K represents the number of attractors. We infer the
trajectory based on the transition path theory using two methods, namely
the Most Probable Path Tree (MPPT) approach and the Maximum Prob-
ability Flow Tree (MPFT) approach.

The maximum probability flow tree (MPFT). The proposed method
utilizes the concept of system evolution, which typically exhibits a tree-
like structure. By incorporating the theory of minimum spanning trees, a
trajectory graph is constructed to optimize the flow of maximum tran-
sition probabilities. The cluster-cluster transition probability matrix P̂ij

�

satisfies the detailed-balance condition μ�i P̂ij
� ¼ μ�j P̂ji

�
. Therefore, we

can construct a symmetric probability flowmatrix F, where Fij ¼ μ�i P̂ij
�
.

Here, the flow Fij represents the percentage of cells transitioning from
attractor Si

� to Sj
� relative to all cells undergoing transitions in the

Markov chain. Using Kruskal’s algorithm to construct a maximum
spanning tree of an undirected graph from a matrix, such that the gen-
erated tree has the maximum probability flow of transitions18.

Themost probable path tree (MPPT). In contrast to MPFT, MPPT can
determine specific paths and their probabilities between attractors, given
the initial and final states. This capability is valuable for studying dif-
ferentiation processes. Given the initial state Si

� and the end state Sj
�, for

all possible paths connecting Si
� and Sj

�, the relative likelihood of each
transition path, defined as the sum of the capacity of all paths from Si

� to
Sj
� on its path capacity ratio, can be interpreted as the proportion of

effective transition fluxes along the developmental trajectory of interest,
which can be constructed in graph theory as the shortest path tree44–47.

Of course, other pseudo-time ordering methods such as PAGA48,
DPT49, Slingshot50 and Monocle51 etc. can also be used for analysis.

Construction of energy landscape
After determining each attractor, we apply a Gaussian distribution fitting to
each attractor in the two-dimensional space (using dimensionality reduc-
tionmethods such as PCA, t-SNE, etc.). Specifically, for attractor Si, wefit its

Gaussian distribution Nð~μi;
P

iÞ; ~̂μi ¼ 1
Ni

PNi
j¼1

~Xj,
P̂

i ¼ 1
Ni

PNi
j¼1ð~Xj�

μiÞð~Xj � μiÞ
T
, where~Xj denotes the coordinates of cell j in two-dimensional

space in the attractor Si,Ni denotes the total number of cells in attractor Si.

PSi
~X
� � ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2π
P̂

i

��� ���r e�
~X�~̂μið ÞT

P̂
i

�1
~X�~̂μið Þ

2 ð7Þ

Gaussian mixture model (GMM) fitting yields the total probability
density function, i.e.

P ~X
� � ¼ XK

i¼1

wiPSi
~X
� � ð8Þ

And its energy value Uð~XÞ ¼ �InPð~XÞ, wi ¼ NiPK
i¼1

Ni

, it can be found

that thehigher theprobability value, the lower the energy value and themore

stable.

Identification of the critical gene in transition
Studying the genes that play a crucial role in the transition is a meaningful
task. In this section, we propose two indicators for identifying critical genes
in the transition and determining whether they have a crucial role in pro-
moting or inhibiting the transition.

Indicator based on transition probability. In the aforementioned
context, we utilize a random walk model to model the dynamical system
and construct the identification of attractors and their transition prob-
abilities in a data-driven manner. For the transition process from state A
to state B, we aim to investigate the probability contribution of each gene
to this transition.We employ themethod of simulating gene knockout to
study the impact of each gene on the transition probability, defined as
follows:

ΔPi ¼ PA!B
all � PA!B

all= gif g ð9Þ

Where PA!B
all represents the transition probability from state A to state B,

which includes all gene expression information. PA!B
all=fgig represents the

transition probability from state A to state B after removing the gene
expression information of gene gi and reconstructing the transition process.
It can be observed that if ΔPi>0, it indicates that gene gi increases the
transition probability, promoting the transition from state A to state B.
Conversely, if ΔPi<0, it inhibits the transition.

Indicator based on barrier height. We construct a data-driven
approach to identify attractors and their energy landscape. For the
transition from state A to state B, the barrier height is defined as the
energy difference between saddle point and the departing attractor
(Supplementary Figure 1). We develop a simulated gene knockout
method to investigate the impact of each gene on the barrier height,
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defined as follows,

ΔHi ¼ � HA!B
all �HA!B

all= gif g
	 


ð10Þ

The barrier height for the transition process from stateA to state B
in the energy landscape, which includes all gene expression informa-
tion, is denoted as HA!B

all . The barrier height in the energy landscape
reconstructed after removing the gene expression information of gene
gi is denoted as HA!B

all=fgig. It can be observed that if ΔHi>0, it indicates
that gene gi reduces the barrier height, promoting the transition from
state A to state B. Conversely, if ΔHi<0, it inhibits the transition.
Compared with the definition of the change in transition probability, a
negative sign has been added in order to keep it greater than 0 for
indicating a promote effect.

Data processing and functional analysis
The kidney renal clear cell carcinoma (KIRC) data was obtained from
The Cancer Genome Atlas (TCGA) database (GDC (cancer.gov),
specifically the RNA-seq data from tumor and tumor-adjacent sam-
ples, along with the corresponding clinical information. The tumor
samples were then classified into different stages based on the available
clinical information, obtained from TCGA. Samples without stage
information were excluded from the analysis. The full clinical staging
information can be found in Supplementary Table 1. The downloaded
data consists of RNA sequencing data in Fragments Per Kilobase of
exon model per Million mapped fragments (FPKM) format. The raw
data was cleaned and analyzed for differential expression (Supple-
mentary Figure 6). We also proposed approaches to mitigate any
potential bias in the subsequent calculations. Firstly, we need to ensure
an adequate sample size, for example, exceeding 300 samples in total,
and at least 50 samples per stage, to ensure a certain statistical power in
the calculations. Secondly, in the preprocessing stage, outliers can be
removed or their impact on the calculations can be mitigated through
standardization.

In theRenvironment,weperformeddifferential expressedgene (DEG)
analysis on the raw gene expression data using the DESeq2 package. The
analysis results for all genes have been added to the Supplementaryfiles. The
Scanpy Python package was utilized for various analyses, including differ-
ential expression analysis and dimensionality reduction clustering52. KEGG
Mapper tool (KEGG Mapper Color) and the DAVID Functional Annota-
tion Tool (DAVID: Functional Annotation Tools (ncifcrf.gov) were used to
perform the enrichment analysis.

Reporting summary
Further information on research design is available in the Nature Research
Reporting Summary linked to this article.

Data availability
Kidney renal clear cell carcinoma (KIRC), is available from the cancer
genome atlas (TCGA) database (http://cancergenome.nih.gov). The com-
putational codes are publicly available on GitHub (https://github.com/
liujuntan/Landscape_KIRC).
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