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Morphological entropy encodes cellular
migration strategies on multiple
length scales
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Yanping Liu 1,2 , Yang Jiao3,4, Qihui Fan5, Xinwei Li1,2, Zhichao Liu1,2, Dui Qin1,2, Jun Hu6, Liyu Liu7,
Jianwei Shuai 8,9,10 & Zhangyong Li 1,2

Cell migration is crucial for numerous physiological and pathological processes. A cell adapts its
morphology, including the overall and nuclear morphology, in response to various cues in complex
microenvironments, such as topotaxis and chemotaxis during migration. Thus, the dynamics of
cellular morphology can encode migration strategies, from which diverse migration mechanisms can
be inferred. However, deciphering the mechanisms behind cell migration encoded in morphology
dynamics remains a challenging problem. Here, we present a powerful universal metric, the Cell
Morphological Entropy (CME), developed by combining parametric morphological analysis with
Shannon entropy. The utility of CME, which accurately quantifies the complex cellular morphology at
multiple length scales through the deviation fromaperfectly circular shape, is illustrated using a variety
of normal and tumor cell lines in different in vitro microenvironments. Our results show how geometric
constraints affect the MDA-MB-231 cell nucleus, the emerging interactions of MCF-10A cells
migrating on collagen gel, and the critical transition from proliferation to invasion in tumor spheroids.
The analysis demonstrates that the CME-based approach provides an effective and physically
interpretable tool tomeasuremorphology in real-time acrossmultiple length scales. It provides deeper
insight into cell migration and contributes to the understanding of different behavioral modes and
collective cell motility in more complex microenvironments.

Cell migration plays a vital role in the normal development of tissues or
organs, including wound healing1–3, immune response4, and
embryogenesis5. In addition, many human diseases are mainly dominated
by dysregulated cell migration, such as cancer invasion and metastasis6,7.

Typically, cellsmigrating in complexmicroenvironments are regulated
by environmental cues8 and intracellular signaling pathways9, resulting in
diverse modes of cell migration10–12. For example, chemotaxis mediated by
diffusible cues13, haptotaxis in response to surface-bound chemical cues14,
and durotaxis in response to differences in substrate stiffness15. More spe-
cifically,MDA-MB-231 cells exhibit a limit cycle in two-statemicropatterns,

whereas MCF-10A cells show excitable bistable dynamics16. Intriguingly,
cells reversing, following, and sliding past each other upon collision have
been observed in these micropatterns17. Furthermore, oriented collagen
fibers in the microenvironment can stabilize cellular protrusions and
additionally guide 3D cell migration18. During directed migration, the
corresponding persistence is exponentially correlated with the migration
velocity, and this typical relationship is dominated by actin flows and
regulated by the Arp2/3 complex that supports lamellipodia extension19–21.
Besides the migration dynamics, cells also exhibit distinct morphological
dynamics in response to different external cues. Particularly, cell nuclei are
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stretched to overcome the steric hindrance caused by physical constraints22,
which is strongly correlated with nuclear envelope stretch-sensitive
proteins23. Since both cell morphology and migration modes are the con-
sequences of a combination of extracellular cues and intracellular signals,
they are closely related to each other. For example, single-cell migration has
been classified into mesenchymal and ameboid modes. The former is
dominated by the actin polymerization that pushes the plasma membrane
forward and exhibits several features, including a strong dependence on
adhesion to the extracellularmatrix (ECM), an elongatedmorphology in 3D
environments, and actin-based protrusions at its leading edge; whereas the
latter depends mainly on actomyosin contractility and exhibits a more
roundedmorphology, especially undergoing constant changes in shape due
to the rapid extension and retraction of membrane protrusions24–26.

To decipher the migration mechanisms based on the most vivid cell
morphology, many novel researches have been carried out27. For example,
cell morphology neural networks are constructed to identify subcellular
compartments and the cell types of neuron reconstructions28. Machine
learning is also employed to classify cell shapes into distinct phenotypes,
indicating that morphological phenotypes controlled by ECM mechanics
and Rho/ROCK-signaling facilitate cancer cell navigation through the non-
uniformECM29.Recentwork shows thatmorphological classes of single cell-
derived clones derived from 216 features of the cell and nucleus can predict
unique tumorigenic and metastatic potentials in vivo using unsupervised
clustering analysis30. Moreover, shape fluctuations of the chromatin globule
surface and nuclear envelope are driven both thermally and actively, with
decreasing amplitudes serving as a reliable cell cycle stage indicator31. In the
previous work, we also developed a quantitative approach that contains five
shape parameters, i.e., the perimeter2-to-area ratio (rpta), the standard
deviation of the relative boundary-to-center distances (dstd), the protrusion
height (h), the height-to-width ratio (rhtw), and the combination of h&rhtw,
to depict the morphological characteristics of cell spheroids and verified the
ability of the DDR1 inhibitor 7rh to weaken the invasion of single cells32.
Even so, the approachmayhave limitations in clarifying relevant biophysical
interpretations due to the multiple shape parameters. In addition, some
scalar descriptors including roughness, shape factor, and curvature, are often
used to characterize the morphology of cells and nuclei33–35, and the corre-
sponding analysis aims to capture more information to study and distin-
guish biological states closely related to morphological dynamics36. Among
thesemethods, the widely used CellProfiler37 andMorpholibJ38 (a plugin for
ImageJ) allow us to extract a large number of features and further reveal the
differences across varying cell populations.

Taken together, there is increasing evidence that the study of cell
morphology and its relationship to cell functions andmigrationmodes can
provide more insight into the mechanisms underlying cell migration.
However, the approaches or tools used still have three shortcomings: i) the
approaches are mainly used to analyze the morphological changes of single
cells or nuclei, and it is unknown how they behave when used to analyze

other objects such as cell spheroids33–35; ii) the approaches involve many
features that allow us to capture enough information of the shape, but these
numerous descriptive features could limit the biophysical interpretation of
shape changes32,37,38; iii) the approaches are mainly developed based on
machine learning algorithms and large amounts of morphological data,
which may be limited in analyzing time-varying morphological
features27,29,30. Therefore, quantifying morphological features of different
objects in real-time using a simple and efficient approach becomes a major
challenge.

Here, we introduce a theoretical metric that combines morphological
analysis and Shannon entropy to depict the morphological dynamics of
some objects that are mediated by complex physical or biochemical cues.
Note that the Shannon entropy introduced has a physical interpretation
akin to the Gibbs entropy for thermal systems. It reflects the degree of order
or randomness of cellular migration, with a value of 1 indicating purely
diffusive migration (i.e., the most “random” dynamics) and a value of 0
indicating purely ballistic dynamics (i.e., themost “ordered” dynamics).We
find that for different length scales of cell data, including nuclei, single cells,
and cell spheroids, the approach can accurately measure the changes in
morphology, especially the angular and radial features. By analyzing the
time-dependent CME components, we gained some insights encoded in the
morphology changes, including the dynamics of the nucleus in overcoming
the steric hindrance of the ECM, the interactions of MCF-10A cells
migrating on top of a 3D collagen gel, and the transition of tumor spheroids
from proliferation to invasion under the regulation of the DDR1 inhibitor
7rh. Thus, the CMEmetric allows us to explore cell migration mechanisms
in pathophysiological environments, such as cancer and other physiological
conditions.

Results
Biophysical interpretations of the CMEmetric
To clearly illustrate the biophysical interpretations of the CME metric, we
analyzed themorphology of two types of single-cell migration following the
procedure described in Fig. 1, i.e., ameboid and mesenchymal modes of
migration (see the inset in Fig. 2a), and the corresponding results are
exhibited in Fig. 2. Evidently, the PDFs of the angular displacement for the
two types of morphologies possess the different trends as a whole, i.e., the
probability values for the ameboid mode are located in the small interval of
0.0–0.05, while the values for the mesenchymal mode cover an extensive
range of -0.05 to 0.15 (Fig. 2a). Consequently, the difference results in a
narrower PDF of angular displacement for the ameboidmode compared to
the mesenchymal mode, which theoretically indicates that the blebs (or
protrusions) of the ameboid mode are more uniformly distributed on the
angular direction. It’s worth noting that the term “narrower” is used when
the PDF deviates from a uniform distribution. Similarly, the PDF of the
radial displacement for the ameboid mode is narrower than that for the
mesenchymal mode (Fig. 2b), showing that the blebs of the ameboid mode

Morphological entropyMorphological analysisImage processing

Original image

Binarizing & Smoothing

PDFs of displacementsPDFs of displacements

Shannon entropyShannon entropy

Cell morphological entropyCell morphological entropy

Morphological dynamicsMorphological dynamics

Angular & radial featuresAngular & radial features

a b c

Fig. 1 | Flowchart of CME construction. a Representative workflow of image
processing. The original image was taken with permission from the work22 and
shows that the MDA-MB-231 cell nucleus in red is located in a chamber. Scale bar,
10 µm. bMorphological analysis of the sample in the polar coordinate system (PCS).

The green and orange bars represent probability density functions (PDFs) of radial
and angular displacements, respectively. c Derivation of the CME based on PDFs
and Shannon entropy.
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aremore uniformly distributed in the radial direction. In addition, the CME
components (i.e., CMEafor angular andCMEr for radial features) of the two
typesofmorphologies also exhibit significantdifferences, namely, theCMEa
for the ameboidmode is significantly smaller than that for themesenchymal
mode, and the CMEr for the former is also slightly smaller than that for the
latter, but with statistical significance (� � � p < 0.001) (Fig. 2c). Here, the
values of the CME components are mainly determined by the natural fea-
tures of the cell morphology, so it is very possible that this metric could be
used to distinguish the modes of cell migration. To further explore the
performance of the CME approach, we additionally analyzed multiple and
single lamellipodia with similar features, which differs from the significant
differences between ameboid and mesenchymal modes. The results agree
well with our assessment and further confirm the effectiveness of the CME
approach in capturing some subtle differences in morphology. See Sup-
plementary Fig. 1 for a more detailed discussion.

Taken together, theCMEcanbeused tomeasure the angular and radial
features of a given morphology, and the more uniformly distributed the
features are, the smaller the value of the CME. To better understand the
relationship above, we conclude the following two aspects: (i) if there are
multiple non-obvious features (e.g., blebs) in the angular direction,we could
consider that they are more uniformly distributed on this direction and
result in a narrower PDF (smaller CMEa); (ii) if there are significant dif-
ferences in the features (e.g., protrusions) on the radial direction, we also
consider that they are less uniformly distributed on this direction and result
in a broader PDF (larger CMEr). In other words, the CMEa and CMEr
describe the heterogeneity of the angular and radial features, respectively.

Morphological dynamicsofMDA-MB-231cell nucleussqueezing
through a micro-structured array
In the previous subsection, we have clearly clarified the biophysical inter-
pretations of theCMEmetric basedon the cellmorphologies of the ameboid
and mesenchymal modes. Now, we further apply the CME approach to
investigate the changes in nuclear morphology as the cell squeezes through
spatial constraints.Here, the images of cell nuclei (length scale, ~ 20 µm) are
taken from the videos published by Fabry et al.22, in which the authors
studied 3D migration in a confined environment of varying stiffness. See
more exciting results in the works22,39.

Features of the channel array characterized by the CME approach.
In this subsection,wefirst convert the video of cellmigration into a series of
images, and analyze the time-lapse images using the CME approach, and
the corresponding results are exhibited in Fig. 3. It clearly indicates that a
cell nucleus squeezes through a narrow channel (as marked by the yellow
arrows) at different times, and the nucleus is “rod-like” due to the physical
constraints with a gradually decreasing width from 8.4 to 6.6 µm (Fig. 3a).
Furthermore, the migration speed seems to be qualitatively stable, as the
nucleus passes through the chamber at the time interval of ~ 50min, as

indicatedby the labels on the vertical axis of Fig. 3a. In terms of quantitative
analysis, both CME components (CMEa and CMEr) possess the exact
characteristics of “peak and valley” (Spearman’s coefficient = 0.77), i.e.,
four peaks and three valleys, which visibly show the effects of these
channels and chambers on the cell nucleus, respectively (Fig. 3b). In
addition, the CME components also behave differently, i.e., the values of
peak and valley for CMEa gradually increase, as indicated by the dotted
line. However, the values of the peak for CMEr are almost stable around
0.58, which also differs significantly from the increase in those of the valley.
The changing trends of the CME components above further illustrate that
CMEaandCMEr responddifferently to the sameexternal cues in theECM,
which may reflect the intrinsic properties of the nucleus to some extent,
such as the stiffness that is mainly dominated by nuclear envelope stretch-
sensitive proteins23.Here, the changing trends could also be capturedby the
aspect ratio (AR) metric that is used to measure the elongation (see Sup-
plementary Fig. 4a, b), since the changes in morphology of the nucleus are
dominated by elongation. To assess the changes in the cell nucleus as a
whole, we also average the CME components and obtain the resulting
averaged CME, which follows a similar trend to that of CMEa (Fig. 3c).

Although the CME components have distinct differences, CMEa is
still strongly correlated with CMEr (Pearson’s coefficient = 0.90). For
example, CMEr gradually increases as CMEa increases and this rela-
tionship could be fitted well by a linear variation “y = 0.50x+ 0.25”
(R2 = 0.80), as indicated by the scatter in Fig. 3d. To explore the potential
causality of this correlation, we also compute the cross-correlation
between the radial Δrj and angular Δθj displacements taking tumor
spheroids as an example, see Supplementary Fig. 3 for more details.
According to the features of the scatter, we further classify the scatter into
three clusters (labeled by I, II, and III) using the K-means clustering
algorithm40. The averaged values for each cluster are plotted in Fig. 3e,
where the error bars denote the s.d. for the two CME components. It can
be seen that CMEa increases significantly from 0.52 to 0.62 and then to
0.68, while CMEr first increases from 0.51 to 0.58 and then remains stable
around 0.58, forming three clusters for CMEa and two clusters for CMEr.
On the one hand, the three clusters for CMEa in Fig. 3e could be perfectly
explained by three migration states in the micro-structured array: (i)
cluster I shows that the cell nucleus is located at a chamber and possesses a
smaller CMEa as it has more space to recover from the highly confined
state; (ii) cluster II shows that the cell nucleus is entering (or exiting) the
channel and the confinement gradually increases (or decreases); (iii)
cluster III illustrates that the cell nucleus is squeezing through the channel
and has a larger CMEa because of the stronger physical confinement. On
the other hand, the two clusters for CMEr could be utilized to identify
different structures, i.e., the large CMEr corresponds to the channel while
the small CMEr corresponds to the chamber. In addition, the two aspects
above also directly reflect that CMEa is more sensitive to spatial con-
finement compared to CMEr.

b c

Angular displacement

Pr
ob

ab
ili

ty

Radial displacement

Pr
ob

ab
ili

ty

Amoeboid Mesenchymal

CM
E 

co
m

po
ne

nt
s

a
amoeboid
mesenchymal

***
***

CMEa CMEr

Fig. 2 | Biophysical interpretations of the CME metric. a PDFs of the angular
displacement of cell morphology. The inset shows representative single-cell
migration modes, adapted from the work58 under CC–BY license. Scale bar, 10 µm.
b PDFs of the radial displacement. cCME components of the two types of migration
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Estimation of the steric hindrance of the channel array. Finally, we
counted the number of scatter points in each cluster and plotted the
histogram in Fig. 3f. The results show that the percentages for the clusters
I–III are 34.2%, 39.5%, and 26.3%, respectively, which closely correlate
with the results of 34.2%, 44.7%, and 21.1% obtained by manually
observing the images of the cell nucleus and then classifying them into
their respective clusters. Due to the unchanged sampling timeΔt = 5min,
the percentage here could also be considered as (or equivalent to) the
dwell time of a cell nucleus in a unique structure. According to the array
with three chambers (23 µm in length) and four channels (18 µm in
length) through which the nucleus travels, we roughly estimate the time
the nucleus spends in the chambers and channels.

The corresponding ratio is theoretically equal to (3*23)/(4*18) = 0.96,
i.e., the ratio of chamber length to channel length, assuming that the nucleus
moves through the channel array at a constant speed. Specifically, the time
spent in cluster I is actually 1.3 times greater than the time in cluster III, and
the time in cluster II is 1.5 times greater than the time in cluster III. Addi-
tionally, the time in cluster I is 0.52 times greater than the total time in
clusters II and III. According to the above comparisons, we could deduce
three important aspects: i.e., (i) the value of 1.3 indicates that the uncon-
strained nucleus (cluster I) takes more time than the fully constrained
nucleus (cluster III), (ii) the value of 1.5 indicates that the partially con-
strained nucleus (cluster II) also takes more time than the fully constrained
nucleus (cluster III), and (iii) the value of 0.52 indicates that the narrow
channels impede the movement of the nucleus compared to the chambers.
Overall, the geometric confinement within the ECM can cause deformation
of the cell nucleus and further hinder cell migration to some extent.

Emerging interaction of MCF-10A cells migrating on top of a 3D
thick collagen gel
To validate the utility and efficiency of the CME approach, we further
investigate themorphology ofMCF-10A cellsmigrating on top of a 3DECM

based on collagen I hydrogel (i.e., an 800-µm thick layer of collagen gel). This
model can mimic an in vivo quasi-3D system, such as cells moving at the
interfaceof tissues. Furthermore, thefibrous structureof the collagengelhelps
to support long-range force propagation, which induces strong cell-ECM
mechanical coupling and directs highly correlated cell migration (length
scale, ~120 µm). See our previous works41,42 for more details. However, it
remains unclear how cell morphology changes during correlated migration.

Alternating changes in the morphology of a pair of cells. Figure 4a
shows representative time-lapse images of a pair of cells labeled “up” and
“down”, apparently indicating that the two cells are migrating toward
each other, as indicated by the yellow arrows. After applying the CME
approach to cell morphology, we obtained the CME components of the
cell pair as a function of time (Fig. 4b–d). In Fig. 4b, theCME components
of the up cell showalmost the same trends (Spearman’s coefficient = 0.91),
i.e., the values first increase and then decrease and thus form a “stable”
maximum (~0.7 for CMEa, ~0.6 for CMEr) in the time interval of about
40–70min. However, the CME components of the down cell exhibit
significant differences from those of the up cell (Fig. 4c), namely, they first
fluctuate at a high level of about 0.6–0.7 for CMEa (or about 0.4–0.5 for
CMEr), then start to decrease steeply from ~30min and reach the mini-
mum at ~50min (~0.4 for CMEa, ~0.25 for CMEr), then gradually
increase until ~70min and finally return to the high level before
decreasing. In this process, CMEa changes synchronously with CMEr,
quantified by Spearman’s coefficient = 0.85. In addition, the values of
CMEr are generally smaller than those of CMEa for the two cells, indi-
cating that the angular characteristic encoded by CMEa is more sensitive
than the radial characteristic encoded by CMEr when the cell responds to
the same external cues from themicroenvironment (see the similar results
in Fig. 3b). Here, the different sensitivities may be caused by a combi-
nation of cellular intrinsic properties and extracellular cues, and which
needs to be further validated by a series of experiments.
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Symmetry and similarities in the alternating changes. In addition, the
average of CMEa and CMEr vividly shows the differences between the up
and the down cells, as shown in Fig. 4d. To better compare the behavioral
modes of the two cells during different migration periods, we divide the
average of the CME components into four stages (as indicated by the
vertical dotted lines) based on their time-lapse characteristics. In stage I,
i.e., 2–34min (or stage IV, 70–92 min), the average of these two com-
ponents is slightly increased (or decreased) for the down cell and is larger
than the gradually increased (or decreased) average for the up cell. In
contrast, in stage II, 36 – 52 min (or stage III, 54–70 min), the strongly
changed average for the down cell is significantly smaller than the basi-
cally stable average for the up cell. Next, all the averages in each stage are
averaged again and plotted in Fig. 4e to quantitatively validate the
descriptions above. The results clearly show two types of symmetry: (i)
the changing trend of the averaged CME for the down cell is almost
opposite to that for the up cell; (ii) all values in stages I and II seem to be
symmetric with those in stages III and IV. In addition, we also calculate

the profiles of AR vs. time for these two cells. The results show roughly the
changing trends exhibited in Fig. 4d, but these are some significant dif-
ferences from the symmetry. See Supplementary Fig. 4c for more
discussion.

Apart from the time-varying features of theCME, the boxplot inFig. 4f
also shows that not only are all the means for the down cell slightly larger
than those for the up cell but also the CME of the up cell are more sparsely
distributed than those of the down cell, directly demonstrating the statistical
differences inmorphology between the two cells. Nevertheless, there are still
some interesting similarities, such as the linear variations of CMEr vs.
CMEa, which fit relatively well to the formulas “y = 0.91x+ 0.05”
(R2 = 0.93) and “y = 0.93x+ 0.09” (R2 = 0.88) for the up and down cells,
respectively.

A potential indicator of cell forces. Based on the results above, we
proposed that the behavior modes encoded in morphology may embody
the interactions between a pair of cells, in particular the force exerted by
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individual cells. In previous works41–43, we observed that the active tensile
forces generated by migrating cells can remodel collagen fibers, which is
directly verified by the phenomenon that elongated cells contribute to the
formation of fiber bundles, while rounded cells don’t reorganize the
surrounding collagen fibers, and in turn, the fiber bundles bridging two
cells typically regulate cell migration and lead to strongly correlated
motility. Therefore, the CME could be considered as a potential indicator
to accurately measure how cells exert force on the surrounding envir-
onments in real-time. See more detailed analysis in the Discussion
section.

The critical transition of tumor spheroids from proliferation to
invasion
In addition to the applications of the CME approach in analyzing the
morphologies of cell nuclei and cell pairs, we also investigated the pro-
liferation and invasion of three types of cell spheroids (length
scale, ~ 600 µm), namely H1299 (lung cancer), MDA-MB-231 (breast
cancer), and U87 (glioma tumor), based on their morphological changes
analyzed by the CME approach, which differs from the complex methods
including five shape parameters in our previous work32. The results further
validate the robustness and effectiveness of this approach in analyzing the
research object with different length scales.

Transition from proliferation to invasion detected by the CME
approach. Figure 5a shows representative images of the U87 cell
spheroid without 7rh (DDR1 inhibitor) treatment, which clearly shows
the morphological changes of the spheroid. For example, some “fingers”
formed by single cells appear at the boundary over time, as indicated by
the white arrow (also see Supplementary Fig. 5 for more details on the
experiments). Next, we calculated the average of CMEa and CMEr for
H1299 cell spheroids (n = 3 independent experiments), as shown in Fig.
5b, where the average for no-7rh and with-7rh cases show similar trends,
i.e., first remaining stable with minor fluctuations and then gradually
increasing. The stable stage manifests that although cells begin to

proliferate and lead to an expansion of the morphology of the initial
spheroid, this does not affect the shape until the presence of the fingers.
The fingers represent the invasion of cancer cells away from the spheroid,
which may be driven by the hypoxic and acidic tumor
microenvironment44. In addition, the transition from the “stable” to the
“increase” stage (i.e., from proliferation to invasion) is earlier in the no-
7rh case than that in the with-7rh case, suggesting that the DDR1 inhi-
bitor 7rh could effectively inhibit the transition. To further validate the
results, we analyzed the experimental data for MDA-MB-231 and U87
cell spheroids (n = 3 independent experiments for each case). Evidently,
all transitions that the AR metric cannot capture (see Supplementary
Figs. 4d–f and Table 1) are earlier in the no-7rh cases, indicating that the
7rh does inhibit the proliferation-invasion transition regardless of the cell
type (Fig. 5c–d).

Note that all CMEs of thewith-7rh case are larger than those of the no-
7rh case for the H1299 cell spheroid. However, the “larger” relationship
becomes “smaller” and “approximately equal” for the MDA-MB-231 and
U87 cell spheroids, respectively, which may be caused by the different sizes
(mean radius) of the initial cell spheroids (t = 0min). Here, we suggest that
the differences in the CME relationships have less impact on the transition
results because they are mainly determined by the slopes (or inflection
points) of the CME profiles rather than the magnitudes.

Inhibited transition derived from the CME scatter. In contrast to the
results shown in Fig. 4g, the scatter of CMEr vs. CMEa indicates that
significant differences are observed in different cell types (Fig. 5e). For the
no-7rh cases, the scatter for H1299 and U87 cell spheroids are relatively
distributed in the upper-left and lower-right regions, respectively, while
that for MDA-MB-231 cell spheroids is located in the region sandwiched
by the scatter for the other two cell types, as indicated by the dotted lines.
In addition, for a given CMEa (e.g., CMEa = 0.6), H1299 cell spheroids
have the largest CMEr, followed by MDA-MB-231 and U87 cell spher-
oids, indicating that the heterogeneity in finger length is the most pro-
nounced in H1299 cell spheroids. When treated with 7rh, the CMEr and
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Fig. 5 | Transitions from proliferation to invasion of cell spheroids detected by
the CME approach. a Representative fluorescence images of U87 cell spheroids
without 7rh treatment. Scale bar, 300 µm. bCMEofH1299 cells as a function of time.
The red and blue lines correspond to the cases without 7rh and with 7rh treatment.

c,dCMEofMDA-MB-231 andU87 cells as a function of time. eThe scatter of CMEr
vs. CMEa for these three types of tumor spheroids. f Slopes of the linear fit for the six
cases in e. Data are presented as mean ± s.e.m.; n = 3 independent experiments for
each case; and the lag dN is 5.
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CMEa are significantly affected, especially for H1299 andMDA-MB-231
cell spheroids. For example, (i) the scatter of the with-7rh case for H1299
cell spheroids is significantly different from that of the no-7rh case,
resulting in two separate regions (see the dotted lines); (ii) the scatter of
the with-7rh case for MDA-MB-231 cell spheroids have smaller CMEr
and CMEa, and forming a region with an area approximately half of that
of the no-7rh case. To further explore the relationship betweenCMEr and
CMEa, all of the scatter for the three types of cell spheroids were fitted by
linear variations with the slopes plotted in Fig. 5f. The histograms clearly
show that the slopes of the no-7rh cases are significantly larger than those
of thewith-7rh cases, forH1299 andU87 cell spheroids. At the same time,
there is less difference for MDA-MB-231 cell spheroids when s.e.m.
errors are considered. The results above illustrate that (i) 7rh treatment
can alter the quantitative correlation of CMEr with CMEa and inhibit the
invasion of single cells away from cell spheroids (see Supplementary Fig.
6); (ii) different cell types have distinct sensitivities to 7rh, which further
leads to the changes in slopes of the CME profiles.

Discussion
In this study,we have introduced an approach called “CME”, derived froma
combination ofmorphological analysis and Shannon entropy, which allows
us to analyze the angular and radial characteristics concerning cell mor-
phology and to further explore themechanisms of cellmigration underlying
morphological dynamics.

We first investigate a sub-cellular object, a cell nucleus, squeezing
through a micro-structured array consisting of sequential channels and
chambers, among which the channels become progressively narrower. We
found that the CME of the nucleus in channels is significantly larger than
that in chambers, and the changing trends of the CME vividly reflect two
characteristics of the array, i.e., channels sequentially connecting to cham-
bers and gradually narrowing channels. Therefore, it’s probably feasible to
consider the CME as a powerful metric that can be directly utilized to
measure the characteristics of physical cues that geometrically constrain
adhesion sites45, such as the oriented 3D matrix or 1D lines, when direct
measurements are ineffective or appropriate tools are lacking.Moreover, we
quantitatively obtain the relationship between channel sizes and the angular
features of the morphology for a given nucleus (Fig. 3b), which not only
manifests the direct effects of physical constraints on the morphological
dynamics of the nucleus but also characterizes the deformability or sensi-
tivity to physical cues, to some extent. Furthermore, these properties can be
combined to construct an identification code, such as a “fingerprint”, to
signify the essential features of the cell nucleus.

Additionally, we divide the scatter of CMEr vs. CMEa into three
clusters corresponding to three stages, i.e., migration in channels, in
chambers, and entering/exiting the channels, respectively. Although it is the
nuclearmorphology that determines the clustering, it reflects to some extent
the features of the invasiveness/migration modes of cancer cells. For
example, the time cost of the nucleus is roughly estimated in performing
these unique migrationmodes and clearly indicates a key point: the time to
enter the channels is more significant than the time to exit the channels,
illustrating that the cell needs more time to coordinate the intracellular
signaling pathways associated with nuclear envelope stretch-sensitive pro-
teins tobetter adapt to thephysical constraints. The analysis above is in good
agreement with the mechanisms underlying cell responses to spatial con-
straints reported in previous work23.

Except for the sub-cellular nucleus, we further studied themorphology
of MCF-10A cells migrating on a thick collagen gel. We found that the
changes in themorphologyof the twocells that are close to eachother exhibit
an apparent regularity, i.e., when the morphology of one cell is compared to
the rounded state, another cell elongates anddeviates fromthe rounded state,
andvice versa. Fromanotherpoint of view, the changespossess ahighdegree
of symmetry in both the vertical (magnitude) and horizontal (time) axes, as
indicated by the four stages in Fig. 4d, which further illustrates that an
alternating mode emerges from the morphologies of the two cells and the
interactionmay bemediated by a communicationmedium, such as collagen

fibers41,46 or biochemical factors47. Here, the principle of communication is
similar to that used by follower cells to communicate with leader cells
through adhesion-based mechanical interactions48. If the changed mor-
phology is related to cell contributions to the encounter, it may refer to the
forces exerted on the ECM49,50, the energy cost51, or other physical quantities.

Based on the result reported in our previous work, cell morphology is
strongly correlated with the force exerted on the ECM41; thus, one could
evaluate the characteristics of the force using the CME approach when the
cell migrates in complex microenvironments, including temporal and
spatial aspects. Regarding the alternating mode in Fig. 4, we argue that the
downcell initially exerts a greater pulling forceon the collagenfibers, and the
up cell gradually increases its force after sensing the pulling force when they
are far apart (from 200 to 150 μm). As the distance between them decreases
(from 150 to 100 μm), the force exerted by the up cell increases and exceeds
the force exerted by the down cell. Finally, when they are closer together
(from 100 to 50 μm), the force exerted by the down cell becomes the major
contributor again. The alternating change may allow one cell to sense or
“judge” the status of another cell and further adjust its migration mode,
helping to improve the efficiency of communication or correlated move-
ment.We believe that the emerging interaction encoded in themorphology
embodies to some extent the diversity of cell-cell communication, which
mayhelp to explain somecollective cellmigrations52, such aswoundhealing,
histogenesis, and cancer cell invasion and metastasis.

Finally, we analyzed the morphology of three types of tumor cell
spheroids todetect the transitions fromproliferation to invasion.The results
firstly illustrate that the DDR1 inhibitor 7rh can alter the quantitative cor-
relation of CMEr with CMEa and inhibit the invasion of single cells away
from the cell spheroids, which may help us to better understand malignant
mammary tumors that reorient the collagenfibers tobe perpendicular to the
mammary gland and use these structures as “highways” for migration away
from the crowded/dense regions occupied by epithelial cells53,54. Second,
different types of tumor cells exhibit distinct sensitivities to 7rh, which were
not measured by our previous method. This results in the changes in the
slopes of the CME profiles32. Therefore, it’s essential to optimize the dosage
of 7rh to control the invasion of tumor cells and avoid or reduce the
development of drug resistance. In addition, 7rh can be replaced here by
other biochemical factors, such as epithelial growth factor (EGF), batima-
stat, and glucose, to study the individual or superimposed effects of these
factors on cancer. Here, theCMEapproach combinedwith the cell spheroid
model may provide us with a new platform for screening and evaluating
effective drug candidates in the era of personalized cancer therapy.

In summary, we proposed an approach called CME in this article,
which allows us to explore the mechanisms of cell migration underlying
morphological dynamics.Our results validate theutility and efficiencyof the
CME approach, which can be used to accurately measure the effects of
geometric constraints on the cell nucleus that is viewed prevailingly as the
primary source of steric hindrance for 3D invasion, in particular the positive
correlation of the size of the constraint with the CME of the nucleus. Fur-
thermore, the interactions of MCF-10A cells migrating on a thick collagen
gel also emerge from themorphological changes characterized by the CME,
which not only illustrates the diversity of cell-cell interactions but also
emphasizes the crucial role of collagen fibers in regulating cell migration
behavior. Finally,we also captured the transitionsof three types of tumor cell
spheroids fromproliferation to invasion and further confirmed the ability of
theDDR1 inhibitor 7rh to attenuate the invasiveness of cancer cells.Overall,
our approach contributes to analyzing the information encoded in mor-
phology and revealing cellular migration strategies at multiple length scales
in complex microenvironments.

Methods
3D collagen gel experiment
An in vitro cell migration experiment was carried out: MCF-10A cells were
first obtained from China Infrastructure of Cell Line Resource (Beijing,
China) and labeled with green fluorescent protein (GFP). Additionally, the
culture medium used here is Dulbecco’s modified Eagle’s medium-F12
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(Corning, Corning, NY), which was further supplemented with 1% peni-
cillin/streptomycin (Corning), 5% horse serum (Gibco, Gaithersburg,MD),
20 ng/mL human EGF (Gibco), 100 ng/mL cholera toxin (Sigma-Aldrich,
St. Louis,MO), 0.5 mg/mLhydrocortisone (Sigma-Aldrich), and 10mg/mL
insulin (Roche Diagnostics, Basel, Switzerland). Next, type I collagen
extracted from rat tail tendon (Corning) was diluted and neutralized to
pH~ 7.1. The collagen solution was then spread on the substrate of a Petri
dish and incubated at 37 oC for 30min until it polymerized into a 3Dmatrix
with a concentration of 2mg/mL and a thickness of ~ 2mm. Then, 0.5mL
of the cell suspension was dropped on top of the collagen gel and formed a
randomly distributed cell population with a low cell density of 104 cells/cm2

after incubation for 2 h. Finally, a confocal laser scanningmicroscope andan
automatic inverted fluorescence microscope (Nikon Ti-E, Tokyo, Japan)
wereused toobtain the time-lapse images of the cellswith a sampling timeof
2min. See our previous works41,42 for further details of the experiment.

Data regarding cell spheroid
The experiment was previously performed using three types of tumor cells,
including U87 (glioma tumor) cells, H1299 (lung cancer) cells, and MDA-
MB-231 (invasive breast cancer) cells, all of which were first labeled with a
green fluorescent protein (GFP). A cell suspension was then prepared at a
density of 1.0 × 104 cells/mLand seeded into anultra-lowattachment (ULA)
plate with a 96-well round bottom, where a cell spheroid formed after 96 h.
Next, the spheroid was transferred to a new 96-well flat bottom ULA plate
containing culture medium with a collagen concentration of 2mg/mL,
where the spheroidwas imaged by a CCDcamera (Neo 5.5 sCMOS, Andor,
USD) for further analysis. See our previous work32 for more details of the
experiment.

Data regarding micro-structured array
A micro-structured array consisting of sequential channels and chambers
was designed and fabricated using a combination of soft lithography and
polydimethylsiloxane (PDMS), in which the channel is 20 µm length,
3.7 µm height, and has a decreasing width from 11.2 to 1.7 µm. To better
observe and analyze the dynamic process of invasive MDA-MB-231 cells
squeezing through the array, cell nuclei were stained with 1.5 µg/mL
Hoechst 33342 (in red) and imaged with a sampling time of 0.2min. Note
that the images of cell nuclei analyzed in this study were taken with per-
mission from the attached videos of the work22.

Image processing and boundary extraction
After obtaining the time-lapse microscopy image, we first manually extract
the morphology of a research object (e.g., cell nuclei, single cells, or cell
spheroids) from complicated backgrounds using the basic operations
(including “Brightness/Contrast”, “Threshold”, “Find Edges”, “Fill Holes”,
and “Outline”) in ImageJ software. Second, the extracted morphology is
transformed into a grayscale image, and further, the noises contained in the
image are reduced by calling the built-in functions (including “rgb2gray”,
“fspecial”, “imfilter”, “graythresh”, “imbinarize”, and “imfill”) in MATLAB
software (MathWorks, USA). Then, Otsu’s method55 is introduced to
automatically transform the grayscale image into a binary one containing
only two grayscale levels (0 and 255). Subsequently, the “imfill” function is
called to fill the holes in the binarized image, resulting in many connected
domains, among which the domain with the largest area is identified as the
main body of the research object, i.e., the 2D morphology. Finally, the
centroid and the boundary of the morphology are naturally determined by
the “regionprops” function in the Cartesian coordinate system (CCS) for
further analysis (see Fig. 1a).

Morphological analysis
To better understand the process of developing the CME approach, we first
map the morphology in the CCS onto the polar coordinate system (PCS)
andmove the centroid of themorphology to the origin of the PCS. Then, we
obtain the coordinates ri; θi

� �
of the boundary for i = 1, 2, � � �, andN , which

accurately describe the shape of the research object. Here, the subscript i
denotes the numerical order of each point on the boundary. Since the
boundary exactly contains some “burrs” that are mainly caused by system
noises, it is essential to define a number lag dN for extracting a new
boundary from the original boundary, i.e., the coordinates ðrj; θjÞ are
selected to form a new boundaryM ¼ ðrj; θjÞwhere j = dN , 2 � dN ,� � �, and
floor N=dN

� � � dN . See Supplementary Fig. 2 for the detailed discussion of
how to determine the dN . Although the newboundary discards some burrs,
it still represents the main shape of the research object. Next, the displace-
ments between any two consecutive points are computed by
ΔM ¼ Mj �Mj�1, which can also be represented by two terms, i.e., radial
Δrj and angular Δθj components. Subsequently, the PDFs of the two
components are derived from their normalized statistical histograms, i.e.,
p Δrð Þ and p Δθð Þ, as shown in Fig. 1b.

CME approach derived from Shannon entropy
Inspiredby the relationship above,we further introduce Shannonentropy to
develop a robust description method for quantifying the changes in mor-
phology (see flowchart in Fig. 1c). Entropy is an extensively used concept in
thermodynamics and is typically used to describe the degree of order or
randomness in the states of molecules. It was first introduced by C. E.
Shannon in 1948 to describe the “uncertainty” in information sources56.
Thus, it is also called “Shannon entropy”when used in information theory.
Actually, entropy is technically quite difficult to compute reliably for con-
tinuous variables57. However, for a random event with discrete probabilities
of occurrence p1, p2,…, pn, the corresponding entropy can be easily derived
from the following formula:

H ¼ �
Xn
i¼1

pi log 2 pi
� �

ð1Þ

wheren is the total numberof events that possibly occur,pi is the probability
of each event occurring, and log 2() is the logarithmic functionwith a base of
2. The Shannon entropy not only measures howmuch “choice” is involved
in selecting an event, but also indicates how “uncertain” the outcome of the
event might be. According to the properties of the logarithmic function
above (Eq. 1), it is not difficult to deduce that the entropy H will be max-
imum when the probabilities pi are identical to each other, i.e., pi ¼ 1=n,
meaning that one cannot judge which event is most likely to occur42. Since
the entropy above is strongly correlated with the number of events, we
furthernormalize all entropiesbydividing themaximumH to eliminate this
correlation, resulting in all entropies (denoted by eH) being rescaled to a
narrow interval of [0,1]. Next, we further replace the pi by p Δθð Þ or p Δrð Þ
separately, and obtain the eH for each component. According to the physical
meaning of Shannon entropy, it is evident that the more regular (or irre-
gular) the shape of the object, the closer the corresponding eH is to 0 (or 1).
To avoid confusion caused by abbreviations, we use “CME” to denote the
entropy eH that correlates with the morphology of the object.

Calculation of aspect ratio
To effectively compare the results obtained by CME and aspect ratio (AR),
we first process the original images using the scripts written inMatlab, then
export these images to fit the object in each image with an ellipse using the
“Fit ellipse” function in ImageJ andobtain the lengthof themajor andminor
axes of the ellipse, and finally calculate the AR by dividing the length of the
major axis by the length of the minor axis.

Cross-correlation
The cross-correlation Crθ (n) between the radial Δrj and angular Δθj

components is definedasCrθ nð Þ ¼ Δrj� �Δrð Þ Δθjþn� �Δθð Þ
� �

jffiffiffiffi
σ2r

p ffiffiffiffi
σ2
θ

p , where �Δr ¼ hΔrjij
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and �Δθ ¼ hΔθjij, are the averages, and σ2r¼ hðΔrj � �ΔrÞ2i
j
, and

σ2θ¼ Δθj � �Δθ
� �2

	 

j

, are the corresponding variances of the

components.

Statistical analysis
Statistical analysis was performedwith customMATLAB (R2018b,USA). If
the data meet the criteria of normality and equal variance, parametric tests
are used, i.e., t-test for two groups and ANOVA (analysis of variance) for
more than two groups. If the data do not meet the criteria, then a bijective
transformation is introduced and used to process the data. If the data meet
the criteria after processing, then parametric tests are used, otherwise, non-
parametric tests are applied, i.e., Wilcoxon rank sum for two groups and
Kruskal-Wallis formore than two groups. It should be noted that normality
and equal variance are tested by the “llillietest” (i.e., Lilliefors test) and
“vartestn” (i.e., Bartlett test) functions in MATLAB, respectively, while the
“acos” function is used in this work to perform a bijective transformation.
Differences are significant at the 95% confidence level (two-tailed). There
are three levels of significance: �p < 0.05; � � p < 0.01; � � �p < 0.001,
according to the standard Michelin Guide scale.

Correlation coefficients
The correlation coefficient reflects the degree of correlation between two
variables. If the data are continuous numerical variables, and both satisfy
normality (or possess obvious single peaks), the Pearson coefficient is pre-
ferred, and if the data do not satisfy the normality after transformation, the
Spearman or Kendall coefficients are optional. See more details in the
work42.

Reporting summary
Further information on research design is available in the Nature Research
Reporting Summary linked to this article.

Data availability
The data used in this study is available from previous publications refer-
enced in the text22,41,58: https://doi.org/10.1016/j.bpj.2015.07.02522, https://
doi.org/10.1002/anie.20201608441, https://doi.org/10.1038/s41598-018-
30408-758 (with permissions). Data regarding tumor spheroids of this
study is available from the corresponding author upon request.

Code availability
The custom codes used to calculate the CME approach in this study can be
found at https://github.com/YanpingRoy/Morphological-Entropy.git.
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